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Abstract Given a connected graph G = (V, E) with a nonnegative cost on each edge in E, a nonnegative

prize at each vertex in V , and a target set V ′ ⊆ V , the Prize Collecting Steiner Tree (PCST) problem is to find

a tree T in G interconnecting all vertices of V ′ such that the total cost on edges in T minus the total prize at

vertices in T is minimized. The PCST problem appears frequently in practice of operations research. While

the problem is NP-hard in general, it is polynomial-time solvable when graphs G are restricted to series-parallel

graphs.

In this paper, we study the PCST problem with interval costs and prizes, where edge e could be included

in T by paying cost xe ∈ [c−e , c+e ] while taking risk (c+e − xe)/(c+e − c−e ) of malfunction at e, and vertex v could

be asked for giving a prize yv ∈ [p−v , p+
v ] for its inclusion in T while taking risk (yv − p−v )/(p+

v − p−v ) of refusal

by v. We establish two risk models for the PCST problem with interval data. Under given budget upper bound

on constructing tree T , one model aims at minimizing the maximum risk over edges and vertices in T and the

other aims at minimizing the sum of risks over edges and vertices in T . We propose strongly polynomial-time

algorithms solving these problems on series-parallel graphs to optimality. Our study shows that the risk models

proposed have advantages over the existing robust optimization model, which often yields NP-hard problems

even if the original optimization problems are polynomial-time solvable.

Keywords uncertainty modeling; prize collecting Steiner tree; interval data; series-parallel graphs;

polynomial-time solvability
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1 Introduction

The Prize Collecting Steiner Tree (PCST) problem introduced by [9] has been extensively
studied in the areas of computer science and operations research due to its wide range of real-
world applications[6,18,22]. A typical application of PCST occurs when a natural gas provider
wants to build a most profitable transportation system for natural gas delivery from a station
to some customers on scattered locations, where each link (segment of pipeline) is associated
with a cost which is incurred if the link is installed, and each location is associated with a
profit which is obtained if the location is connected to the station by links installed. Moreover,
the transportation system is required to contain some specified customers. One of the most
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important special cases of the PCST problem is the Steiner Minimum Tree (SMT) problem[17]

which arises repeatedly in diverse application areas, where all profits associated with locations
are zero.

As a natural generalization of the SMT problem, the PCST problem has even wider real-
world applications. Over the last decade, a lot of real problems for which the PCST is crucial in
the resolution process have been studied. These problems arise from very different industrial and
scientific contexts, showing the potential and versatility of the PCST model. Among many other
recent operational research applications, [22] carried out a concrete application of the PCST
problem to the design of fiber optic networks for some German cities, where both the trade-off
between connection costs (represented by edge costs) and customers revenues (represented by
vertex prizes) and the goal of establishing the most profitable network were perfectly modeled
by the PCST problem. Using the PCST model, [27] designed a leakage detection system for
finding the optimal location of detectors and their corresponding transponders in the water
distribution network of the Swiss city, Lausanne, such as to provide a desired coverage under
budget constraints. An application in a very different bioinformatic context was presented by
[13], where the PCST problem together with the algorithmic framework by [22] was applied to
find, for the first time, exact solutions for the problem of finding functional modules in protein-
to-protein interaction networks. In the same scientific field, [5] and [6] used the PCST model
to solve “inference problem” for “inferring” transduction networks in cell communication.

Since the SMT problem is NP-complete in general[9], so is the PCST problem. The latter
admits a 2-approximation polynomial-time algorithm[14] for general networks. On the other
hand, practical OR applications often aim at optimal solutions and thus take concrete network
topology into account. As transportation and communication networks usually possess certain
sparse and planar structural properties[25], their representations as series-parallel graphs are
often convenient[28], offering clearer representations of real-world instances. The algorithmic
design for series-parallel networks often serve as subroutines of more general procedures which
employ separator techniques to decompose more general topologies into series-parallel pieces[15].
When restricted to series parallel graphs, [30] proved that the SMT problem is polynomial-time
solvable. In this paper, we will extend their approach to an efficient algorithm for the PCST
problem on series-parallel graphs. The reader is referred to [20,29,31,32] for more research and
applications on series-parallel networks. In particular, the densest series-parallel graphs, known
as 2-trees and independently reliable networks[30], play an important role in the reliable broad-
casting problem on independently reliable networks in which all pairs of nodes can communicate
as long as the failures of nodes and edges are isolated[7].

