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Abstract

In the gathering problem, a particular node in a graph, the base station, aims at receiving messages from some nodes in
the graph. At each step, a node can send one message to one of its neighbors (such an action is called a call). However,
a node cannot send and receive a message during the same step. Moreover, the communication is subjet to interference
constraints, more precisely, two calls interfere in a step, if one sender is at distance at most dI from the other reciever.
Given a graph with a base station and a set of nodes having some messages, the goal of the gathering problem is to
compute a schedule of calls for the base station to receive all messages as fast as possible, i.e., minimizing the number
of steps (called makespan). The gathering problem is equivalent to the personalized broadcasting problem where the
base station has to send messages to some nodes in the graph, with same transmission constraints.

In this paper, we focus on the gathering and personalized broadcasting problem in grids. Moreover, we consider
the non-buffering model: when a node receives a message at some step, it must transmit it during the next step. In this
setting, though the problem of determining the complexity of computing the optimal makespan in a grid is still open,
we present linear (in the number of messages) algorithms that compute schedules for gathering with dI ∈ {0, 1, 2}. In
particular, we present an algorithm that achieves the optimal makespan up to an additive constant 2 when dI = 0. If
no messages are “close” to the axes (the base station being the origin), our algorithms achieve the optimal makespan
up to an additive constant 1 when dI = 0, 4 when dI = 2, and 3 when both dI = 1 and the base station is in a corner.
Note that, the approximation algorithms that we present also provide approximation up to a ratio 2 for the gathering
with buffering. All our results are proved in terms of personalized broadcasting.
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1. Introduction

1.1. Problem, model and assumptions

In this paper, we study a problem that was motivated by designing efficient strategies to provide internet access
using wireless devices [8]. Typically, several houses in a village need access to a gateway (for example a satellite
antenna) to transmit and receive data over the Internet. To reduce the cost of the transceivers, multi-hop wireless relay
routing is used. We formulate this problem as gathering information in a Base Station (denoted by BS) of a wireless
multi-hop network when interferences constraints are present. This problem is also known as data collection and is
particularly important in sensor networks and access networks.
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Transmission model. We adopt the network model considered in [2, 4, 9, 11, 16]. The network is represented by a
node-weighted symmetric digraphG = (V,E), where V is the set of nodes and E is the set of arcs. More specifically,
each node in V represents a device (sensor, station, . . . ) that can transmit and receive data. There is a special node
BS ∈ V called the Base Station (BS), which is the final destination of all data possessed by the various nodes of the
network. Each node may have any number of pieces of information, or messages, to transmit, including none. There
is an arc from u to v if u can transmit a message to v. We suppose that the digraph is symmetric; so if u can transmit a
message to v, then v can also transmit a message to u. Therefore G represents the graph of possible communications.
Some authors use an undirected graph (replacing the two arcs (u, v) and (v, u) by an edge {u, v}). However calls
(transmissions) are directed: a call (s, r) is defined as the transmission from the node s to node r, in which s is the
sender and r is the receiver and s and r are adjacent in G. The distinction of sender and receiver will be important for
our interference model.

Here we will consider grids as they model well both access networks and also random networks [14]. The network
is assumed to be synchronous and the time is slotted into steps. During each step, a transmission (or a call) between
two nodes can transport at most one message. That is, a step is a unit of time during which several calls can be
done as long as they do not interfere with each other. We suppose that each device is equipped with an half duplex
interface: a node cannot both receive and transmit during a step. This models the near-far effect of antennas: when
one is transmitting, it’s own power prevents any other signal to be properly received. Moreover, we assume that a
node can transmit or receive at most one message per step.

Following [11, 12, 15, 16, 18] we assume that no buffering is done at intermediate nodes and each node forwards
a message as soon as it receives it. One of the rationales behind this assumption is that it frees intermediate nodes
from the need to maintain costly state information and message storage.

Interference model. We use a binary asymmetric model of interference based on the distance in the communication
graph. Let d(u, v) denote the distance, that is the length of a shortest directed path, from u to v in G and dI be an
nonnegative integer. We assume that when a node u transmits, all nodes v such that d(u, v) ≤ dI are subject to the
interference from u’s transmission. We assume that all nodes of G have the same interference range dI . Two calls
(s, r) and (s′, r′) do not interfere if and only if d(s, r′) > dI and d(s′, r) > dI . Otherwise calls interfere (or there is
a collision). We will focus on the cases when dI ≤ 2. Note that we suppose in this paper dI ≥ 0. It implies that a
node cannot receive and send simultaneously.

The binary interference model is a simplified version of the reality, where the Signal-to-Noise-and-Interferences
Ratio (the ratio of the received power from the source of the transmission to the sum of the thermic noise and the
received powers of all other simultaneously transmitting nodes) has to be above a given threshold for a transmission
to be successful. However, the values of the completion times that we obtain will lead to lower bounds on the
corresponding real life values. Stated differently, if the value of the completion time is fixed, then our results will lead
to upper bounds on the maximum possible number of messages that can be transmitted in the network.

Gathering and Personalized broadcasting. Our goal is to design protocols that will efficiently, i.e., quickly, gather
all messages to the base station BS subject to these interference constraints. More formally, let G = (V,E) be a
connected symmetric digraph, BS ∈ V and and dI ≥ 0 be an integer. Each node in V \ BS is assigned a set
(possibly empty) of messages that must be sent to BS. A multi-hop schedule for a message consists of the path it
must follow to reach BS together with the starting step (because no buffering is allowed, the starting step defines
the whole schedule). The gathering problem consists in computing a multi-hop schedule for each message to arrive
the BS under the constraint that during any step any two calls do not interfere within the interference range dI . The
completion time or makespan of the schedule is the number of steps used for all messages to reach BS. We are
interested in computing the schedule with minimum makespan.

Actually, we will describe the gathering schedule by illustrating the schedule for the equivalent personalized
broadcasting problem since this formulation allows us to use a simpler notation and simplify the proofs. In this
problem, the base station BS has initially a set of personalized messages and they must be sent to their destinations,
i.e., each message has a personalized destination in V , and possibly several messages may have the same destination.
The problem is to find a multi-hop schedule for each message to reach its corresponding destination node under
the same constraints as the gathering problem. The completion time or makespan of the schedule is the number of
steps used for all messages to reach their destination and the problem aims at computing a schedule with minimum
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makespan. To see that these two problems are equivalent, from any personalized broadcasting schedule, we can
always build a gathering schedule with the same makespan, and the other way around. Indeed, consider a personalized
broadcasting schedule with makespan T . Any call (s, r) occurring at step k corresponds to a call (r, s) scheduled at
step T + 1− k in the corresponding gathering schedule. Furthermore, as the digraph is symmetric, if two calls (s, r)
and (s′, r′) do not interfere, then d(s, r′) > dI and d(s′, r) > dI ; so the reverse calls do not interfere. Hence, if there is
an (optimal) personalized broadcasting schedule from BS, then there exists an (optimal) solution for gathering at BS
with the same makespan. The reverse also holds. Therefore, in the sequel, we consider the personalized broadcasting
problem.

1.2. Related Work

Gathering problems like the one that we study in this paper have received much recent attention. The papers most
closely related to our results are [3, 4, 11, 12, 15, 16]. Paper [11] firstly introduced the data gathering problem in a
model for sensor networks similar to the one adopted in this paper. It deals with dI = 0 and gives optimal gathering
schedules for trees. Optimal algorithms for star networks are given in [16] find the optimal schedule minimizing
both the completion time and the average delivery time for all the messages. Under the same hypothesis, an optimal
algorithm for general networks is presented in [12] in the case each node has exactly one message to deliver. In [4]
(resp [3]) optimal gathering algorithms for tree networks in the same model considered in the present paper, are given
when dI = 1 (resp.,dI ≥ 2). In [3] it is also shown that the Gathering Problem is NP-complete if the process must be
performed along the edges of a routing tree for dI ≥ 2 (otherwise the complexity is not determined). Furthermore, for
dI ≥ 1 a simple (1 + 2

dI
) factor approximation algorithm is given for general networks. In slightly different settings,

in particular the assumption of directional antennas, the problem has been proved NP-hard in general networks [17].
The case of open-grid where BS stands at a corner and no messages have destinations in the first row or first column,
called axis in the following, is considered in [15], where a 1.5-approximation algorithm is presented.

Other related results can be found in [1, 2, 6, 7, 10] (see [9] for a survey). In these articles data buffering is allowed
at intermediate nodes, achieving a smaller makespan. In [2], a 4-approximation algorithm is given for any graph. In
particular the case of grids is considered in [6], but with exactly one message per node. Another related model can
be found in [13], where steady-state (continuous) flow demands between each pair of nodes have to be satisfied, in
particular, the authors also study the gathering in radio grid networks.

1.3. Our results

In this paper, we propose algorithms to solve the personalized broadcasting problem (and so the equivalent gath-
ering problem) in a grid with the model described above (synchronous, no buffering, one message transmission per
step, with an interference parameter dI ). Initially all messages stand at the base station BS and each message has
a particular destination node (possibly several messages may be sent to the same node). Our algorithms compute in
linear time (in the number of messages) schedules with no calls interfering, with a makespan differing from the lower
bound by a small additive constant. We first study the basic instance consisting of an open grid where no messages
have destination on an axis, with a BS in the corner of the grid and with dI = 0. This is exactly the same case as
that considered in [15]. In Section 2 we give a simple lower bound LB. Then in Section 3 we design for this basic
instance a linear time algorithm with a makespan at most LB + 2 steps, so obtaining a +2-approximation algorithm
for the open grid, which greatly improves the multiplicative 1.5 approximation algorithm of [15] . Such an algorithm
has already been given in the extended abstract [5]; but the one given here is simpler and we can refine it to obtain for
the basic instance a +1-approximation algorithm. Then we prove in Section 4 that the +2-approximation algorithm
works also for a general grid where messages can have destinations on the axis again with BS in the corner and
dI = 0. Then we consider in Section 5 the cases dI = 1 and 2. We give lower bounds LBc(1) (when BS is in the
corner) and LB(2) and show how to use the +1-approximation algorithm given in Section 3 to design algorithms with
a makespan at most LBc(1) + 3 when dI = 1 and BS is in the corner , and at most LB(2) + 4 when dI = 2; however
the coordinates of the destinations have in both cases to be at least 2. In Section 6, we extend our results to the case
where BS is in a general position in the grid. In addition, we point out that our algorithms are 2-approximations if the
buffering is allowed, which improves the result of [2] in the case of grids with dI ≤ 2. Finally, we conclude the paper
in Section 7. The main results are summarized in Table 1.
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Interference Additional hypothesis Performances
without buffering with buffering

dI = 0 +2-approximation
no messages on axes +1-approximation

dI = 1 BS in a corner and no messages “close” to the axes (see Def. 2) +3-approx. ×1.5-approx.
no messages at distance ≤ 1 from an axis ×1.5-approximation

dI = 2 no messages at distance ≤ 1 from an axis +4-approx. ×2-approx.

Table 1: Performances of the algorithms designed in this paper. Our algorithms deal with the gathering and personalized broadcasting problems in
a grid with arbitrary base station (unless stated otherwise). In this table, +c-approximation means that our algorithm achieves an optimal makespan
up to an additive constant c. Similarly,×c-approximation means that our algorithm achieves an optimal makespan up to an multiplicative constant
c.

2. Notations and Lower bound

In the following, we consider a gridG = (V,E) with a particular node, the base stationBS, also called the source.
A node v is represented by its coordinates (x, y). The source BS has coordinates (0, 0). We define the axis of the grid
with respect to BS, as the set of nodes {(x, y) : x = 0} or {(x, y) : y = 0}. The distance between two nodes u and v
is the length of a shortest directed path in the grid and will be denoted by d(u, v). In particular, d(BS, v) = |x|+ |y|.

We consider a set of M > 0 messages that must be sent from the source BS to some destination nodes. Note that
BS is not a destination node. Let dest(m) ∈ V denote the destination of the message m. We use d(m) > 0 to denote
the distance d(BS, dest(m)). We suppose that the messages are ordered by non-increasing distance from BS to their
destination nodes, and we denote this ordered setM = (m1,m2, · · · ,mM ) where d(m1) ≥ d(m2) ≥ · · · ≥ d(mM ).
The input of all our algorithms is the ordered sequenceM of messages. For simplicity we suppose that the grid is
infinite; however it suffices to consider a grid slightly greater than the one containing all the destinations of messages.
Note that our work does not include the case of the paths, already considered in [1, 11, 15].

We will use the name of open grid to mean that no messages have destination on an axis that is when all messages
have destination nodes in the set {(x, y) : x 6= 0 and y 6= 0}.

Note that in our model the source can send at most one message per step. Given a set of messages that must be
sent by the source, a broadcasting scheme consists in indicating for each message m the time at which the source
sends the message m and the directed path followed by this message. More precisely a broadcasting scheme will
be represented by an ordered sequence of messages S = (s1, · · · , sk), where furthermore for each si we give the
directed path Pi followed by si and the time ti at which the source sends the message si. The sequence is ordered in
such a way message si+1 is sent after message si, that is we have ti+1 > ti.

As we suppose there is no buffering, a message m sent at step tm is received at step t′m = lm + tm − 1, where lm
is the length of the directed path followed by the message m. In particular t′m ≥ d(m) + tm − 1. The completion
time or makespan of a broadcasting scheme is the step where all the messages have arrived at their destinations. Its
value is maxm∈M lm + tm − 1. In the next proposition we give a lower bound of the makespan:

Proposition 1. Given the set of messagesM = (m1,m2, · · · ,mM ) ordered by non-increasing distance from BS,
the makespan of any broadcasting scheme is greater than or equal to LB = maxi≤M d(mi) + i− 1.

