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Overview

Give formal semantics to syntactical models

(Modeling) languages are defined by:
syntax: the form of a valid program/model

(behavioral) semantics: how it should be interpreted

Modeling languages:
semantics defines apart/informal/hard coded

Semantics should be explicit
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. . . more precise
Unified Modeling Language (UML)

Extended and specialized by UML profiles

Captures just the syntactical aspects

No formal description of how it should be interpreted

Define the semantics of syntactical models
MARTE Time Model & Clock Constraint Specification Language

Integrated Development Environment
Papyrus UML + MARTE profile

TimeSquare1 for simulation/execution/analysis

1http://www-sop.inria.fr/aoste/dev/time_square
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Outline
Define the semantics of synchronous data-flow formalisms

Syntax: UML Activity Diagram
Semantics: constraint logical time

relevant events as logical clocks
translate language rules into clock relations

1 Encode data-dependencies of SDF models

2 Translate data-dependencies to execution dependencies

3 Multi-dimensional semantics (MDSDF)

4 Multidimensional order: environment constraints

5 External constraints
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Clock Constraint Specification Language

Modeling and Analysis of Real-Time and Embedded systems
(MARTE)

Companion of the Time Package

Chronological relations between events

Clocks = possibly infinite and possibly dense totally ordered sets
of instants

CCSL relations:
precedence (≺)

coincidence (≡)

exclusion (#)

CCSL clock expressions:
filteredBy (H) – by a binary
periodic word

delay ($) – by an integer value

5 / 14
Logical Time at Work: Capturing Data Dependencies and Platform Constraints

N



Data-flow models

SDF model as an UML activity diagram
Syntax:

computational elements
– actors

FIFO channels – arcs

initial values – delays
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Data-flow models

SDF model as an UML activity diagram
Syntax:

computational elements
– actors

FIFO channels – arcs

initial values – delays

Synchronous data-flow semantics:
fixed amount of data elements produces/consumed at each firing

local producer/consumer rules defined by each arc
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SDF: data dependency semantics
General representation of a SDF arc

Relevant events in the system:
Actor firings

Element-wise write and read events on arcs
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SDF: data dependency semantics
General representation of a SDF arc

Each actor firing is followed by writeweight write events on each
outgoing arc
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SDF: data dependency semantics
General representation of a SDF arc

On each arc, read events (delayed by the initial value) must follow
write events
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SDF: data dependency semantics
General representation of a SDF arc

readweight read events on each of its ingoing arc precede an actor
firing
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SDF: data dependency semantics
General representation of a SDF arc

1 producer =
(
write H

(
1.0w−1

)ω)
2 write ≺ (read $ i)

3
(
read H

(
0r−1.1

)ω) ≺ consumer
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SDF: execution dependency semantics
General representation of a SDF arc

Direct precedence (computed) between the two clocks
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SDF: execution dependency semantics
Example of SDF arc

Direct precedence (computed) between the two clocks

(Clockproducer H (011)ω) ≺ (Clockconsumer $ 1)
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Direct precedence computation algorithm

Iterative algorithm to compute the parameters of the general
execution precedence relation:

(Clockproducer H P) ≺ ((Clockconsumer $ indep) H C )
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Direct precedence computation algorithm

Iterative algorithm to compute the parameters of the general
execution precedence relation:

(Clockproducer H P) ≺ ((Clockconsumer $ indep) H C )

indep = binitialweight/readweightc
initial = initialweight mod readweight
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Direct precedence computation algorithm

Iterative algorithm to compute the parameters of the general
execution precedence relation:

(Clockproducer H P) ≺ ((Clockconsumer $ indep) H C )

indep = binitialweight/readweightc = b7/6c = 1

initial = initialweight mod readweight = 7 mod 6 = 1

initial +4 +4 -6+4 -6+4
tokens 1 5 9 7 5

< 6 > 6 > 6 done
binary ( 0 1 1 )
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From local rules to global functionality

(ActorA H (011)ω) ≺ (ActorB $ 1)
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From local rules to global functionality
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Encoding MDSDF in CCSL

straightforward multi-D extension of 1-D SDF

quasi-independent relations producer/consumer by dimension

in1 ≺
(
hF1 H

(
1.02

)ω)
hF1 ≺

(
vF1 H

(
1.02

)ω)
in2 ≺ hF2

(
hF2 H

(
08.1

)ω) ≺ vF2
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External constraints

multidimensional order – environment constraints
in1 = (s H 1. (0)ω) in2 = s

hF1 =
(
hF H 13. (0)ω

)
hF2 =

(
hF H

(
02.1

)ω)
vF1 =

(
vF H 19. (0)ω

)
vF2 =

(
vF H

(
1.08

)ω)
execution platform constraints

proc = hF + vF hF # vF
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To resume . . .

Formal specification encoding the entire set of schedules cor-
responding to a correct execution

Generally, the behaviour of a system can be seen as:
a set of operations applied to an initial state

into a certain order (execution dependencies)

Logical Time refinement:
Functional semantics (internal constraints)

External constraints (environment or execution platform)

Buffer capacities

Physical time – durations: execution, communication, . . .
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Conclusion

We used constraint logical time to:
Define explicit semantics of synchronous data-flow models

Capture data-dependencies

Express computed execution dependencies

Integrate external constraints

Papyrus UML, MARTE profile and TimeSquare:
OMG standard

Time simulation/analysis

Detect inconsistencies (deadlocks)

Compute periodic schedule
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