In contrast to the above single-parameter settings as in the traditional PCST problem, it is
often necessary to take interval data into account in the real applications such as scheduling[10],
path planning[4] and minimum-cut search[1], collectively known as interval combinatorial opti-
mization problems[21], where intervals are used to indicate possible ranges of values variables can
take. For example, in the above PCST applications, the gas (communication service) provider
may spend c+

e dollars to install a gas pipe (optical cable) link e using the best materials to
assure continuous transmission through e over a long period of time without any interruption
for maintenance. On the other hand, the provider can also spend c−e (< c+

e ) dollars to install
the link e using ordinary materials while taking the risk of malfunction at e and service sus-
pension for repair. Generally, lower expense on link construction could lead to higher risk of
transmission malfunction. Similarly, if the gas (service) provider wants to collect the highest
possible prize p+

v from the customer at location v for the gas (communication data) transmit-
ted to v, then the provider faces the highest risk of rejection by customer at v because of the
existence of competitors who sell the same kind of products (services). Usually, the smaller
prize is demanded, the smaller the risk of being rejected is taken. For easy description, in the
remainder of the paper we use the risks of edges (vertices) to denote the risk of malfunction
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at links (rejection by customers). Naturally, it is desirable to make good balances between low
net expenses and small risks. Under budget constraint, the gas (service) provider may have
full control over his/her edge payment and can ask for any reasonable prize at any reachable
vertex. Our work contributes not only to modeling this kind of practical trade-off between
expenses and risks but also to minimizing risks in polynomial time under budget restriction for
series-parallel networks.

Recently, [12] and [16] proposed two novel models for network optimization with interval
data on network links. The latter model is to find a solution that minimizes the maximum
risk on network links, and the former model is to find a solution with minimum total link risk.
The solutions of these models are paths or trees together with the cost xe spent within the
given interval [c−e , c+

e ] for every edge e on the paths or trees. The risk of edge e is quantified as
(c+

e −xe)/(c+
e −c−e ), which is consistent with the common sense that higher expense often brings

about more satisfactory service (prevention of malfunction). The network connection problems
under these models are polynomial-time solvable, preserving the polynomial-time solvability of
the original optimization problems with single-parameter data, i.e., the shortest path problem
and minimum spanning tree problem. In this paper, we will extend their approaches to the
PCST problem in series-parallel graphs by considering not only interval costs on edges but also
interval prizes at vertices. Our PCST models consider not only the risks of edges, but also the
risks of vertices, which are not studied in the previous models. As we know, graphically, vertices
behave quite differently from edges, and turn out less amenable in combinatorial optimization.
(A typical example consists of the minimum vertex cover problem, which is NP-hard, and
its edge-counterpart – the minimum edge cover problem, which is polynomial time solvable.)
Algorithmic approaches successful in dealing with edges often fail for vertices. Our success
in coping with risks of vertices relies on exploiting the structural properties of series-parallel
graphs. Moreover, when restricted to series-parallel graphs, the risk sum model by [12] and
minmax risk model by [16] are special cases of our PCST models.

Along a different line, what has been widely studied is the problem under nondeterministic
setting, where interval data models uncertainty in the way that one cannot determine which val-
ues in the intervals will realize. A lot of literature has been developed under the name of robust
optimization, in which one optimizes against the worst instance that might arise with realized
values in the given intervals[26]. One of the most popular objectives in robust optimization is
to find a solution that minimizes the maximum regret against the worst realization of values in
the given intervals, where the “worst” is with respect to the regret on a value realization which
is the difference between the actual value of the solution (selected for all value realizations)
and the value of the optimal solution under the value realization. Despite the popularity, many
robust optimization problems, such as the robust shortest path[33] and robust spanning tree
problems[3], suffer from two major drawbacks: they are NP-hard even though their determin-
istic counterparts are polynomial-time solvable; their solutions tend to be over-conservative, as
the worst-case scenario is always anticipated.

To address the tractability and over-conservatism of the robust solution, [8] proposed an
approach to controlling the degree of conservation of the solution by regulating the number
of the values which are allowed to vary in the given intervals. They established a bounded
probability of their robust solutions being infeasible, but they did not make the theoretical
clarification regarding the suboptimality. Their robust solutions might be far from efficient.

The remainder of the paper is organized as follows: In Section 2, we present a linear-time
algorithm for the PCST problem on series parallel graphs. In Section 3, we establish the
min-max risk model and min-sum risk model for the PCST problem with interval data, and
propose two polynomial-time algorithms for the PCST problem on series parallel graphs under
these two models. In Section 4, we compare proposed models and algorithms through extensive
simulations. Finally, we conclude the paper in Section 5. The preliminary version of the paper
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is an extended abstract[2], which contains only theoretical results without giving any proofs and
simulation study.