PROOF. Consider any personalized broadcasting scheme. For i ≤ M , let ti be the step where the last message in
(m1,m2, · · · ,mi) is sent; therefore ti ≥ i. This last message denoted m is received at step t′i ≥ d(m) + ti − 1 ≥
d(mi) + ti − 1 ≥ d(mi) + i− 1. So the makespan is at least LB = maxi≤M d(mi) + i− 1. �

Note that this result is valid for any topology (not only grids) since it uses only the fact that the source sends at most
one message per step. If there are no interference constraints, in particular if a node can send and receive messages
simultaneously, then the bound is achieved by the greedy algorithm where at step i the source sends the messagemi of
the ordered sequenceM through a shortest directed path from BS to dest(mi), i.e. the makespan LB is attained by
BS sending all the messages through the shortest paths to their destinations according to the non-increasing distance
ordering.
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If there are interferences and dI > 0, we will design in Section 5 some better lower bounds. If dI = 0, we will
design in the next two sections linear time algorithms with a makespan at most LB+2 in the grid with the base station
in the corner and a makespan at most LB + 1 when furthermore there is no message with a destination node on the
axis (open-grid). In case dI = 0 in open grid, our algorithms are simple in the sense that they use only very simple
shortest directed paths and that BS never waits.

Example 1. Here, we exhibit examples for which the optimal makespan is strictly larger than LB. In particular, in
the case of general grids, LB + 2 can be optimal. On the other hand, results of this paper show that the optimal
makespan is at most LB+ 1 in the case of open-grids for dI = 0 (Theorem 4) and at most LB+ 2 in general grids for
dI = 0 (Theorem 7). In case dI = 0 and in open-grids, our algorithms use shortest paths and the BS sends a message
at each step. We also give examples for which optimal makespan cannot be achieved in this setting.

Let us remark that there exist configurations for which no personalized broadcasting protocol can achieve better
makespan than LB + 1. Figure 1(a) represents such a configuration. Indeed, in Figure 1(a), message mi has a
destination node vi for i = 1, 2, 3 and LB = 7. However, to achieve the makespan LB = 7 for dI = 0, BS must
send the message m1 to v1 at step 1 (because v1 is at distance 7 from BS) and must send message m2 to v2 at step
2 (because the message starts after the first step and must be sent to the destination node at distance 6) and these
messages should be sent along shortest directed paths. To avoid interferences, the only possibility is that BS sends the
first message to node (0, 1), and the second one to the node (1, 0). Intuitively, this is because otherwise the shortest
paths followed by first two messages would intersect in such a way that interference cannot be avoided. A formal
proof can be obtained from Fact 2 in Section 3.2. But then, if we want to achieve the makespan of 7, BS has to send
the message m3 via node (0, 1) and it will reach v3 at step 7; but the directed paths followed by m2 and m3 need to
cross and at this crossing point m3 arrives at a step where m2 leaves and so the messages interfere. So BS has to wait
one step and sends m3 only at step 4. Then the makespan is 8 = LB + 1.

In addition, there are also examples in which BS has to wait for some steps after sending one message in order to
reach the lower bound LB for dI = 0. Figure 1(b) represents such an example. To achieve the lower bound 7, BS
has to send messages using shortest directed paths firstly to v1 via (3, 0) and then consecutively sends messages to
v2 via (0, 4) and v3 via (2, 0). If BS sends message m4 at step 4, then m4 will interfere with m3. But, to avoid this
interference, BS can send message m4 at step 5 and will reach v4 at step 7.

There are also examples in which no schedule using only shortest directed paths achieves the optimal makespan1.
For instance, consider the grid with four messages to be sent to (0, 4), (0, 3), (0, 2) and (0, 1) (all on the first column)
and let dI = 0 (a more elaborate example with an open-grid is given in Example 6(a)). Clearly, sending all messages
through shortest directed paths implies that BS sends messages every two steps. Therefore, it requires 7 steps. On
the other hand, the following scheme has makespan 6: send the message to (0, 4) through the unique shortest directed
path at step 1; send the message to (0, 3) at step 2 via nodes (1, 0), (1, 1), (1, 2)(1, 3); send the message to (0, 2)
through the shortest directed path at step 3 and, finally, send the message to (0, 1) at step 4 via nodes (1, 0), (1, 1).
Note that the optimal makespan is in this example LB + 2.

3. Basic instance: dI = 0, open-grid, and BS in the corner

In this section we study simple configurations called basic instances. A basic instance is a configuration where
dI = 0, messages are sent in the open grid (no destinations on the axis) and BS is in the corner (a node with degree
2 in the grid). We will see that we can find personalized broadcasting algorithms using a basic scheme, where each
message is sent via a simple shortest directed path (with one horizontal and one vertical segment) and where the
source sends a message at each step (it never waits) and achieving a makespan of at most LB + 1.

3.1. Basic schemes
A message is said to be sent horizontally to its destination v = (x, y) (x > 0, y > 0), if it goes first horizontally

then vertically, that is if it follows the shortest directed path from BS to v passing through (x, 0). Correspondingly,

1The authors would like to thanks Prof. Frédéric Guinand who raised this question.
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v1

v2

3v

BS

(a) Configuration when the trivial lower
bound cannot be achieved.

v1v2

3v

4v

BS

(b) BS has to wait for one step to achieve
the trivial lower bound.

Figure 1: Two particular configurations

the message is sent vertically to its destination v = (x, y), if it goes first vertically then horizontally, that is if it
follows the shortest directed path from BS to v passing through (0, y). We will use the notation a message is sent in
directionD, whereD = H (for horizontally) (resp. D = V (for vertically)) if it is sent horizontally (resp. vertically).
Also, D̄ will denote the direction different from D that is D̄ = V (resp. D̄ = H) if D = H (resp. D = V ).

Definition 1. [basic scheme] A basic scheme is a broadcasting scheme where BS sends a message at each step
alternating horizontal and vertical sendings. Therefore it is represented by an ordered sequence S = (s1, s2, . . . , sM )
of the M messages with the properties: message si is sent at step i and furthermore, if si is sent in direction D, then
si+1 is sent in direction D̄.

Notation: Note that, by definition of horizontal and vertical sendings, the basic scheme defined below uses shortest
paths. Moreover, as soon as we fix S and the sending direction D of the first or last message, the directed paths used
in the scheme are uniquely determined. Hence, the scheme is characterized by the sequence S and the direction D.
We will use when needed, the notation (S, first = D) to indicate a basic scheme where the first message is sent in
direction D, and the notation (S, last = D) when the last message is sent in direction D.

3.2. Interference of messages

Our aim is to design an admissible basic scheme in which the messages are broadcasted without any collisions.
The following simple fact shows that we only need to take care of consecutive sendings. In the following, we say that
two messages are consecutive if the source sends them consecutively (one at step t and the other at step t+ 1)

Fact 1. When dI = 0, in any broadcast scheme using only shortest paths (in particular in a basic scheme), only
consecutive messages may interfere.

PROOF. By definition, a basic scheme uses only shortest paths. Let the message m be sent at step t and the message
m′ at step t′ ≥ t+ 2. Let t′ + h (h ≥ 0) be a step such that the two messages have not reached their destinations. As
we use shortest directed paths the message m is sent on an arc (u, v) with d(v,BS) = d(u,BS) + 1 = t′+h− t+ 1,
while messagem′ is sent on an arc (u′, v′) with d(v′, BS) = d(u′, BS)+1 = h+1. Therefore, d(u, v′) ≥ t′−t−1 ≥
1 > 0 = dI and d(u′, v) ≥ t′ − t+ 1 ≥ 3 > dI . �

We now characterize the situations when two consecutive messages interfere in a basic scheme. For that we use
the following notation:

Notation: In the case dI = 0, if BS sends in direction D ∈ {V,H} the message m at step t and sends the message m′

in the other direction D̄, at step t′ = t+ 1, we will write (m,m′) ∈ DD̄ if they do not interfere and (m,m′) /∈ DD̄
if they interfere.
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m

m'

BS

(a) (m,m′) /∈ HV

BS

m'

m

(b) (m,m′) /∈ V H

Figure 2: Cases of interferences

Fact 2. Let m and m′ be two consecutive messages in a basic scheme. Then, (m,m′) /∈ DD̄ if and only if the paths
followed by the messages in the basic scheme intersect in a vertex which is not the destination of m.

PROOF. Suppose the directed paths intersect in a node v that is not the destination of m. The message m sent at step
t has not reached its destination and so leaves the node v at step t + d(v,BS); but the message m′ sent at step t + 1
arrives at node v at step t+ d(v,BS) and therefore the two messages interfere.

Conversely if the two directed paths used for m and m′ do not cross then the messages do not interfere. If the
paths intersect only in the destination dest(m) of m, then m′ arrives in dest(m) one step after m has stopped in
dest(m) and so the two messages do not interfere. �

Remark 1. Note that Fact 2 does not hold if we do not impose basic schemes (i.e., this is not true if any shortest paths
are considered). Moreover, we emphasize that the two paths may intersect, but the corresponding messages do not
necessarily interfere.

In some proofs throughout the paper, we will need to use the coordinates of the messages. Therefore, the following
equivalent statement of Fact 2 will be of interest. Let dest(m) = (x, y) and dest(m′) = (x′, y′). Then

• (m,m′) /∈ HV if and only if {x′ ≥ x and y′ < y};

• (m,m′) /∈ V H if and only if {x′ < x and y′ ≥ y};

Figure 2 shows when there are interferences and also illustrates Fact 2 for D = H (resp. V ) in case (a) (resp. (b)).

3.3. Basic lemmata
We now prove some simple but useful lemmata.

Lemma 1. If (m,m′) /∈ DD̄, then (m,m′) ∈ D̄D and (m′,m) ∈ DD̄.

PROOF. By Fact 2, if (m,m′) /∈ DD̄, then the two directed paths followed by m and m′ in the basic scheme (in
directionsD and D̄ respectively) intersect in a node different from dest(m). Then, the two directed paths followed by
m andm′ in the basic scheme (in directions D̄ andD respectively) do not intersect. Hence, by Fact 2, (m,m′) ∈ D̄D.
Similarly, the two directed paths followed by m′ and m in the basic scheme (in directions D and D̄ respectively) do
not intersect. Hence, by Fact 2, (m′,m) ∈ DD̄. �

Note that this lemma is enough to prove the multiplicative 3
2 approximation obtained in [15]. Indeed the source can

send at least two messages every three steps, in the order ofM. More precisely,BS sends any pair of messagesm2i−1
and m2i consecutively by sending the first one horizontally and the second one vertically if (m2i−1,m2i) ∈ HV ,
otherwise sending the first one vertically and the second one horizontally if (m2i−1,m2i) /∈ HV (since this implies
that (m2i−1,m2i) ∈ V H). Then the source does not send anything during the third step. So we can send 2q messages
in 3q steps. Such a scheme has makespan at most 3

2LB.
Note that in general, (m,m′) ∈ DD̄ does not imply (m′,m) ∈ D̄D, namely when the directed paths intersect

only in the destination of m which is not the destination of m′.

7



Lemma 2. If (m,m′) ∈ DD̄ and (m′,m′′) /∈ D̄D, then (m,m′′) ∈ DD̄.

PROOF. By Fact 2, (m,m′) ∈ DD̄ implies that the paths followed by m and m′ (in directions D and D̄ respectively)
in the basic scheme may intersect only in dest(m). Moreover, (m′,m′′) /∈ D̄D implies that the paths followed by
m′ and m′′ (in directions D̄ and D respectively) intersect in a node which is not dest(m′). Simple check shows that
the paths followed by m and m′′ (in directions D and D̄ respectively) may intersect only in dest(m). Therefore, by
Fact 2, (m,m′′) ∈ DD̄. �

Lemma 3. If (m,m′) /∈ DD̄ and (m,m′′) /∈ D̄D, then (m′,m′′) ∈ DD̄.

PROOF. By Lemma 1 (m,m′) /∈ DD̄ implies (m′,m) ∈ DD̄. Then we can apply the preceding Lemma 2 with
m′,m,m′′ in this order to get the result. The second claim is obtained similarly. �

3.4. Makespan can be approximated up to additive constant 2

Recall thatM = (m1, . . . ,mM ) is the set of messages ordered by non-increasing distance from BS. Throughout
this paper, S � S′ denotes the sequence obtained by the concatenation of two sequences S and S′.

In [5], we use a basic scheme to design an algorithm for broadcasting the messages in the basic instance with a
makespan at most LB + 2. We give here a different algorithm with similar properties, but easier to prove and which
presents two improvements: it can be adapted to the case where the destinations of the messages may be on the axes
(i.e. for general grid) (see Section 4) and it can be refined to give in the basic instance a makespan at most LB + 1.
We denote the algorithm by TwoApprox[dI = 0, last = D](M); for an input set of messagesM ordered by non-
increasing distances from BS, and a direction D ∈ {H,V }, it gives as output an ordered sequence S of the messages
such that the basic scheme (S, last = D) has makespan at most LB+ 2. Recall that D is the direction of the last sent
message in S in Definition 1.

The algorithm TwoApprox[dI = 0, last = D](M) is given in Figure 3. It uses a basic scheme, where the non-
increasing order is kept, if there are no interferences; otherwise we change the order a little bit. To do that, we apply
dynamic programming. We examine the messages in their order and at a given step we add to the current ordered
sequence the two next unconsidered messages. We show that we can avoid interferences, only by reordering these
two messages and the last one in the current sequence.

Remark 2. Notice that, there are instances (see examples below) for which Algorithm TwoApprox computes an
optimal makespan only for one direction. Hence, it may sometimes be interesting to apply the algorithm for each
direction and take the better resulting schedule.

Because of the behavior of a basic scheme, the direction of the final message and of the first one are simply linked
via the parity of the number of messages. Hence, we can also derive an algorithm TwoApprox[dI = 0, first =
D](M) that has the first direction D of the message as an input.

Example 2. Here, we give examples that illustrate the execution of Algorithm TwoApprox. Moreover, we describe
instances for which it is not optimal.

Consider the example of Figure 4(a). The destinations of the messagesmi (1 ≤ i ≤ 6) are v1 = (7, 3), v2 = (7, 1),
v3 = (3, 3), v4 = (2, 4), v5 = (1, 5) and v6 = (2, 2). Here LB = 10. Let us apply the Algorithm TwoApprox[dI =
0, last = V ](M). First we apply the algorithm for m1,m2. As (m1,m2) /∈ HV , we are at line 4 and S = (m2,m1).
Then we consider m3,m4. The value of p (line 6) is m1 and as (m1,m3) /∈ V H and (m1,m4) ∈ HV , we get (line
9, case 3) S = (m2,m3,m1,m4). We now apply the algorithm with m5,m6. The value of p (line 6) is m4 and as
(m4,m5) /∈ V H and (m4,m6) /∈ HV , we get (line 10, case 4) S = (m2,m3,m1,m4,m6,m5). The makespan of
the algorithm is LB + 2 = 12 = d(m1) + 2 achieved for s3 = m1.

