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{ Give formal semantics to syntactical models

(Modeling) lanquages are defined by:

o syntax: the form of a valid program/model

o (behavioral) semantics: how it should be interpreted
Modeling languages:

o semantics defines apart/informal/hard coded

Semantics should be explicit
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... more precise

o Extended and specialized by umL profiles
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Define the semantics of syntactical models
o MARTE Time Model & Clock Constraint Specification Language

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

3/14


http://www-sop.inria.fr/aoste/dev/time_square

... more precise

o Extended and specialized by umL profiles
o Captures just the syntactical aspects

o No formal description of how it should be interpreted

Define the semantics of syntactical models
o MARTE Time Model & Clock Constraint Specification Language

Integrated Development Environment
o Papyrus UML + MARTE profile
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4 Outline

o Syntax: UML Activity Diagram
o Semantics: constraint logical time

o relevant events as logical clocks
o translate language rules into clock relations
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: Outline

o Syntax: UML Activity Diagram
o Semantics: constraint logical time

o relevant events as logical clocks
o translate language rules into clock relations

@ Encode data-dependencies of SDF models
@ Translate data-dependencies to execution dependencies
© Multi-dimensional semantics (MDSDF)

@ Multidimensional order: environment constraints

@ External constraints
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(MARTE)
o Companion of the Time Package
o Chronological relations between events

o Clocks = possibly infinite and possibly dense totally ordered sets
of instants

ccst relations: cest clock expressions:
o precedence (<) o filteredBy (V) — by a binary
o coincidence (=) periodic word
o exclusion (#) o delay ($) — by an integer value
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Syntax:

o computational elements

— actors
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Syntax:
o computational elements
— actors

o FIFO channels — arcs
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Syntax:
o computational elements
— actors

o FIFO channels — arcs

o initial values — delays

Weight=1}
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{weight=2

Synchronous data-flow semantics:

Syntax:
o computational elements
— actors

o FIFO channels — arcs

o initial values — delays

o fixed amount of data elements produces/consumed at each firing
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SDF: data dependency semantics

4,

)

{ weight=w } { weight=r }

. { weight=i }

Relevant events in the system:
o Actor firings

o Element-wise write and read events on arcs
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{ weight=w } { weight=r}

‘ { weight=i }

A N N N —
write 4” —
read

B | Nl —
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{ weight=w } { weight=r}

‘ { weight=i }

write
read
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{ weight=w } { weight=r}

‘ { weight=i }
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{ weight=w } { weight=r }

. { weight=i }

@ producer [=] (write ¥ (1.0¥~1)%) 4@@
Q write (read $ i) W
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{ weight=w } { weight=r }

. { weight=i }

Direct precedence (computed) between the two clocks
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{weight=4} {weight=6}

. {weight=7}

Direct precedence (computed) between the two clocks
Actor_A ﬂ_,_L H ﬂ—’—
Actor_B \ﬂ \H

A |

Clockproducer ¥ (011 =4 Clocl el
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execution precedence relation:

(Clockproducer ¥ P) ((Clockconsumer $ indep) ¥ C)
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execution precedence relation:

(Clockproducer ¥ P) ((Clockconsumer $ indep) ¥ C)

indep = |initialyeight/ readweignt]

initial = initialyeight Mod readyeight
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execution precedence relation:

(Clockproducer ¥ P) ((Clockconsumer $ indep) ¥ C)

indep = |initialyeight/ readweight] = [7/6] =1

initial = initialyeight mod readyeight =7 mod 6 =1
initial +4 +4 -64+4 -6+4
tokens 1 5 9 7 5
<6 >6 >6 done

binary (0 1 1 )
|
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Meigm:d) I = -

. {weight=7}

(Actora v (011)“) [ <] (Actorg $ 1)

Actor_A
Actor_B ﬂ | —
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Actor_1

Actor 2 I N N N N N N N I —

Actor_3
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downscaler

.ﬁ@%ﬂ%%@

{ weight=8,1} {weight=3,1} {weight=1,9} {weight=1,4 }

o straightforward multi-D extension of 1-D SDF
o quasi-independent relations producer/consumer by dimension

iny [ <] (hFy v (1.0%)) hFy [ <] (vFL v (1.0%)%)
im | < | hfy (hF v (08.1)%) [ <] vF,
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2% External constraints

)

Appli

d: Downscaler

in: DataProd

L i

«allocate», g «clockC
[ i
1 L roc = hF union vF; hF # vF;
1 Archi 1 {p }

«hWSensor, clock» «hwProcessor»

s: Sensor proc: Proc

o multidimensional order — environment constraints

inp = (s v 1.(0)") inp=s
hFy = (hF v 13.(0)) hF, = (hF v (02.1)%)
vFy = (vF v 1°.(0)*) vFy = (vF v (1.0%))

o execution platform constraints
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E o resume ...

Formal specification encoding the entire set of schedules cor-
responding to a correct execution

Generally, the behaviour of a system can be seen as:
o a set of operations applied to an initial state

@ into a certain order (execution dependencies)
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To resume ...

Formal specification encoding the entire set of schedules cor-
responding to a correct execution

Generally, the behaviour of a system can be seen as:
o a set of operations applied to an initial state
@ into a certain order (execution dependencies)
Logical Time refinement:
o Functional semantics (internal constraints)
o External constraints (environment or execution platform)

o Buffer capacities
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o Define explicit semantics of synchronous data-flow models

o Capture data-dependencies
o Express computed execution dependencies
o Integrate external constraints
Papyrus UML, MARTE profile and TimeSquare:
o OMG standard
o Time simulation/analysis

o Detect inconsistencies (deadlocks)
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