Logical Time at Work:

Capturing Data Dependencies and Platform Constraints

Calin Glitia Julien DeAntoni Frédéric Mallet
INRIA Sophia Antipolis Université Nice Sophia Antipolis
Méditerranée

Forum on specification & Design Languages, Sept 14th-16th, 2010, Southampton, UK

¢ Overview

U

{ Give formal semantics to syntactical models

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

2/14

3 .
2t Overview

)

{ Give formal semantics to syntactical models

(Modeling) lanquages are defined by:

o syntax: the form of a valid program/model

o (behavioral) semantics: how it should be interpreted
Modeling languages:

o semantics defines apart/informal/hard coded

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

2/14

{ Give formal semantics to syntactical models

(Modeling) lanquages are defined by:

o syntax: the form of a valid program/model

o (behavioral) semantics: how it should be interpreted
Modeling languages:

o semantics defines apart/informal/hard coded

Semantics should be explicit

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

2/14

... more precise

o Extended and specialized by umL profiles

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

3/14

http://www-sop.inria.fr/aoste/dev/time_square

... more precise

o Extended and specialized by umL profiles
o Captures just the syntactical aspects

o No formal description of how it should be interpreted

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

3/14

http://www-sop.inria.fr/aoste/dev/time_square

... more precise

o Extended and specialized by umL profiles
o Captures just the syntactical aspects

o No formal description of how it should be interpreted

Define the semantics of syntactical models
o MARTE Time Model & Clock Constraint Specification Language

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

3/14

http://www-sop.inria.fr/aoste/dev/time_square

... more precise

o Extended and specialized by umL profiles
o Captures just the syntactical aspects

o No formal description of how it should be interpreted

Define the semantics of syntactical models
o MARTE Time Model & Clock Constraint Specification Language

Integrated Development Environment
o Papyrus UML + MARTE profile

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

3/14

http://www-sop.inria.fr/aoste/dev/time_square

4 Outline

o Syntax: UML Activity Diagram
o Semantics: constraint logical time

o relevant events as logical clocks
o translate language rules into clock relations

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

4/14

: Outline

o Syntax: UML Activity Diagram
o Semantics: constraint logical time

o relevant events as logical clocks
o translate language rules into clock relations

@ Encode data-dependencies of SDF models
@ Translate data-dependencies to execution dependencies
© Multi-dimensional semantics (MDSDF)

@ Multidimensional order: environment constraints

@ External constraints

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

4/14

(MARTE)
o Companion of the Time Package
o Chronological relations between events

o Clocks = possibly infinite and possibly dense totally ordered sets
of instants

ccst relations: cest clock expressions:
o precedence (<) o filteredBy (V) — by a binary
o coincidence (=) periodic word
o exclusion (#) o delay ($) — by an integer value

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

5/14

Syntax:

o computational elements

— actors

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

6/14

Syntax:
o computational elements
— actors

o FIFO channels — arcs

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

6/14

Syntax:
o computational elements
— actors

o FIFO channels — arcs

o initial values — delays

Weight=1}

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

6/14

{weight=2

Synchronous data-flow semantics:

Syntax:
o computational elements
— actors

o FIFO channels — arcs

o initial values — delays

o fixed amount of data elements produces/consumed at each firing

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

6/14

SDF: data dependency semantics

4,

)

{ weight=w } { weight=r }

. { weight=i }

Relevant events in the system:
o Actor firings

o Element-wise write and read events on arcs

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

{ weight=w } { weight=r}

‘ { weight=i }

A N N N —
write 4” —
read

B | Nl —

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

714

{ weight=w } { weight=r}

‘ { weight=i }

write
read

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

714

{ weight=w } { weight=r}

‘ { weight=i }

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

714

{ weight=w } { weight=r }

. { weight=i }

@ producer [=] (write ¥ (1.0¥~1)%) 4@@
Q write (read $ i) W

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

7114

{ weight=w } { weight=r }

. { weight=i }

Direct precedence (computed) between the two clocks

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

8/14

{weight=4} {weight=6}

. {weight=7}

Direct precedence (computed) between the two clocks
Actor_A ﬂ_,_L H ﬂ—’—
Actor_B \ﬂ \H

A |

Clockproducer ¥ (011 =4 Clocl el

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

8/14

execution precedence relation:

(Clockproducer ¥ P) ((Clockconsumer $ indep) ¥ C)

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

9/14

execution precedence relation:

(Clockproducer ¥ P) ((Clockconsumer $ indep) ¥ C)

indep = |initialyeight/ readweignt]

initial = initialyeight Mod readyeight

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

execution precedence relation:

(Clockproducer ¥ P) ((Clockconsumer $ indep) ¥ C)

indep = |initialyeight/ readweight] = [7/6] =1

initial = initialyeight mod readyeight =7 mod 6 =1
initial +4 +4 -64+4 -6+4
tokens 1 5 9 7 5
<6 >6 >6 done

binary (0 1 1)
|

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

9/14

Meigm:d) I = -

. {weight=7}

(Actora v (011)“) [<] (Actorg $ 1)

Actor_A
Actor_B ﬂ | —

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

10 /14

Actor_1

Actor 2 I N N N N N N N I —

Actor_3

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

10 /14

downscaler

.ﬁ@%ﬂ%%@

{ weight=8,1} {weight=3,1} {weight=1,9} {weight=1,4 }

o straightforward multi-D extension of 1-D SDF
o quasi-independent relations producer/consumer by dimension

iny [<] (hFy v (1.0%)) hFy [<] (vFL v (1.0%)%)
im | < | hfy (hF v (08.1)%) [<] vF,

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

2% External constraints

)

Appli

d: Downscaler

in: DataProd

L i

«allocate», g «clockC
[i
1 L roc = hF union vF; hF # vF;
1 Archi 1 {p }

«hWSensor, clock» «hwProcessor»

s: Sensor proc: Proc

o multidimensional order — environment constraints

inp = (s v 1.(0)") inp=s
hFy = (hF v 13.(0)) hF, = (hF v (02.1)%)
vFy = (vF v 1°.(0)*) vFy = (vF v (1.0%))

o execution platform constraints

Logical Time at Work: Capturing Data Dependencies and Platform Constraints 12714

E o resume ...

Formal specification encoding the entire set of schedules cor-
responding to a correct execution

Generally, the behaviour of a system can be seen as:
o a set of operations applied to an initial state

@ into a certain order (execution dependencies)

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

13 /14

To resume ...

Formal specification encoding the entire set of schedules cor-
responding to a correct execution

Generally, the behaviour of a system can be seen as:
o a set of operations applied to an initial state
@ into a certain order (execution dependencies)
Logical Time refinement:
o Functional semantics (internal constraints)
o External constraints (environment or execution platform)

o Buffer capacities

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

13 /14

o Define explicit semantics of synchronous data-flow models

o Capture data-dependencies
o Express computed execution dependencies
o Integrate external constraints
Papyrus UML, MARTE profile and TimeSquare:
o OMG standard
o Time simulation/analysis

o Detect inconsistencies (deadlocks)

Logical Time at Work: Capturing Data Dependencies and Platform Constraints

14 /14