But, if we apply to this example the Algorithm TwoApprox[dI = 0, last = H](M), we get a makespan of 10.
Indeed (m1,m2) ∈ V H and we get (line 3) S = (m1,m2). Then as p = m2, (m2,m3) ∈ HV and (m3,m4) /∈ V H ,
we get (line 8, case 2) S = (m1,m2,m4,m3). Finally, with p = m3, (m3,m5) ∈ HV and (m5,m6) ∈ V H we get
(line 7, case 1) the final sequence S = (m1,m2,m4,m3,m5,m6) with makespan 10 = LB.

Consider the example of Figure 4(b). The destinations of the messages m′i (1 ≤ i ≤ 6) are v′i, which are placed
in symmetric positions with respect to the diagonal as vi in Figure 4(a). So v′1 = (3, 7), v′2 = (1, 7),. . . , v′6 = (2, 2).
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Input: M = (m1, · · · ,mM ), the set of messages ordered by non-increasing distances from BS and the direction
D ∈ {H,V } of the last message.
Output: S = (s1, · · · , sM ) an ordered sequence of the M messages satisfying (i) and (ii) (See in Theorem 1)
begin
1 Case M = 1: return S = (m1)
2 Case M = 2:
3 if (m1,m2) ∈ D̄D return S = (m1,m2)
4 else return S = (m2,m1)
5 Case M > 2:
6 let O � p = TwoApprox[dI = 0, last = D](m1, · · · ,mM−2)

(p is the last message in the obtained sequence)
7 Case 1: if (p,mM−1) ∈ DD̄ and (mM−1,mM ) ∈ D̄D return O � (p,mM−1,mM )
8 Case 2: if(p,mM−1) ∈ DD̄ and (mM−1,mM ) /∈ D̄D return O � (p,mM ,mM−1)
9 Case 3: if(p,mM−1) /∈ DD̄ and (p,mM ) ∈ D̄D return O � (mM−1, p,mM )
10 Case 4: if(p,mM−1) /∈ DD̄ and (p,mM ) /∈ D̄D return O � (p,mM ,mM−1)

end

Figure 3: Algorithm TwoApprox[dI = 0, last = D](M)

So we can apply the algorithm by exchanging the x and y, V and H . By the Algorithm TwoApprox[dI = 0, last =
V ](M) , we get S = (m′1,m

′
2,m

′
4,m

′
3,m

′
5,m

′
6) with makespan 10; by the Algorithm TwoApprox[dI = 0, last =

H](M) , we get S = (m′2,m
′
3,m

′
1,m

′
4,m

′
6,m

′
5) with makespan 12.

However there are sequencesM such that both Algorithms TwoApprox[dI = 0, last = V ](M) and
TwoApprox[dI = 0, last = H](M) give a makespan LB + 2. Consider the example of Figure 4(c) with M =
(m1, . . . ,m6,m

′
1, . . . ,m

′
6). The destinations of m1, . . . ,m6 are obtained from the destination nodes in Figure 4(a)

by translating them along a vector (3, 3), i.e. we move vi = (xi, yi) to (xi + 3, yi + 3). So LB = 16 and Algorithm
TwoApprox[dI = 0, last = V ](m1, . . . ,m6) gives the sequence SV = (m2,m3,m1,m4,m6,m5) with makespan
18 and Algorithm TwoApprox[dI = 0, last = H](m1, . . . ,m6) gives the sequence SH = (m1,m2,m4,m3,m5,m6)
with makespan 16. Note that the destinations of m′1, . . . ,m

′
6 are in the same configuration as those of Figure 4(b).

Now, if we run the Algorithm TwoApprox[dI = 0, last = V ](M) on the sequenceM = (m1, . . . ,m6,m
′
1, . . . ,m

′
6),

we get as (m5,m
′
1) ∈ V H and (m′1,m

′
2) ∈ HV , the sequence SV � S ′V = (m2,m3,m1,m4,m6,m5,m

′
1,m

′
2,m

′
4,

m′3,m
′
5,m

′
6) with makespan 18 achieved for s3 = m1. If we run Algorithm TwoApprox[dI = 0, last = H](M) on

the sequence M = (m1, . . . ,m12), we get as (m6,m
′
1) ∈ HV and (m′1,m

′
2) /∈ V H the sequence SH � S ′H =

(m1,m2,m4,m3,m5,m6,m
′
2,m

′
3,m

′
1,m

′
4,m

′
6,m

′
5) with makespan 18 achieved for s9 = m′1.

However we can find a sequence with a makespan 16 achieving the lower bound with a basic scheme namely
S∗ = (m1,m5,m2,m4,m3,m

′
1,m6,m

′
2,m

′
5,m

′
3,m

′
4,m

′
6) with the first message sent horizontally.

Theorem 1. Given a basic instance and the set of messages ordered by non-increasing distances from BS, M =
(m1,m2, · · · ,mM ) and a direction D ∈ {H,V }, Algorithm TwoApprox[dI = 0, last = D](M) computes in
linear-time an ordering S = (s1, · · · , sM ) of the messages satisfying the following properties:

(i) the basic scheme(S, last = D) broadcasts the messages without collisions;

(ii) s1 ∈ {m1,m2}, s2 ∈ {m1,m2,m3} and si ∈ {mi−2,mi−1,mi,mi+1,mi+2} for any 3 ≤ i ≤ M − 2 and
sM−1 ∈ {mM−3,mM−2,mM−1,mM}, sM ∈ {mM−1,mM}.

PROOF. The proof is by induction on M . If M = 1, we send m1 in direction D (line 1). So the theorem is true.
If M = 2, either (m1,m2) ∈ D̄D and S = (m1,m2) satisfies all properties or (m1,m2) /∈ D̄D and by Lemma 1
(m2,m1) ∈ D̄D and S = (m2,m1) satisfies all properties .

If M > 2, let O � p = TwoApprox[dI = 0, last = D](m1, · · · ,mM−2) be the sequence computed by the
algorithm for (m1,m2, · · · ,mM−2). By the induction hypothesis, we may assume that O � p satisfies properties
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Figure 4: Examples for Algorithms TwoApprox[dI = 0, last = D](M) and OneApprox[dI = 0, last = V ](M)

(i) and (ii). In particular p is sent in direction D and p ∈ {mM−3,mM−2}. Now we will prove that the sequence
S = {s1, . . . , sM} satisfies properties (i) and (ii). Property (ii) is satisfied in all cases: for si, 1 ≤ i ≤M − 3, as it is
verified by induction inO; for sM−2, as either sM−2 = p ∈ {mM−3,mM−2} or sM−2 = mM−1; for sM−1, as either
sM−1 = p ∈ {mM−3,mM−2} or sM−1 = mM−1 or sM−1 = mM and finally for sM , as sM ∈ {mM−1,mM}. For
property (i) we consider the four cases of the algorithm (lines 7-10). Obviously, the last message is sent in direction
D in all cases. In the following we prove that there are no interferences in any case. For cases 1, 2 and 4, O � p is by
induction a scheme that results in no collision.

In case 1, by hypothesis, (p,mM−1) ∈ DD̄ and (mM−1,mM ) ∈ D̄D.
In case 2, since (p,mM−1) ∈ DD̄ and (mM−1,mM ) /∈ D̄D, Lemma 2 with p,mM−1,mM in this order implies

that (p,mM ) ∈ DD̄. Furthermore, by Lemma 1, (mM−1,mM ) /∈ D̄D implies (mM ,mM−1) ∈ D̄D.
For case 4, by Lemma 1 (p,mM ) /∈ D̄D implies (p,mM ) ∈ DD̄. Furthermore Lemma 3, applied with

p,mM ,mM−1 in this order and direction D̄, implies (mM ,mM−1) ∈ D̄D
For case 3, (p,mM ) ∈ D̄D; furthermore by Lemma 1, (p,mM−1) /∈ DD̄ implies (mM−1, p) ∈ DD̄. It

remains to verify that if q is the last message of O, (q,mM−1) ∈ D̄D. As O � p is an admissible scheme we have
(q, p) ∈ D̄D and since also (p,mM−1) /∈ DD̄, by Lemma 2 applied with q, p,mM−1 in this order and direction D̄,
we get (q,mM−1) ∈ D̄D. �

As corollary we get by property (ii) and definition ofLB that the basic scheme (S, last = D) achieves a makespan
at most LB + 2. We emphasize this result as a Theorem and note that in view of Example 2 it is the best possible for
the algorithm.

Theorem 2. In the basic instance, the basic scheme (S, last = D) obtained by the Algorithm TwoApprox[dI =
0, last = D](M) achieves a makespan at most LB + 2.

PROOF. It is sufficient to consider the arrival time of each message. Because Algorithm TwoApprox[dI = 0, last =
D](M) uses a basic scheme, each message follows a shortest path. By Property (ii) of Theorem 1, the message s1
arrives at its destination at step d(s1) ≤ d(m1) ≤ LB and the message s2 arrives at step d(s2) + 1 ≤ d(m1) + 1 ≤
LB + 1; for any 2 < i ≤ M , the message si arrives at its destination at step d(si) + i − 1 ≤ d(mi−2) + i − 1 =
d(mi−2) + (i− 2)− 1 + 2 ≤ LB + 2. �

3.5. Makespan can be approximated up to additive constant 1

In this subsection, we show how to improve Algorithm TwoApprox[dI = 0, last = D](M) in the basic instance
(open grid with BS in the corner) to achieve makespan at most LB + 1. For that we will distinguish two cases
according to the value of last term sM which can be eithermM ormM−1. In the later case, sM = mM−1 we will also
maintain another ordered admissible sequence S ′ of the M − 1 messages (m1, · · · ,mM−1) which can be extended
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in the induction step when S cannot be extended. Both sequences S and S ′should satisfy some technical properties
(see Theorem 3).

We denote the algorithm as OneApprox[dI = 0, last = D](M). For an ordered input sequenceM of messages
and the direction D ∈ {H,V }, it gives as output an ordered sequence S of the messages such that the basic scheme
(S, last = D) has makespan at most LB+1. AlgorithmOneApprox[dI = 0, last = D](M) is depicted in Figure 5.
As we explain in Remark 2, we can also obtain algorithms with the first message sent in direction D.

Input: M = (m1, · · · ,mM ), the set of messages ordered by non-increasing distances from BS and the direction
D ∈ {V,H} of the last message.
Output: S = (s1, · · · , sM ) an ordered sequence ofM satisfying properties (a) and (b) and, only when sM = mM−1,
an ordering S ′ = (s′1, · · · , s′M−1) of the messages (m1, · · · ,mM−1) satisfying properties (a’), (b’) and (c’) (See in
Theorem 3). When S ′ is not specified below, it means S ′ = ∅.
begin
1 Case M = 1: return S = (m1)
2 Case M = 2:
3 if (m1,m2) ∈ D̄D return S = (m1,m2)
4 else return S = (m2,m1) and S ′ = (m1)
5 Case M > 2:
6 let O � p = OneApprox[dI = 0, last = D](m1, · · · ,mM−2) and when p = mM−3, let O′ be the ordering
of {m1, · · · ,mM−3} satisfying (a’)(b’)(c’).
7 Case 1: if (p,mM−1) ∈ DD̄ and (mM−1,mM ) ∈ D̄D return S = O � (p,mM−1,mM )
8 Case 2: if (p,mM−1) ∈ DD̄ and (mM−1,mM ) /∈ D̄D return S = O � (p,mM ,mM−1) and S ′ =
O � (p,mM−1)
9 Case 3: if (p,mM−1) /∈ DD̄ and (mM−2,mM ) ∈ D̄D
10 Case 3.1: if p = mM−2 return S = O � (mM−1,mM−2,mM )
11 Case 3.2: if p = mM−3 return S = O′ � (mM−1,mM−2,mM )
12 Case 4: if (p,mM−1) /∈ DD̄ and (mM−2,mM ) /∈ D̄D
13 Case 4.1: if p = mM−2 return S = O � (mM−2,mM ,mM−1) and S ′ = O � (mM−1,mM−2)
14 Case 4.2: if p = mM−3 return S = O � (mM−3,mM ,mM−1) and S ′ = O′ � (mM−1,mM−2)
end

Figure 5: Algorithm OneApprox[dI = 0, last = D](M)

Example 3. Here, we give examples that illustrate the execution of Algorithm OneApprox. Moreover, we describe
instances for which it is not optimal.

Consider again the Example of Figure 4(a) (see Example 2). Let us apply the Algorithm OneApprox[dI =
0, last = V ](M). First we apply the algorithm for m1,m2; (m1,m2) /∈ HV , we are at line 4 and S = (m2,m1) and
S ′ = (m1). Then we consider m3,m4; the value of p (line 6) is m1; as (m1,m3) /∈ V H and (m2,m4) ∈ HV , we
are in case 3.2 line 11 (p = mM−3). So we get, as O′ = (m1), S = (m1,m3,m2,m4). We now apply the algorithm
with m5,m6; the value of p (line 6) is m4; as (m4,m5) /∈ V H and (m4,m6) /∈ HV , we are in case 4.1 line 13. So
we get S = (m1,m3,m2,m4,m6,m5). The makespan of the algorithm is LB + 1 = 11 = d(m5) + 5 achieved for
s6 = m5.

But, if we apply to this example the Algorithm OneApprox[dI = 0, last = H](M), we get a makespan of
10. Indeed (m1,m2) ∈ HV and so the algorithm applied to (m1,m2) gives S = (m1,m2). Then as p = m2,
(m2,m3) ∈ HV and (m3,m4) /∈ V H , we are in case 2 line 8. So we get S = (m1,m2,m4,m3) and S ′ =
(m1,m2,m3). Finally, with p = m3, (m3,m5) ∈ HV and (m5,m6) ∈ V H we get (line 7 case 1) the final sequence
S = (m1,m2,m4,m3,m5,m6) with makespan 10 = LB.

However there are sequencesM such that both Algorithms OneApprox[dI = 0, last = V ](M) and
OneApprox[dI = 0, last = H](M) give a makespan LB + 1. Consider the example of Figure 4(c). Like in Exam-
ple 2, LB = 16; furthermore, for the messagesm1, . . . ,m6 AlgorithmOneApprox[dI = 0, last = V ](M) gives the
sequence (m1,m3,m2,m4,m6,m5) denoted by SV with makespan 17 and Algorithm OneApprox[dI = 0, last =
H](M) gives the sequence (m1,m2,m4,m3,m5,m6) denoted by SHwith makespan 16. For the messagesm′1, . . . ,m

′
6,
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we get (similarly as in Example 2) by applying Algorithm OneApprox[dI = 0, last = V ](M) the sequence S′V =
(m′1,m

′
2,m

′
4,m

′
3,m

′
5,m

′
6) with makespan 10 and by applying the Algorithm OneApprox[dI = 0, last = H](M)

the sequence S′H = (m′1,m
′
3,m

′
2,m

′
4,m

′
6,m

′
5) with makespan 11 achieved for s′6 = m′5. Now if we run the Al-

gorithm OneApprox[dI = 0, last = V ](M) on the global sequenceM = (m1, . . . ,m6,m
′
1, . . . ,m

′
6), we get as

(m5,m
′
1) ∈ V H and (m′1,m

′
2) ∈ HV , the sequence SV�S′V = (m1,m3,m2,m4,m6,m5,m

′
1,m

′
2,m

′
4,m

′
3,m

′
5,m

′
6)

with makespan 17 achieved for s6 = m5. If we run Algorithm OneApprox[dI = 0, last = H](M) on the
global sequenceM = (m1, . . . ,m6,m

′
1, . . . ,m

′
6), we get as (m6,m

′
1) ∈ HV and (m′1,m

′
2) /∈ V H , the sequence

SH � S′H = (m1,m2,m4,m3,m5,m6,m
′
1,m

′
3,m

′
2,m

′
4,m

′
6,m

′
5) with makespan 17 achieved for s12 = m′5.

However, we know that the sequence S∗ (defined in Example 2) achieves a makespan 16.

Theorem 3. Given a basic instance and the set of messages ordered by non-increasing distances from BS, M =
(m1,m2, · · · ,mM ) and a direction D ∈ {H,V }, Algorithm OneApprox[dI = 0, last = D](M) computes in
linear-time an ordering S = (s1, · · · , sM ) of the messages satisfying the following properties:

(a) the basic scheme (S, last = D) broadcasts the messages without collisions;

(b) s1 ∈ {m1,m2} and si ∈ {mi−1,mi,mi+1} for any 1 < i ≤M − 1, and sM ∈ {mM−1,mM}.

When sM = mM−1, it also computes an ordering S ′ = (s′1, · · · , s′M−1) of the messages (m1, · · · ,mM−1) satisfying
properties (a′)-(c′).

(a’) the scheme(S ′, last = D̄) broadcasts the messages without collisions;

(b’) s′1 ∈ {m1,m2}, and s′i ∈ {mi−1,mi,mi+1} for any 1 < i ≤M − 2, and s′M−1 ∈ {mM−2,mM−1}.

(c’) (s′M−1,mM ) /∈ D̄D and if s′M−1 = mM−2, (mM−2,mM−1) /∈ DD̄

PROOF. The proof is by induction. If M = 1, the result is correct as we send m1in direction D (line 1). If M = 2,
either (m1,m2) ∈ D̄D and S = (m1,m2) satisfies properties (a) and (b) or (m1,m2) /∈ D̄D and by Lemma 1
(m2,m1) ∈ D̄D and S = (m2,m1) satisfies properties (a) and (b) and S ′ = (m1) satisfies all properties (a’), (b’)
and (c’).

Now, let M > 2 and letO�p = OneApprox[dI = 0, last = D](m1, · · · ,mM−2) be the sequence computed by
the algorithm for (m1,m2, · · · ,mM−2). By the induction hypothesis, we may assume that O� p satisfies properties
(a) and (b). In particular p is sent in direction D and p ∈ {mM−3,mM−2}. We have also that, if p = mM−3,O′
satisfies properties (a’), (b’) and (c’).

Property (b) is also satisfied for si, 1 ≤ i ≤ M − 3 as it is verified by induction either in O or in case 3.2
in O′. Furthermore, either sM−2 = p ∈ {mM−3,mM−2} or sM−2 = mM−1 in case 3. Similarly, sM−1 ∈
{mM−2,mM−1,mM} and sM ∈ {mM−1,mM}. Hence, Property (b) is satisfied. Property (b’) is also satis-
fied for s′i, 1 ≤ i ≤ M − 3, as it is verified by induction in O or for case 4.2 in O′. Furthermore s′M−2 ∈
{mM−3,mM−2,mM−1} and s′M−1 ∈ {mM−2,mM−1}. Hence, Property (b’) is satisfied.

Now let us prove that S satisfies property (a) and S ′ properties (a’) and (c’) in the six cases of the algorithm (lines
7-14). Obviously the last message in S (resp. S ′) is sent in direction D (resp. D̄).

In cases 1, 2, 3.1, 4.1 the hypothesis and sequence S are exactly the same as that given by Algorithm
TwoApprox[dI = 0, last = D](M). Therefore, by the proof of Theorem 1, S satisfies property (a) and so the proof
is complete for cases 1 and 3.1 as there are no sequences S ′.

In case 2, S ′ satisfies (a’) as by hypothesis (line 8) (p,mM−1) ∈ DD̄. Property (c’) is also satisfied as s′M−1 =
mM−1 and by hypothesis (line 8) (mM−1,mM ) /∈ D̄D.

In case 4.1 (p = mM−2), let q be the last element of O; (q,mM−2) ∈ D̄D as O � p is admissible. By hy-
pothesis (line 12), (mM−2,mM−1) /∈ DD̄ and then by Lemma 2 applied with q,mM−2,mM−1 in this order, we
get (q,mM−1) ∈ D̄D; furthermore, by Lemma 1 , (mM−2,mM−1) /∈ DD̄ implies (mM−1,mM−2) ∈ DD̄.
So, S ′ satisfies Property (a’). Finally s′M−1 = mM−2 and by hypothesis (line 12) (mM−2,mM ) /∈ D̄D and
(mM−2,mM−1) /∈ DD̄ and therefore S ′ satisfies property (c’).

The following claims will be useful to conclude the proof in cases 3.2 and 4.2. In these cases p = mM−3 and let
p′ be the last element of O′. By induction on O′, and by property (b’), p′ ∈ {mM−4,mM−3}.

12



Claim 1. : In cases 3.2 and 4.2, (mM−2,mM−1) /∈ DD̄

PROOF. To write a convincing proof, we use coordinates and the expression of Fact 2 in terms of coordinates (see
Remark 1). We use dest(mM−i) = (xM−i, yM−i). Let us suppose D = V (the claim can be proved for D = H by
exchanging H and V and exchanging x and y).

By hypothesis (lines 9 and 12) (mM−3,mM−1) /∈ V H .

• If p′ = mM−3, by induction hypothesis (c’) applied toO′, we have (p′,mM−2) /∈ HV . Then (mM−3,mM−1) /∈
V H and (mM−3,mM−2) /∈ HV imply by Fact 2: {xM−1 < xM−3 and yM−1 ≥ yM−3} and {xM−2 ≥ xM−3
and yM−2 < yM−3}.
So we have xM−1 < xM−3 ≤ xM−2 implying xM−1 < xM−2 and yM−1 ≥ yM−3 > yM−2 implying
yM−1 > yM−2. These conditions imply by Fact 2 that (mM−2,mM−1) /∈ V H .

• If p′ = mM−4, by induction hypothesis (c’) applied toO′, we have (p′,mM−2) /∈ HV and (mM−4,mM−3) /∈
V H . So (mM−3,mM−1) /∈ V H , (mM−4,mM−2) /∈ HV and (mM−4,mM−3) /∈ V H imply respectively by
Fact 2: {xM−1 < xM−3 and yM−1 ≥ yM−3}; {xM−2 ≥ xM−4 and yM−2 < yM−4} and {xM−3 < xM−4
and yM−3 ≥ yM−4}.
So we have xM−1 < xM−3 < xM−4 ≤ xM−2 implying xM−1 < xM−2 and yM−1 ≥ yM−3 ≥ yM−4 > yM−2
implying yM−1 > yM−2. These conditions imply by Fact 2 that (mM−2,mM−1) /∈ V H .

Claim 2. : In cases 3.2 and 4.2, (p′,mM−1) ∈ D̄D.

PROOF. If p′ = mM−3 by hypothesis lines 9 and 12 (mM−3,mM−1) /∈ DD̄ and by Lemma 1 (mM−3,mM−1) ∈
D̄D. If p′ = mM−4, by induction hypothesis (c’) applied to O′, (mM−4,mM−3) /∈ DD̄ and so by Lemma 1
(mM−4,mM−3) ∈ D̄D; furthermore by hypothesis (mM−3,mM−1) /∈ DD̄ and so by Lemma 2 applied with
mM−4,mM−3,mM−1 in this order, we get (mM−4,mM−1) ∈ D̄D.

In case 3.2, by hypothesis (line 9) (mM−2,mM ) ∈ D̄D; by the claim 1 (mM−2,mM−1) /∈ DD̄ and so by
Lemma 1 (mM−1,mM−2) ∈ DD̄; and by claim 2, (p′,mM−1) ∈ D̄D. So the theorem is proved in case 3.2.

Finally it remains to deal with the case 4.2. Let us first prove that S satisfies (a). By hypothesis line 12
(mM−2,mM ) /∈ D̄D and by the claim (mM−2,mM−1) /∈ DD̄ and so by Lemma 3 applied withmM−2,mM ,mM−1
in this order we get (mM ,mM−1) ∈ D̄D. We claim that (mM−3,mM−2) ∈ DD̄; indeed, if p′ = mM−3, by induc-
tion hypothesis (c’) applied to O′, we have (mM−3,mM−2) /∈ D̄D and so (mM−3,mM−2) ∈ DD̄. If p′ = mM−4,
by induction hypothesis (c’) applied to O′, we have (mM−4,mM−2) /∈ D̄D and (mM−4,mM−3) /∈ DD̄ and so
by Lemma 3 applied with mM−4,mM−3,mM−2 in this order we get (mM−3,mM−2) ∈ DD̄. Now the property
(mM−3,mM−2) ∈ DD̄ combined with the hypothesis line 12 (mM−2,mM ) /∈ D̄D gives by Lemma 2 applied with
mM−3,mM−2,mM in this order (mM−3,mM ) ∈ DD̄.

Finally, by claim 1, (mM−2,mM−1) /∈ DD̄ and so by Lemma 1 (mM−1,mM−2) ∈ DD̄. By claim 2,
(p′,mM−1) ∈ D̄D and so S ′ satisfies Property (a’). S ′ satisfies also Property (c’) as (mM−2,mM ) /∈ D̄D by
hypothesis and (mM−2,mM−1) /∈ DD̄ by claim 1. �

As corollary we get by property (b) and definition ofLB that the basic scheme (S, last = D) achieves a makespan
at most LB + 1. We emphasize this result as a Theorem and note that in view of Example 3 it is the best possible for
the algorithm. The proof is similar to that Theorem 2.

Theorem 4. In the basic instance, the basic scheme (S, last = D) obtained by the Algorithm OneApprox[dI =
0, last = D](M) achieves a makespan at most LB + 1.

As we have seen in Example 3, AlgorithmsOneApprox[dI = 0, last = V ](M) andOneApprox[dI = 0, last =
H](M) are not always optimal since there are instances for which the optimal makespan equals LB while our algo-
rithms only achieves LB+1. However there are other cases where AlgorithmOneApprox[dI = 0, last = V ](M) or
Algorithm OneApprox[dI = 0, last = H](M) can be used to obtain an optimal makespan LB. The next theorem
might appear as specific, but it includes the case where each node in a finite grid receives exactly one message (case
considered in many papers in the literature, such as in [6] for the grid when buffering is allowed).
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Theorem 5. LetM = (m1,m2, · · · ,mM ) be an ordered sequence of messages (i.e., by decreasing distance), if the
bound LB = maxi≤M d(mi) + i − 1 is reached for an unique value of i, then we can design an algorithm with
optimal makespan = LB .

PROOF. Let k be the value for which LB is achieved that is d(mk) + k − 1 = LB and d(mi) + i − 1 < LB
for i 6= k. We divide M = (m1, · · · ,mM ) into two ordered subsequences Mk = (m1, . . . ,mk) and M′k =
(mk+1, . . . ,mM ). So |Mk| = k and |M′k| = M−k. Let SV (resp., SH ) be the sequence obtained by applying Algo-
rithmOneApprox[dI = 0, last = V ](Mk) (resp., AlgorithmOneApprox[dI = 0, last = H](Mk)) to the sequence
Mk. The makespan is equal to LB; indeed if the sequence is (s1, . . . , sk), then the makespan is maxi≤k d(si)+i−1.
But we have si ∈ {mi−1,mi,mi+1} for any i ≤ k − 1, and so d(si) + i − 1 ≤ d(mi−1) + (i − 1) ≤ LB (as
d(mi−1)+(i−1)−1 < LB); we also have sk ∈ {mk−1,mk} and so either d(sk)+(k−1) = d(mk−1)+(k−1) ≤ LB
or d(sk) + (k − 1) = d(mk) + k − 1 = LB.

Suppose k > 1, then the destination of mk−1 is at the same distance of that of mk; indeed if d(mk−1) > d(mk),
then d(mk−1) + k− 2 ≥ d(mk) + k− 1 = LB and LB will also be achieved for k− 1 contradicting the hypothesis.
Consider the setDk of all the messages with destinations at the same distance as that ofmk (so if k > 1 |Dk| ≥ 2) and
letmu (resp.,m`) be the uppermost message (resp., lowest message) ofDk, that is the message inDk with destination
the node with the highest y (resp., the lowest y); (in case there are many such messages with this property, i.e. they
have the same destination node, we choose one of them).

We claim that there exists a basic scheme forMk, such that if the last message is sent vertically (resp., horizon-
tally) it is mu (resp. m`). Indeed, suppose we want the last message sent vertically to be mu it suffices to order
the messages in Mk such that the last one mk = mu; then if we apply Algorithm OneApprox[dI = 0, last =
V ](Mk) we get a sequence where sk ∈ {mk−1,mk}. Either sk = mk = mu and we are done or sk = mk−1 and
sk−1 = mu; but in that case (sk−1, sk) ∈ HV implies, by Fact 2, that xk−1 < xu or yk−1 ≥ yu, where (xu, yu)
and (xk−1, yk−1) are the destinations of mu and mk−1. But mu,mk−1 ∈ Dk and mu being the uppermost vertex,
yk−1 ≤ yu and xk−1 ≥ xu. Therefore, sk−1 and sk have the same destination. So, we can interchange them. Simi-
larly using Algorithm OneApprox[dI = 0, last = H](Mk) we can obtain an HV -scheme denoted SH with the last
message sent horizontally being m`.

If k=1,Mk is reduced to one messagem1 and the claims are satisfied withmu = m` = m1 and SV = SH = m1.

Now, we consider the sequence M′k; the lower bound is LB′ = maxk<i≤M d(mi) + i − k − 1 < LB − k
as LB is not achieved for any i 6= k. Let S ′H be the sequence obtained by applying Algorithm OneApprox[dI =
0, first = H](M′k) with the first element of S ′H sent horizontally and let s′h be this first element. (We obtain
this algorithm from Algorithm OneApprox[dI = 0, last = V ](M′k) if |M ′k| = M − k is even or Algorithm
OneApprox[dI = 0, last = H](M′k) if |M ′k| is odd). Similarly, let S ′V be the sequence obtained by applying Al-
gorithm OneApprox[dI = 0, first = V ](M′k) with the first element of S ′V sent vertically and let s′v be this first
element. In all the cases the makespan is at most LB′ + 1 ≤ LB − k.

Finally, we consider the concatenation of the sequences SV � S ′H and SH � S ′V . We claim that one of these two
sequences has no interferences. If the claim is true, then the theorem is proved as the makespan will be LB for the
first k messages and LB′ + 1 + k ≤ LB for the last M − k messages. In what follows, let as usual (xu, yu), (xl, yl),
(x′h, y

′
h) and (x′v, y

′
v) denote respectively the destinations of messages mu, ml, s′h and s′v . Now, suppose the claim

is not true, that is (mu, s
′
h) /∈ V H and (m`, s

′
v) /∈ HV . That implies by Fact 2 that x′h < xu and y′h ≥ yu and

x′v ≥ x` and y′v < y`. But we choose the destination of mu (resp.,m`) to be the uppermost one (resp., the lowest one)
in Dk. So, xu ≤ xl and yu ≥ yl. Therefore x′h < x′v and y′h > y′v which imply first that s′h 6= s′v and by Fact 2 that
(s′v, s

′
h) /∈ V H and (s′h, s

′
v) /∈ HV .

Note that, by the property of Algorithm OneApprox[dI = 0, last = D](M), s′h ∈ {mk+1,mk+2} and s′v ∈
{mk+1,mk+2}; thus, as they are different, one of s′h, s

′
v is mk+1 and the other mk+2. Suppose that s′h = mk+1

and s′v = mk+2; then in the sequence S ′V the first message is s′v = mk+2 and from property (c) in Theorem 3, the
second message is necessarily mk+1 = s′h, but that implies (s′v, s

′
h) ∈ V H a contradiction. The case s′h = mk+2 and

s′v = mk+1 implies similarly in the sequence S ′H that (s′h, s
′
v) ∈ HV , a contradiction. So the claim and the theorem

are proved. �
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Figure 6: Examples for optimal schedules are difficult to obtain.

Example 4. As mentioned above, Algorithm OneApprox is not always optimal. The design of a polynomial-time
optimal algorithm seems challenging because of some reasons that we discuss now. First, the first example below
shows that there are open-grid instances for which any broadcast scheme using shortest paths in not optimal (a general
grid with such property was already given in Example 1). In this example described in Figure 6(a), we have 6
messages mi (1 ≤ i ≤ 6) with destinations at distance d for m1 and m2, d − 1 for m3 and d − 4 for m4,m5,m6.
Here LB = d+ 1, achieved for m2, m3 and m6. In the Figure 6(a), d = 14, v1 = (11, 3), v2 = (12, 2), v3 = (9, 4),
v4 = (5, 5), v5 = (3, 7) and v6 = (2, 8) and LB = 15. If we apply OneApprox[dI = 0, last = V ](M) we get
the sequence (m1,m3,m2,m5,m4,m6) with a makespan 16 attained for s3 = m2. If we apply OneApprox[dI =
0, last = H](M) we get the sequence (m1,m2,m4,m3,m6,m5) also with a makespan 16 attained for s4 = m3.
Consider any algorithm where the messages are sent via shortest directed paths. If the makespan is LB then m1 and
m2 should be sent in the first two steps and to avoid interferences the source should send m1 via (0, 1) and m2 via
(1, 0). m3 should be sent at step 3. If m2 was sent at step 1 and so m1 at step 2, then m3 should be sent at step 3
via (1, 0) and will interfere with m1. Therefore, the only possibility is to send m1 at step 1 via (0, 1), m2 at step 2
via (1, 0) and m3 at step 3 via (0, 1). But then at step 4, we cannot send any of m4,m5,m6 without interference.
So the source does no sending at step 4, but the last sent message will be sent at step 7 and the makespan will be
d + 2 = LB + 1. However there exists a tricky schedule with makespan LB, but not with shortest directed paths
routing. We sent m1 vertically, m2 horizontally, m3 vertically but m4 with a detour to introduce a delay of 2. More
precisely, if v4 = (x4, y4), we send m4 horizontally till (x4 + 1, 0), then to (x4 + 1, 1) and (x4, 1) (the detour) and
then vertically till (x4, y4). Finally we sendm6 vertically at step 5 andm5 horizontally at step 6. m4 has been delayed
by two but the message arrives at time LB and there is no interference between the messages.

Secondly, even if we restrict ourselves to use shortest paths, the computation of an optimal schedule seems difficult.
Indeed, the second example below illustrates the fact that optimal schedule may be very different compared to the
non-increasing distance schedule. The example is decribed in Figure 6(b). We have 8 messages mi (1 ≤ i ≤ 8)
with destinations at v1 = (6, 6), v2 = (5, 6), v3 = (2, 7), v4 = (2, 6), v5 = (1, 5), v6 = (2, 4), v7 = (3, 2) and
v8 = (4, 1). Here LB = 12, achieved for m1, m2 and m8. We will prove that there is a unique sequence of messages
reaching the bound LB which is the ordered sequence (m1,m2,m6,m3,m4,m5,m8,m7) with the first message sent
horizontally. Indeed to reach the makespan LB, m1 and m2 have to be sent first and second because their distances
are 12 and 11 and in order they do not interfere m1 has to be sent horizontally and m2 vertically.The next message to
be sent cannot be m3 nor m4 as they will interfere with m2. If the third message sent is mi for some i ∈ 5, 7, 8, then
the fourth and fifth messages have to be m3 vertically then m4 horizontally since their distances are 9 and 8. Now
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only message m5 can be sent vertically at step 6, otherwise there will an interference with m4. Then message m6 has
to be sent horizontally at step 7 since its distance is 6. But then the last message m7 or m8 (the one not sent at the
third step) can not be sent vertically as it will interfere with m6. So the only possibility consists in sending m6 at the
third step and then the ordered sequence is forced.

In the last example, some specific message (m6) has to be chosen to be sent early (while being close to BS
compared with other messages) to achieve the optimal solution. Deciding of such ”critical” message seems to be not
easy. Hence it shows that the complexity of determining the value of the minimum makespan might be a difficult
problem (even when considering only shortest path schedules).

4. Case dI = 0; general grid, and BS in the corner

We will see in this section that, by generalizing the notion of basic scheme, Algorithm TwoApprox[dI =
0, last = D](M) also achieves a makespan at most LB + 2 in the case of a general grid, that is when the des-
tinations of the messages can be on one or both axes and with BS in the corner. First we have to generalize the
notions of horizontal sendings for a destination node on Y-axis and vertical sendings for a destination node on the
X-axis. However the proofs of the basic lemmata are more complicated as Lemma 2 is not fully valid in this case.
Furthermore, we cannot present the conditions only in simple terms like in Fact 2 and so to be precise we need to use
coordinates.

The following definitions are illustrated on Figure 7. We will say that a message is sent “horizontally to reach the
Y axis”, denoted by HY -sending, if the destination of m is on the Y axis, i.e., dest(m) = (0, y), and the message is
sent first horizontally from BS to (1,0) then it follows the vertical directed path from (1, 0) till (1, y) and finally the
horizontal arc ((1, y), (0, y)). For instance, an HY -sending of message m is illustrated in Figure 7(a) and of message
m′ in Figure 7(d).

Similarly a message is sent “vertically to reach the X axis”, denoted by VX -sending, if the destination of m is
on the X axis, i.e., dest(m) = (x, 0), and the message is sent first vertically from BS to (0,1) then it follows the
horizontal directed path from (0, 1) till (x, 1) and finally the vertical arc ((x, 1), (x, 0)). For instance, an VX -sending
of message m′ is illustrated in Figure 7(b) and of message m in Figure 7(c).
Notations. Definition 1 of basic scheme in Section 3.1 is generalized by allowing HY (resp., VX )-sendings as hori-
zontal (resp., vertical) sendings. For emphasis, we call it modified basic scheme. We will also generalize the notation
HV (resp., V H) by including HY (resp., VX )-sendings.

Note that we cannot have anHY -sending followed by a VX -sending (or a VX -sending followed by anHY -sending)
as there will be interference in (1, 1).

BS

m'

m

m''

(a) (m,m′) /∈ HV Case 3.1;
(m,m′′) /∈ HV Case 3.2

BS
m'

m

(b) (m,m′) /∈ HV Case 3.3

BS

m'

m m''

(c) (m,m′) /∈ V H Case 4.1;
(m,m′′) /∈ V H Case 4.2

BS

m'

m

(d) (m,m′) /∈ V H Case 4.3

Figure 7: Cases of interferences with destinations on the axis.

Fact 3. Let dest(m) = (x, y), dest(m′) = (x′, y′) and suppose at least one of dest(m) and dest(m′) is on an axis.
Then

• (m,m′) /∈ HV if and only if we are in one of the following cases, see in Fig. 7(a) and 7(b)
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3.1: x = 0 and x′ > 0

3.2: x = 0, x′ = 0 and y′ > y

3.3: x > 0, y′ = 0, x ≤ x′ and y ≥ 2

or equivalently

• (m,m′) ∈ HV if and only if we are in one of the following cases

3.4: y = 0

3.5: x = 0, x′ = 0 and y′ ≤ y
3.6: x > 0, y > 0, x′ = 0

3.7: x > 0, y > 0, y′ = 0, and either y = 1 or x′ < x

PROOF. First suppose dest(m) is on one of the axis. If, y = 0 there is no interference (3.4). If x = 0 and y′ > y
messagem arrives at its destination (0, y) at step y+2, but messagem′ leaves (0, y) at step y+2 and so they interfere
(3.2 and 3.1 with y′ > y). If x = 0 and y′ ≤ y, either x′ = 0 and the directed paths followed by the messages do
not cross (3.5), or x′ > 0, but then message m leaves (1, y′) at step y′ + 2, while message m′ arrives at (1, y′) at step
y′ + 2 and so they interfere (3.1 with y′ ≤ y).

Suppose now that dest(m) is not on one of the axis, that is x > 0 and y > 0. If x′ = 0, the directed paths followed
by the messages do not cross (3.6). If y′ = 0, then either x′ < x and the messages do not interfere (3.7) or x′ ≥ x,
and the directed paths cross at (x, 1) and there either y = 1 and the messages do not interfere (3.7) or y ≥ 2 , but then
message m leaves (x, 1) at step x+ 2, while message m′ arrives at (x, 1) at step x+ 2 and so they interfere (3.3). �

Fact 4. Let dest(m) = (x, y), dest(m′) = (x′, y′) and suppose at least one of dest(m) and dest(m′) is on an axis.
Then

• (m,m′) /∈ V H if and only if we are in one of the following cases, see in Fig. 7(c) and 7(d)

4.1: y = 0 and y′ > 0

4.2: y = 0, y′ = 0 and x′ > x

4.3: y > 0, x′ = 0, y ≤ y′ and x ≥ 2

or equivalently

• (m,m′) ∈ V H if and only if we are in one of the following cases

4.4: x = 0

4.5: y = 0, y′ = 0 and x′ ≤ x
4.6: x > 0, y > 0, y′ = 0

4.7: x > 0, y > 0, x′ = 0, and either x = 1 or y′ < y

Lemma 4. If (m,m′) /∈ DD̄, then (m,m′) ∈ D̄D and (m′,m) ∈ DD̄.

PROOF. We prove that if (m,m′) /∈ HV (case D = H), then (m,m′) ∈ V H in the following. Other results are
proved similarly. If none of the destinations of m and m′ are on the axis, the result holds by Lemma 1. If at least one
destination is on an axis, suppose that (m,m′) /∈ HV . If conditions of Fact 3.1 or 3.2 are satisfied, then x = 0 but
then by Fact 4.4 (m,m′) ∈ V H . If condition of Fact 3.3 is satisfied , so x > 0, y′ = 0 and y ≥ 2 which implies by
Fact 4.6 that (m,m′) ∈ V H . �

However Lemma 2 is no more valid in its full generality.

Lemma 5. Let dest(m) = (x, y), dest(m′) = (x′, y′) and dest(m′′) = (x′′, y′′).
If (m,m′) ∈ DD̄ and (m′,m′′) /∈ D̄D, then (m,m′′) ∈ DD̄ except if:
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• Case D = H: y′ = 0 (VX -sending is used for m′), and y ≥ max(2, y′′ + 1), and 0 < x′ < x ≤ x′′.

• Case D = V : x′ = 0 (HY -sending is used for m′), and x ≥ max(2, x′′ + 1), and 0 < y′ < y ≤ y′′.

PROOF. Let us prove the case D = H . If none of the destinations of m,m′,m′′ are on an axis the result holds by
Lemma 2. If y = 0, then (m,m′′) ∈ HV by Fact 3.4. By Fact 4, (m′,m′′) /∈ V H implies x′ > 0. If x = 0, then by
Fact 3.5, (m,m′) ∈ HV implies x′ = 0 a contradiction with the preceding assertion. Therefore x > 0 and dest(m)
is not on an axis. If x′′ = 0, then by Fact 3.6 (m,m′′) ∈ HV . If y′ > 0, then (m′,m′′) /∈ V H implies x′′ = 0
by Fact 4.3, where we already know that by Fact 3.6 (m,m′′) ∈ HV . So y′ = 0, x > 0, y > 0 and by Fact 3.7
(m,m′) ∈ HV implies that either y = 1 or x′ < x.

If y′′ = 0, by Fact 3.3, (m,m′′) /∈ HV if and only if y ≥ 2 and x ≤ x′′. If y′′ > 0, none of the destinations of
m and m′′ are on the axis and so by Fact 2, (m,m′′) /∈ HV , if and only if x′′ ≥ x and y′′ < y. So again y ≥ 2 and
x ≤ x′′. In summary (m,m′′) /∈ HV , if and only if y ≥ 2 and when y′′ > 0, y > y′′ and 0 < x′ < x ≤ x′′

The case D = V is obtained similarly. �

We give the following useful corollary for the proof of the next theorem.

Corollary 1. If d(m′) ≥ d(m′′) then: If (m,m′) ∈ DD̄ and (m′,m′′) /∈ D̄D, then (m,m′′) ∈ DD̄.

We now show that:

Lemma 6. Lemma 3 is still valid in general grid.

PROOF. We prove it for D = H . The case D = V can be obtained similarly.
If none of the destinations of m,m′,m′′ are on an axis the result holds by Lemma 3. Suppose first dest(m′′) is

on an axis; by Fact 4 (m,m′′) /∈ V H implies x > 0. If furthermore dest(m) or dest(m′) are on an axis, by Fact 3.3
(m,m′) /∈ HV implies y′ = 0 and so by Fact 3.4 (m′,m′′) ∈ HV . Otherwise if none of dest(m) and dest(m′) are
on an axis, y > 0 and by Fact 4.3 (m,m′′) /∈ V H implies x′′ = 0, and with x′ > 0 and y′ > 0 Fact 3.6 implies
(m′,m′′) ∈ HV .

If dest(m′′) is not on an axis, then one of dest(m) and dest(m′) is on an axis and (m,m′) /∈ HV implies y > 0.
We cannot have x = 0 otherwise it contradicts (m,m′′) /∈ V H . If x > 0, then by Fact 3.3 (m,m′) /∈ HV implies
y′ = 0, but then Fact 3.4 implies (m′,m′′) ∈ HV . �

Theorem 6. Let dI = 0, and BS be in the corner of the general grid. Given the set of messages ordered by non-
increasing distances from BS,M = (m1,m2, · · · ,mM ) and a direction D, Algorithm TwoApprox[dI = 0, last =
D](M) computes in linear-time an ordering S of the messages satisfying following properties

(i) the modified basic scheme(S, last = D) broadcasts the messages without collisions;

(ii) s1 ∈ {m1,m2,m3}, s2 ∈ {m1,m2,m3,m4} and si ∈ {mi−2,mi−1,mi,mi+1,mi+2} for any 2 < i ≤
M − 2, and sM−1 ∈ {mM−3,mM−2,mM−1,mM} and sM ∈ {mM−1,mM};

(iii) for any i ≤ M , if si is an HY (resp., VX ) sending with destination on column 0 (resp., on line 0), then either
si ∈ {mi,mi+1,mi+2} if i < M − 1, or si ∈ {mi,mi+1} if i = M − 1, or si = mi if i = M .

PROOF. We prove the theorem for D = V . The case D = H can be proved similarly. The proof is by induction
on M and follows the proof of Theorem 1. We have to verify the new property (iii) and property (i) when one
of p, q,mM−1,mM has its destination on one of the axis. Recall that q is the last message in O. We will denote
dest(p) = (xp, yp),and as usual dest(mM−1) = (xM−1, yM−1) and dest(mM ) = (xM , yM ).

For property (i) the proof of Theorem 1 works if, when using Lemma 2, we are in a case where it is still valid, that
is when Lemma 5 is valid. We use Lemma 2 to prove case 2 of the Algorithm TwoApprox[dI = 0, last = V ](M)
with p,mM−1,mM in this order. The order on the messages implies d(mM−1) ≥ d(mM ) and so by Corollary 1,
Lemma 5 is valid. We also use Lemma 2 to prove the case 3 of the algorithm with q, p,mM−1 in this order. The
order on the messages implies d(p) ≥ d(mM−1) and so by Corollary 1, Lemma 5 is valid. Note that to prove case 4
of the algorithm we use Lemma 3 which is still valid (Lemma 6).
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It remains to verify property (iii). In case 2 of the algorithm, we have to show that sM = mM−1 is not using
VX -sending because we use induction for (m1, . . . ,mM−2). So it is sufficient to prove yM−1 > 0. Indeed, by Fact 3,
(mM−1,mM ) /∈ HV implies yM−1 > 0.

In case 3 of the algorithm, to verify property (iii) we have to show that sM−1 = p is not usingHY -sending because
we use induction for (m1, . . . ,mM−2). So it is sufficient to prove xp > 0. Indeed, by Fact 4, (p,mM−1) /∈ V H
implies xp > 0.

In case 4 of the algorithm, to verify property (iii) we have to show that sM = mM−1 is not using VX -sending.
Suppose it is not the case i.e. yM−1 = 0; as (p,mM−1) /∈ V H , we have by Fact 4.2 yp = 0 and xM−1 > xp. But
then d(p) < d(mM−1) contradicts the order of the messages. �

As corollary we get by properties (ii) and (iii) and the definition of LB, that the modified basic scheme(S, last =
D) achieves a makespan at most LB + 2. We emphasize this result as a Theorem and note that in view of Example 2
or the example given at the end of Section 2 it is the best possible.

Theorem 7. In the general grid with BS in the corner and dI = 0, the modified basic scheme (S, last = D) obtained
by the Algorithm TwoApprox[dI = 0, last = D](M) achieves a makespan at most LB + 2.

5. dI -Open Grid when dI ∈ {1, 2}

In this section, we use the Algorithm OneApprox[dI = 0, last = D](M) and the detour similar with the one in
Example 4 to solve the personalized broadcasting problem for dI ∈ {1, 2} in dI -open grids, defined as follows:

Definition 2. A grid with BS(0, 0) in the corner is called 1-open grid if at least one of the following conditions is
satisfied: (1) All messages have destination nodes in the set {(x, y) : x ≥ 2 and y ≥ 1}; (2) All messages have
destination nodes in the set {(x, y) : x ≥ 1 and y ≥ 2}.

The 1-open grid differs from the open grid only by excluding destinations of messages either on the line x = 1
(condition (1)) or on the column y = 1 (condition (2)). For dI ≥ 2 the definition is simpler.

Definition 3. For dI ≥ 2, a grid with BS(0, 0) in the corner is called dI -open grid if all messages have destination
nodes in the set {(x, y) : x ≥ dI and y ≥ dI}.

5.1. Lower bounds

In this subsection, we give the lower bounds of the makespan for dI ∈ {1, 2} in dI -open grids:

Proposition 2. Let G be a grid with BS in the corner, dI = 1 and the set of messages, M = (m1,m2, · · · ,mM ),
ordered by non-increasing distances from BS, with all the destinations at distance at least 3 (d(mM ) ≥ 3), then the
makespan of any broadcasting scheme is greater than or equal to LBc(1) = maxi≤Md(mi) + d3i/2e − 2.

PROOF. First we claim that if the source sends two messages in two concecutive steps t and t+ 1, then it cannot send
at step t+ 2. Indeed, suppose that the source sends a message m at step t on one axis; then at step t+ 1 it must send
the message m′ on the other axis. But then at step t+ 2, both the two neighbors of the source are at distance at most
1 from the sender of messages m or m′. So if the source sends m′′ at step t+ 2, m′′ will interfere with m or m′.

Let ti be the step where the last message in (m1,m2, · · · ,mi) is sent; therefore ti ≥ d3i/2e−1. This last message
denoted m is received at step t′i ≥ d(m) + ti − 1 ≥ d(mi) + ti − 1 ≥ d(mi) + d3i/2e − 2 and for every i ≤ M ,
LBc(1) ≥ d(mi) + d3i/2e − 2. �

Remark 3. (A): Obviously, this bound is valid for 1-open grid according to Definition 2.

(B): This bound is valid for dI = 1 only when the source has a degree 2 (case BS in the corner of the grid). If BS
is in a general position in the grid we have no better bound than LB.
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(C): One can check that the bound is still valid if at most one message has a destination at distance 1 or 2. But if
two or more messages have such destinations (d(mM−1) ≤ 2), then the bound is no more valid. As an example, let
dest(mi) = vi, with v1 = (1, 2), v2 = (2, 1), v3 = (1, 2) and v4 = v5 = (1, 1), then d(m1) = d(m2) = d(m3) = 3
and d(m4) = d(m5) = 2 and LBc(1) = d(m5) + 6 = 8. However we can achieve a makespan of 7 by sending m4

horizontally at step 1, then m1 vertically at step 2 and m2 horizontally at step 3, then the source sends m3 vertically
at step 5 and m5 horizontally at step 6. m3 and m5 reach their destinations at step 7.

(D): Finally let us also remark that there exist configurations for which no gathering protocol can achieve better
makespan than LBc(1) + 1. Let dest(m1) = v1 = (x, y), with x + y = d, dest(m2) = v2 = (x, y − 1) and
dest(m3) = v3 = (x − 1, y − 2). To achieve a makespan of LBc(1) = d, m1 should be sent at step 1 via a shortest
directed path; m2 should be sent at step 2 via a shortest directed path; and m3 should be sent at step 4 via a shortest
directed path. But, at step d, the sender of m2 (either (x, y−2) or (x−1, y−1)) is at distance 1 from v3 = dest(m3)
and so m2 and m3 interfere.

For dI ≥ 2, we have the following lower bound.

Proposition 3. Let dI ≥ 2 and suppose we are in dI -open grid. LetM = (m1,m2, · · · ,mM ) be the set of messages
ordered by non-increasing distances fromBS, then the makespan of any broadcasting scheme is greater than or equal
to LB(dI) = maxi≤Md(mi) + (i− 1)dI .

PROOF. Indeed if a source sends a message at some step the next message has to be sent at least dI steps after. �

Remark 4. For dI = 2, there exist configurations for which no gathering protocol can achieve a better makespan
than LB(2) + 2. Let dest(m1) = v1 = (x, y), with x + y = d and dest(m2) = v2 = (x − 1, y − 1). Note that
LB(2) = d. Let s1, s2 be the sequence obtained by some algorithm ; to avoid interferences s1 being sent at step 1 ,
s2 should be sent at step ≥ 3. If s2 = m1, the makespan is at least d+ 2; Furthermore, if m1 is not sent via a shortest
directed path again the makespan is at least d+ 2. So s1 = m1 is sent at step 1 via a shortest directed path. At step d
the sender of m1 (either (x, y − 1) or (x− 1, y) is at distance 1 from v2. Therefore, if m2 is sent at step 3 (resp., 4) it
arrives at v2 (resp.,at a neighbor of v2) at step d and so m2 interferes with m1. Thus, m2 can be sent in the best case
at step 5 and arrives at step d+ 2. In all the cases, the makespan of any algorithm is LB(2) + 2.

5.2. Routing with ε-detours
To design the algorithms for dI ∈ {1, 2}, we will use the sequence S obtained by Algorithm OneApprox[dI =

0, first = D](M). First, as seen in the proof of lower bounds, the source will no more send a message at each
step. Second, we need to send the messages via directed paths more complicated than horizontal or vertical sendings;
however we will see that we can use relatively simple directed paths with at most 2 turns and simple detours. Let us
define precisely such sendings.

Definition 4. We say that a message to be sent to node (x, y) is sent vertically with an ε-detour, if it follows the
directed path from BS(0, 0) to (0, y + ε), then from (0, y + ε) to (x, y + ε) and finally from (x, y + ε) to (x, y).
Similarly a message to be sent to node (x, y) is sent horizontally with an ε-detour, if it follows the directed path from
BS(0, 0) to (x+ ε, 0), then from (x+ ε, 0) to (x+ ε, y) and finally from (x+ ε, y) to (x, y).

Note that ε = 0 corresponds to a message sent horizontally (or vertically) as defined earlier (in that case we will
also say that the message is sent without detour). Note also that in the previous section we use directed paths with
1-detour but only to reach vertices on the axes which are now excluded, since we are in open grid. A message sent at
step t with an ε-detour reaches its destination at step t+ d(m) + 2ε− 1. We also note that the detours introduced here
are slightly different from the one used in Example 4. They are simpler in the sense that they are doing only two turns
and for the case ε = 1 (1-detour) going backward only at the last step.

We will design algorithms using the sequence obtained by Algorithm OneApprox[dI = 0, first = D](M) but
we will have to send some of the messages with a 1-detour. We will first give some lemmata which characterize when
two messages m and m′ interfere when dI = 1, but not interfere in the basic scheme that is when dI = 0, according
to the detours of their sendings. For that the following fact which gives precisely the arcs used by the messages will
be useful.
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Fact 5. • If dest(m) = (x, y) and m is sent horizontally at step t with an ε-detour (ε = 0 or 1) then it uses at
step t+ h the following arc

case 1: ((h, 0), (h+ 1, 0)) for 0 ≤ h < x+ ε

case 2: ((x+ ε, h− (x+ ε)), (x+ ε, h+ 1− (x+ ε)) for x+ ε ≤ h < x+ y + ε

case 3: if ε = 1 ((x+ 1, y), (x, y)) for h = x+ y + 1

• If dest(m′) = (x′, y′) and m′ is sent vertically with an ε′-detour (ε′ = 0 or 1) at step t′, then it uses at step
t′ + h′ the following arc

case 1’: ((0, h′), (0, h′ + 1)) for 0 ≤ h′ < y′ + ε′

case 2’: ((h′ − (y′ + ε′), y′ + ε′), (h′ + 1− (y′ + ε′), y′ + ε′)) for y′ + ε′ ≤ h′ < x′ + y′ + ε′

case 3’: if ε′ = 1 ((x′, y′ + 1), (x′, y′)) for h′ = x′ + y′ + 1

Lemma 7. Let G be an open grid. Let dest(m) = (x, y) and m be sent at step t horizontally without detour, i.e.
ε = 0. Let dest(m′) = (x′, y′) and m′ be sent vertically with an ε′-detour (ε′ = 0 or 1) at step t′ = t + 1. Let
furthermore {x′ < x or y′ ≥ y} (i.e. (m,m′) ∈ HV in the basic scheme). Then for dI = 1, m and m′ do not
interfere.

PROOF. To prove that the two messages do not interfere, we will prove that at any step for any pair of messages sent
but not arrived at destination, the distance between the sender of one and the receiver of the other is ≥ 2. Consider a
step t+ h = t′ + h′ where h′ = h− 1 and 1 ≤ h < min{x+ y, x′ + y′ + 1 + 2ε′}. By Fact 5 we have to consider 6
cases. We label them as case i-j’ if we are in case i for m and in case j’ for m′, i = 1, 2 and 1 ≤ j ≤ 3:

case 1-1’: 1 ≤ h < x and 0 ≤ h− 1 < y′+ ε′. Then, the distance between a sender and a receiver is at least 2h ≥ 2.

case 1-2’: 1 ≤ h < x and y′ + ε′ ≤ h − 1 < x′ + y′ + ε′. Then, the distance between a sender and a receiver is at
least 2(y′ + ε′) ≥ 2, as y′ ≥ 1.

case 1-3’: 1 ≤ h < x and ε′ = 1 h− 1 = x′ + y′ + 1. Then, the distance between a sender and a receiver is at least
h− x′ + y′ = 2y′ + 2 ≥ 4.

case 2-1’: x ≤ h < x + y and 0 ≤ h − 1 < y′ + ε. Then, the distance between a sender and a receiver is at least
|x|+ |x− 2| ≥ 2.

case 2-2’: x ≤ h < x + y and y′ + ε′ ≤ h − 1 < x′ + y′ + ε′. Recall that (m,m′) ∈ HV ; so, by Fact 2, x′ < x
or y′ ≥ y. If x′ < x, as h ≤ x′ + (y′ + ε′), we get h ≤ x + (y′ + ε′) − 1. If y′ ≥ y, h < x + y implies
h ≤ x+ y′ − 1. But, the distance between a sender and a receiver is at least 2(x+ (y′ + ε′)− h) ≥ 2 in both
cases.

case 2-3’: x ≤ h < x+ y and ε′ = 1 h− 1 = x′ + y′ + 1. Then, the distance between a sender and a receiver is at
least |x′ − x|+ |x′ − x+ 2| ≥ 2. �

The next lemma will be used partly for proving the correctness of algorithm for dI = 1 (since the last case in the
lemma will not happen in the algorithm) and fully for the algorithm for dI = 2.

Lemma 8. Let G be an open-grid. Let dest(m) = (x, y) with x ≥ 2 and m be sent horizontally at step t with an
ε-detour (ε = 0 or 1). Let dest(m′) = (x′, y′) and m′ be sent vertically with an ε′-detour (ε′ = 0 or 1) at step
t′ = t+ 2. Let furthermore {x′ < x or y′ ≥ y} (i.e. (m,m′) ∈ HV in the basic scheme). Then, for dI = 1 or 2, m
and m′ interfere if and only if

case 00. ε = 0, ε′ = 0: x′ = x− 1 and y′ ≤ y − 1

case 01. ε = 0, ε′ = 1: x′ = x− 1 and y′ ≤ y − 2

case 10. ε = 1, ε′ = 0: x′ ≥ x and y′ = y
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case 11. ε = 1, ε′ = 1: x′ = x− 1 and y′ = y − 1

PROOF. Consider a step t + h = t′ + h′ so h′ = h − 2. By Fact 5 we have to consider 9 cases according the 3
possibilities for an arc used by m and the 3 possibilities for an arc used by m′. We label them as case i-j’ if we are
in case i for m and in case j’ for m′, 1 ≤ i, j ≤ 3. We will prove that in all the cases, the distance of the sender and
receiver of these two messages is either at most 1 or at least 3. So the interference happens in the same condition for
dI = 1 and dI = 2.

case 1-1’: Then, the distance between a sender and a receiver is at least 2h− 1 ≥ 3 as h′ = h− 2 ≥ 0.

case 1-2’: Then, the distance between a sender and a receiver is at least 2(y′ + ε′) + 1 ≥ 3 as y′ ≥ 1.

case 1-3’: h = h′+2 = x′+y′+3. The distance between a sender and a receiver is at least h−x′+y′ = 2y′+3 ≥ 5,
as y′ ≥ 1.

case 2-1’: Then, the distance between a sender and a receiver is either |x+ ε|+ |x+ ε− 3| ≥ 3 or 2(x+ ε)− 1 ≥ 3
as x ≥ 2.

case 2-2’: Then, the distance between a sender and a receiver is at least 2(x + ε + y′ + ε′ − h) + 1. If y′ ≥ y − α,
then h ≤ x+ y + ε− 1 ≤ x+ y′ + α+ ε− 1 implies x+ ε+ y′ + ε′ − h ≥ ε′ + 1− α and the distance is at
least 2ε′ + 3− 2α. If α ≤ 0 (y′ ≥ y) then the distance is ≥ 3. Furthermore if ε′ = 1 and α = 1, the distance is
also ≥ 3.

Otherwise, y′ < y and by the hypothesis x′ < x. Let x′ = x−1−β with β ≥ 0; h′+2 = h ≤ x′+y′+ε′+1 =
x− β + y′ + ε′ implies x+ ε+ y′ + ε′ − h ≥ ε+ β and the distance is at least 2ε+ 1 + 2β. If β ≥ 1 or ε = 1,
then the distance is ≥ 3. Otherwise when β = 0 (i.e. x′ = x − 1) and ε = 0, we have a distance 1, achieved
for h = x′ + y′ + ε′ + 1. More precisely when ε′ = 0, it is achieved with x′ = x − 1 and y′ ≤ y − 1, which
corresponds to case 00. When ε′ = 1, we have already seen that the distance is 3, for y′ = y − 1 (case α = 1);
otherwise the distance is 1 with x′ = x− 1 and y′ ≤ y − 2 (case 01).

case 2-3’: In this case ε′ = 1 and h = x′ + y′ + 3 ≤ x+ y + ε− 1. The distance between a sender and a receiver is
|x+ ε−x′| + |x+ ε+y′−h|. If y′ ≥ y−1, h = x′+y′+3 ≤ x+y+ ε−1 ≤ x+y′+ ε implies x′ ≤ x+ ε−3
and so |x+ε−x′| ≥ 3. Otherwise, by hypothesis, x′ < x; if x′ ≤ x−3 , then |x+ε−x′| ≥ 3. In the remaining
case x′ = x − 1 or x′ = x − 2. If x′ = x − 1, then |x + ε − x′| = 1 + ε and h = x′ + y′ + 3 = x + y′ + 2,
which implies |x + ε + y′ − h| = 2 − ε. So the distance is 3; If x′ = x − 2, then |x + ε − x′| = 2 + ε and
h = x′ + y′ + 3 = x+ y′ + 1, which implies |x+ ε+ y′ − h| = 1− ε. So the distance is 3.

case 3-1’: Then, the distance between a sender and a receiver is at least 2x− 1 ≥ 3 as x ≥ 2.

case 3-2’: In that case ε = 1 and h = x+y+1 and h ≤ x′+y′+ε′+1. The distance between a sender and a receiver
is |x+ y′ + ε′ + 2− h| + |y′ + ε′ − y|. If x′ ≤ x− 1, h = x+ y + 1 ≤ x′ + y′ + ε′ + 1 ≤ x+ y′ + ε′ implies
|x+y′+ε′+2−h|+y′+ε′−y ≥ 2+1 = 3. Otherwise x′ ≥ x, and, by hypothesis, y′ ≥ y; Let y′ = y+γ with
γ ≥ 0. So x+y′+ε′ = x+y+γ+ε′ = h−1+γ+ε′ implies |x+y′+ε′+2−h|+y′+ε′−y ≥ 2ε′+2γ+1.
If ε′ = 1 or γ ≥ 1, then the distance is at least 3; otherwise the distance is 1 and so we have interference if
ε = 1, ε′ = 0, x′ ≥ x and y′ = y (case 10).

case 3-3’: Then , ε = 1, ε′ = 1 and h = x + y + 1 = x′ + y′ + 3. The distance between a sender and a receiver is
either |x+ 1− x′|+ |y′ − y| or |x− x′|+ |y′ + 1− y|. If y′ ≥ y, then h = x+ y + 1 = x′ + y′ + 3 implies
x ≥ x′+2 and the distance is 3. If y′ ≤ y−1, then by hypothesis x′ ≤ x−1 and x+y+1 = x′+y′+3 implies
y′ = y − 1 and x′ = x − 1. Then the distance is 1 we have interference. In summary, we have interference if
ε = 1, ε′ = 1, x′ = x− 1 and y′ = y − 1 (case 11). �

By exchanging horizontally and vertically , x and y and x′ and y′ in Lemma 7 and Lemma 8 we get the following
two lemmata:
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Lemma 9. Let G be open grid. Let dest(m) = (x, y) and m be sent vertically (without detour) at step t. Let
dest(m′) = (x′, y′) and m′ be sent horizontally with an ε′-detour (ε′ = 0 or 1) at step t′ = t + 1. Let furthermore
{x′ ≥ x or y′ < y} (i.e. (m,m′) ∈ V H in the basic scheme). Then, for dI = 1, m and m′ do not interfere.

Lemma 10. let G be an open grid. Let dest(m) = (x, y) with y ≥ 2 and m be sent vertically at step t with an
ε-detour (ε = 0 or 1). Let dest(m′) = (x′, y′) and m′ be sent horizontally with an ε′-detour (ε′ = 0 or 1) at step
t′ = t + 2. Let furthermore {x′ ≥ x or y′ < y} (i.e. (m,m′) ∈ V H in the basic scheme). Then for dI = 1 or 2, m
and m′ interfere if and only if

case 00. ε = 0, ε′ = 0: x′ ≤ x− 1 and y′ = y − 1

case 01. ε = 0, ε′ = 1: x′ ≤ x− 2 and y′ = y − 1

case 10. ε = 1, ε′ = 0: x′ = x and y′ ≥ y

case 11. ε = 1, ε′ = 1: x′ = x− 1 and y′ = y − 1

5.3. General-scheme dI = 1.

We will have to define general-scheme by indicating not only the ordered sequence of messages S = (s1, · · · , sM )
sent by the source, but also by specifying for each si the time ti at which the message si is sent and the directed path
followed by the message si, in fact the direction Di and the εi-detour used for sending it. More precisely,

Definition 5. A general-scheme is defined as a sequence of M quadruples (si, ti, Di, εi), where the i-th message sent
by the source is si. This message is sent at step ti in direction Di with an εi-detour.

Note that we will send the messages alternatively horizontally and vertically in our algorithm. Therefore, we have
only to specify the direction of the first (or last) message. We will see in the next theorem that the sequence S obtained
by the algorithm OneApprox[dI = 0, first = D](M) in Section 3 almost works when dI = 1. More precisely, we
propose a scheme that sends the messages in the same order as in S. However, BS waits one step every three steps;
i.e., the source sends two messages of the sequence S during two consecutive steps and then stops sending for one
step. Furthermore, a message must sometimes be sent with a detour to avoid interference. That is, the messages are
sent without detours like in S, except that, if the first message is sent in direction D, an even message s2k+2 is sent in
direction D̄ with a 1-detour if and only if without detour it would interfere with s2k+3.

Theorem 8. Let dI = 1, and let BS be in a corner of a 1-open grid. LetM = (m1, . . . ,mM ) be the set of messages
ordered by non-increasing distances from BS and suppose that the destination v = (x, y) of any message satisfies
{x ≥ 1, y ≥ 2} (condition (2) of 1-open grid). Let us define:

• S = (s1, . . . , sM ) is the ordered sequence obtained by the Algorithm OneApprox[dI = 0, first = H](M)

• for any i = 2k + 1, 0 ≤ k ≤ b(M − 1)/2c, let ti = 3k + 1 Di = H and εi = 0,

• for any i = 2k + 2, 0 ≤ k < bM/2c, let ti = 3k + 2, Di = V and ε2k+2 = 0 if s2k+2 does not interferes with
s2k+3 for dI = 1, otherwise ε2k+2 = 1.

Then the general-scheme defined by the sequence (si, ti, Di, εi)i≤M broadcasts the messages without collisions for
dI = 1 and the first message is sent in direction H .

PROOF. To prove the theorem, we need to prove that any two messages do not interfere at any step in the general
scheme with parameters (si, ti, Di, εi). A message si cannot interfere with a message si+j for j ≥ 2 sent at least 3
steps after; indeed the senders of such two messages will be at distance at least 3 (at each step, including the last step
when the messages do a 1-detour, the distance of a sender to the base station increases by one). So we have only to
care about si and si+1.

First consider the message s2k+1. Let s2k+1 = m, with dest(m) = (x, y) and s2k+2 = m′, with dest(m′) =
(x′, y′). Messagem is sent horizontally at step t = 3k+1 without detour andm′ is sent vertically at step t′ = t+1 =
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3k + 2 with an ε′-detour for ε′ = ε2k+2. Furthermore, by Theorem 3, we have (m,m′) ∈ HV . We conclude by
Lemma 7 that s2k+1 and s2k+2 do not interfere.

Now let us prove that s2k+2 does not interfere with s2k+3. Let s2k+2 = mwith dest(m) = (x, y) and s2k+3 = m′

with dest(m′) = (x′, y′). Message m is sent vertically with an ε-detour, ε = ε2k+2 at step t = 3k + 2 and m′ is sent
horizontally at step t′ = t + 2 = 3k + 4. Furthermore by Theorem 3 (m,m′) ∈ V H and so {x′ ≥ x or y′ < y} by
Fact 2. So we can apply Lemma 10. If {x′ ≤ x− 1 and y′ = y − 1}, we are in the case 00 of Lemma 10 and so if m
and m′ were sent without detour they would interfere. Then by the algorithm we have to choose ε2k+2 = 1, but now
we are in the case 10 of Lemma 10 which implies no interference. (Case 11 never happens in the Theorem.) Otherwise
we have {x′ > x−1 or y′ 6= y−1}; also we have ε = 0 according to the Theorem. By case 00 of Lemma 10, they do
not interfere. The proof works because interferences in case 00 and 10 of Lemma 10 cannot appear simultaneously.
�

Remark 5. Note that we cannot relax the hypothesis that the messages satisfy y ≥ 2. Indeed if y = 1, we might
have to do a 1-detour for m = s2k+2 when x′ ≥ x as at any step t + h (2 ≤ h ≤ x) the sender of m is at distance
1 from the receiver of m′ = s2k+3 (case 2-1’ in the proof). So we have to send m vertically with a 1-detour; but
at step t + x + 2 the sender of m′ (x′, 0) is at distance 1 from the receiver of m (x′, 1) (case 3-1’ in the proof). A
simple example is given with 3 messages m1,m2,m3 whose destinations are respectively (5, 1), (4, 1), (3, 1). Then
OneApprox[dI = 0, first = H](M)gives the sequence (m1,m3,m2), where m3 = s2 is sent vertically at step 2
and m2 = s3 is sent horizontally at step 3. Now, for dI = 1, m2 is sent at step 4. If m3 is sent without detour, it
interferes with m2 at step 4 and 5; otherwise if m3 is sent with a 1-detour it interferes with m2 at step 7.

By exchanging x and y, H and V, we also get that when the destination v = (x, y) of any message satisfies
{x ≥ 2, y ≥ 1} (condition (1) of 1-open grid) we can adapt our algorithm to compute a general-scheme that broadcasts
the messages without collisions for dI = 1 and where the first message is sent in direction V . Furthermore, if we are
in a 2-open grid we can have a general-scheme where the direction of the first message is arbitrary.

Theorem 9. In the 1-open grid with BS in the corner and dI = 1, there exists a general-scheme achieving a makespan
at most LBc(1) + 3.

PROOF. Applying the Algorithm OneApprox[dI = 0, first = D](M), we get an ordered sequence S which satis-
fies the Property (b) of Theorem 3: mi ∈ {si−1, si, si+1}. Consider parameters as in Theorem 8 in case of condition
(2) of 1-open grid (the proof is similar for condition(1)). Recall that a messagem sent at step twith an ε-detour reaches
its destination at step d(m) + 2ε+ t− 1. Then s2k+1 reaches its destination (the worst case being s2k+1 = m2k sent
without detour at step 3k + 1) at step at most d(m2k) + 3k + 1 − 1 = d(m2k) + d 3(2k)2 e − 2 + 2. Similarly s2k+2

reaches its destination (the worst cases being s2k+2 = m2k+1 sent with a 1-detour at step 3k + 2) at step at most
d(m2k+1) + 2 + 3k + 2 − 1 = d(m2k+1) + 3k + 3 = d(m2k+1) + d 3(2k+1)

2 e − 2 + 3. So the makespan is at most
maxi≤Md(mi) + d3i/2e+ 1 = LBc(1) + 3. �

5.4. General-scheme dI = 2.

In this section, we present a linear-time (in the number of messages) algorithm that computes a general-scheme
(Definition 5) broadcasting the messages without collisions for dI = 2 in a 2-open grid, and achieving a makespan up
to 4 from the optimal.

As in the case dI = 1, BS will send the messages in the same order as in S. However, BS sends one message only
every two steps (which is necessary when dI = 2). The difficulty here is to decide the detour that must be followed
by each message, in order to avoid interference. Next algorithm, described in Figure 8, is dedicated to compute the
sequence (εi)i≤M of the detours.

Theorem 10. Let dI = 2, and letBS be in a corner of a 2-open grid. LetM = (m1, . . . ,mM ) be the set of messages
ordered by non-increasing distances from BS. Let us define (si, ti, Di, εi)i≤M such that

• S = (s1, . . . , sM ) is the ordered sequence obtained by the Algorithm OneApprox[dI = 0, first = D](M)

• for any i ≤M , ti = 2i− 1 and Di = D if i is odd and Di = D̄ otherwise.
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Input:M = (m1, · · · ,mM ) the set of messages ordered by non-increasing distances from BS, in a 2-open grid, and
the direction D of the first message.
Output: ε = (ε1, ε2, . . . , εM ) where εi ∈ {0, 1}
begin
1 Let (s1, · · · , sM ) =OneApprox[dI = 0, first = D](M)
2 Let ti = 2i− 1, and Di = D if i is odd and Di = D̄ otherwise, for any 1 ≤ i ≤M
3 Let start with εi = 1 for 1 ≤ i ≤M .
4 for i = M − 1 to 1
5 if si interferes with si+1 in the general-scheme defined by (si, ti, Di, εi)i≤M when dI = 2 then

(we emphasis that we consider interferences with the current values of the (εi)i≤M )
6 εi ← 0
7 return ε = (ε1, ε2, . . . , εM )
end

Figure 8: Algorithm Epsilon(M, first = D)

• ε = (ε1, ε2, . . . , εM ) is the sequence obtained by Algorithm Epsilon(M, first = D)

Then the general-scheme defined by the sequence (si, ti, Di, εi)i≤M broadcasts the messages without collisions for
dI = 2 and the first message is sent in direction D.

PROOF. We need to prove that any two messages do not interfere at any step. A message si cannot interfere with
a message si+j , for j ≥ 2, sent at least 4 steps after. Indeed, at any step, the senders of two such messages are at
distance at least 4. This is because, at each step including the last step when the messages do a 1-detour the distance
of a sender to the base station increases by one. So we have only to show that si does not interfere with si+1 for any
1 ≤ i < M . For this purpose, we need the following claim that we will prove thanks to Lemma 8 and 10.

Claim 3. For dI = 2, if si sent with an εi = 1-detour interferes with si+1 , then if we send si without detour, si does
not interfere with si+1.

Indeed suppose si is sent in direction D. As the sequence S is obtained by Algorithm OneApprox[dI = 0, first =
D](M), (si, si+1) ∈ DD̄. So we are in cases 10 if εi+1 = 0 or in case 11 if εi+1 = 1 of Lemma 8 (D = H) or
Lemma 10 (D = V ). First suppose that we are in case 10, then we are not in the case 00; therefore if we send si
without detour, si does not interfere with si+1. Now assume that we are in case 11, then we are not in the case 01;
therefore if we send si without detour, si does not interfere with si+1.

Now the algorithm Epsilon(M, first = D) was designed in such a way it gives either εi = 1 in which case si
does not interfere with si+1 or it gives εi = 0 because si sent with a 1 detour was interfering with si+1, but then, by
the claim 3, si sent without detour does not interfere with si+1. �

Theorem 11. In the 2-open grid with BS in the corner and dI = 2, the general-scheme defined in Theorem 10
achieves a makespan at most LB(2) + 4.

PROOF. By definition of the scheme, the messages are sent in the same order as computed by OneApprox[dI =
0, first = D](M). Therefore, by Property (b) of Theorem 3, si ∈ {mi−1,mi,mi+1}. So the message si arrives at
its destination at step d(si) + 2εi + ti − 1 ≤ d(mi−1) + 2 + 2i − 1 − 1 = d(mi−1) + 2(i − 1 − 1) + 4. Then the
result follows from the definition of LB(2). �

6. Personalized Broadcasting in Grid with Arbitrary Base Station

In this section, we show how to use the algorithms proposed above to broadcast (or equivalently to gather) a set
of personalized messagesM, in a grid with a base station placed in an arbitrary node. More precisely, BS will still
have coordinates (0, 0), but the coordinates of the other nodes are in Z. A grid with arbitrary base station is said to be
an open-grid if no destination nodes are on the axes. More generally, a grid with arbitrary base station is said to be an
2-open-grid if no destination nodes are at distance at most 1 from any axis.
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We divide the grid into four quadrantsQq, 1 ≤ q ≤ 4, whereQ1 = {(x, y) such that x ≥ 0, y ≥ 0},Q2 = {(x, y)
such that x ≤ 0, y ≥ 0}, Q3 = {(x, y) such that x ≤ 0, y ≤ 0}, and Q4 = {(x, y) such that x ≥ 0, y ≤ 0}. Note
that, BS belongs to all quadrants, and any other node on an axis belongs to two different quadrants.

Each quadrant can be considered itself as a grid with the BS in the corner. Therefore, we can extend all the
definitions of the preceding sections, in particular the basic scheme and general-scheme by considering a move in
Q1 (resp., Q2, Q3, Q4) as horizontal, if it is on the positive x-axis (reps. positive y-axis, negative x-axis, negative
y-axis) and a vertical move as one on the other half-axis of the quadrant. Then, if we have a sequence of consecutive
messages, still ordered by non-increasing distance to BS, and all in the same quadrant we can apply any of the
preceding algorithms. Otherwise, we can extend the algorithms by splitting the sequence of messages into maximal
subsequences, where all the messages are in the same quadrant and applying any of the algorithms to this subsequence.
We have just to be careful that there is no interference between the last message of a subsequence and the first one
of the next subsequence; fortunately we will take advantage of the fact that we can choose the direction of the first
message of any subsequence.

Theorem 12. Given a grid with any arbitrary base station BS, andM = (m1,m2, · · · ,mM ) the set of messages
ordered by non-increasing distances from BS, then there are linear-time algorithms which broadcast the messages
without interferences, with makespan:

• at most LB + 2 if dI = 0;

• at most LB + 1 if dI = 0 in an open-grid;

• at most LBc(1) + 3 if dI = 1 in a 2-open-grid;

• at most LB(2) + 4 if dI = 2 in a 2-open-grid;

PROOF. We partition the ordered set of messages into maximal subsequences, of messages in the same quadrant.
That is M = M1 � M2 . . .Mj . . . � Mt, where all the messages in Mj belong to the same quadrant and the
messages ofMj andMj+1 belong to different quadrants. Then, depending on the cases of the theorem, we apply
Algorithms TwoApprox[dI = 0, first = D](M), OneApprox[dI = 0, first = D](M), or the algorithms defined
in Theorems 8 or 10 to eachMj , in order to obtain a sequence Sj . Now we define the value of D in the algorithms
by induction. The direction of the first message of S1 is arbitrary. Then the direction of the first message of Sj+1 has
to be chosen on an half-axis different from that of the last message of Sj , which is always possible as two quadrants
have at most one half axis in common. For example, suppose the messages ofMj belong to Q1 and the last message
of Sj is sent vertically (i.e. on the positive y-axis) and that the messages ofMj+1 belong toQ2, then the first message
of Sj+1 cannot be sent on the the positive y-axis (that is horizontally in Q2), but should be sent to avoid interferences
on the negative x-axis (that is vertically in Q2). Otherwise if the last message of Sj is sent horizontally (i.e. on the
positive x-axis), we can sent the first message of Sj+1 as we want (as the positive x-axis does not belong to Q2);
similarly if the messages ofMj+1 belong to Q3 we can send the first message of Sj+1 as we want (as there are no
half axes in common between Q1 and Q3). Finally, in the case dI = 2, we have to wait one step between the sending
of the last message of Sj and the first message of Sj+1. With these restrictions, we have no interferences between
two consecutive messages inside the same Sj by the correctness of the various algorithms; furthermore we choose the
direction of the first message of Sj+1 and we add in the case dI = 2 a waiting step in order to avoid interferences
between the last message of Sj and the first message of Sj+1. Unconsecutive messages are sent far apart to avoid
interferences; indeed the distance between two senders is > dI + 1. Finally the values of the makespan follow from
that of the respective algorithms. �

Note that the values of LB (resp., LB(2)) are lower bounds for the case of an arbitrary position ofBS. Therefore,
we get the following corollary

Corollary 2. There are linear-time (in the number of messages) algorithms that solve the gathering and the person-
alized broadcasting problems in any grid, achieving an optimal makespan up to an additive constant c where:

• c = 2 when dI = 0;
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• c = 1 in open-grid when dI = 0;

• c = 3 in 1-open-grid when dI = 1 and BS is a corner;

• c = 4 in 2-open-grid when dI = 2.

However, for dI = 1, LBc is not a lower bound when BS is not in the corner; the best lower bound we know
is LB. In fact this bound can be achieved in some cases. For example suppose that, in the ordered sequence M,
the message m4j+q belong to the quadrant Qq , then we send the messages m4j+q horizontally in Qq that is on the
positive x-axis for q = 1, on the positive y-axis for q = 2, on the negative x-axis for q = 3, and on the negative y-axis
for q = 4. There is no interferences and the makespan is exactly LB. On the opposite, we conjecture that, when all
the messages are in the same quadrant, we can obtain a makespan differing of LBc(1) by a small constant; so in that
case our algorithm will give a good approximation.

Remark 6. Note that when buffering is allowed at the intermediate nodes, LB is still a lower bound for the makespan
of any personalized broadcasting or gathering scheme. All our algorithms get makespans at most 3

2LB+3 for dI = 1,
since LBc(1) ≤ 3

2LB and 2LB + 4 for dI = 2, since LB(2) ≤ 2LB. So we have almost 3
2 and 2-approximation

algorithms for dI = 1 and dI = 2 in 2-open grid respectively when buffering is allowed. For the special grid networks,
this improves the result in [2], which gives a 4-approximation algorithm.

7. Conclusion and Further Works

In this article we give several algorithms for the personalized broadcasting and so the gathering problem in grids
with arbitrary base station. For dI = 0 and dI = 2, our algorithms have makespans very close to the optimum, in
fact, differing from the lower bound by some small additive constants. For dI = 1, we have also efficient algorithms,
but only when the base station is in a corner. The general case seems to be difficult to solve and depending on the
destinations of the messages. It will be nice to have additive approximations for dI ≥ 3; we try to generalize the
ideas developed before by using ε detours with ε ≥ 2; doing so, we can avoid interferences between consecutive mes-
sages, but not between messages si and si+2. Another challenging problem consists in determining the complexity
of finding an optimal schedule and routing of messages for achieving the gathering in the minimum completion time
or characterizing when the lower bound is achieved. Example 4 shows it might not be an easy problem. Determining
if there is a polynomial algorithm to compute the makespan in the restricted case where messages should be sent via
shortest directed paths seems also to be a challenging problem (See Example 4). Last but not least, a natural extension
will be to consider the gathering problem for other network topologies.

Acknowledgments: We thank all referees for their very helpful comments
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