2 Efficient Algorithm for PCST Problem on Series-Parallel Graphs

In the PCST problem, we are given a connected graph G = (V, E) with vertex-set V of size n
and edge-set E of size m, where each vertex v ∈ V is assigned a nonnegative prize pv ∈ R+,
and each edge e ∈ E is assigned a nonnegative cost ce ∈ R+. For any subgraph S of G, its
vertex-set and edge-set are written as V (S) and E(S), respectively. We abbreviate

∑

e∈E(S)

ce to

c(E(S)) and
∑

v∈V (S)

pv to p(V (S)). The value of subgraph S is defined as

ν(S, c, p) ≡ c(E(S)) − p(V (S)).

In our definition of the PCST problem, the input includes a target set V ′ ⊆ V , also called a
terminal set. The objective of the PCST problem is to find a tree in G such that it contains V ′

and its value is minimum among all trees in G spanning V ′:

(PCST) min
{
ν(T, c, p) | T is a tree in G and V ′ ⊆ V (T )

}
.

Such a tree is called an optimal PCST in (G, V ′; c, p) or simply in G, and denoted by Topt(G, V ′;
c, p). (PCST problem has another equal version that minimizes the edge-costs for establishing
the network plus the penalties of the vertices outside of the solution.)

As the following lemma shows, one can give the target set V ′ in the problem input in an
implicit way by reassigning each vertex in V ′ a sufficiently large prize.

Lemma 2.1. Given G = (V, E) with target set V ′ ⊆ V , c ∈ RE
+, p ∈ RV

+ and real number
M > c(E), let p′ ∈ RV

+ be defined by p′v = M for every v ∈ V ′, and p′v = pv for every
v ∈ V \ V ′. If T ∗ = Topt(G, ∅; c, p′) is an optimal PCST in (G, ∅; c, p′), then T ∗ is an optimal
PCST in (G, V ′; c, p).

Proof. First, suppose on the contrary that T ∗ does not contain some target vertex u ∈ V ′ \
V (T ∗). Let P be a path in G from u to a vertex in T ∗ such that P intersects T ∗ only at this
vertex, written as t. It follows that the union of T ∗ and P , written as T ∗ ∪P is a tree in G and
its value ν(T ∗ ∪ P, c, p′) is smaller than ν(T ∗, c, p′) as seen from the following (in) equalities:

ν(T ∗ ∪ P, c, p′) =ν(T ∗, c, p′) + ν(P, c, p′) + pt

≤ν(T ∗, c, p′)− pu + c(E) = ν(T ∗, c, p′)−M + c(E) < ν(T ∗, c, p′).

The contradiction to the optimality of T ∗ proves V ′ ⊆ V (T ∗). Now, suppose on the contrary
that there exists a tree T ′ in G with V (T ′) ⊇ V ′ and ν(T ′, c, p) < ν(T ∗, c, p). Then

ν(T ′, c, p′) = ν(T ′, c, p) + p(V ′)− p′(V ′) < ν(T ∗, c, p) + p(V ′)− p′(V ′) = ν(T ∗, c, p′),

which contradicts the optimality of T ∗. So no such a tree T ′ exists. The lemma is proved. �

By Lemma 2.1, when seeking for the optimal solution to PCST problem we do not need to
consider the target set V ′. For brevity, we remove target set V ′ from the input of the PCST prob-
lem in our following discussion unless otherwise noted. Accordingly, we write Topt(G, V ′; c, p)
simply as Topt(G, c, p).

The graph class of 2-trees is defined recursively as follows: An edge is a 2-tree. Given a 2-tree,
picking an edge uv in it, adding a new vertex z adjacent with both u and v yields a 2-tree. See
Fig.1 for an illustration, where vertex z has degree 2 in the new 2-tree. A spanning subgraph of a
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2-tree is called a series-parallel graph or a partial 2-tree. The constructive definition guarantees
the following.

Remark 2.1. Every 2-tree is either an edge or has at least one vertex of degree 2 which is
contained in a triangle (a complete graph of three vertices).

Fig.1. Construction of 2-trees

[30] gave an O(n)-time algorithm for finding a minimum Steiner tree in given series-parallel
graph of n vertices with target set. Their algorithm is a dynamic programming method which
operates in two phases: First, complete the series-parallel graph to a 2-tree, and assign a
very large edge cost, say M in Lemma 2.1, to every edge added. Then find a Steiner tree on
the 2-tree by repeatedly eliminating vertices of degree 2 until the remaining graph is a single
edge. During this vertex elimination procedure, the algorithm records information (so called
“measures”) associated with triangle on u, v and z, where vertex z has degree 2 in the current 2-
tree, on the ordered pairs (u, v) and (v, u) corresponding to the edge uv in G, when considering
and deleting z.

Throughout the paper, completing given series-parallel graphs to 2-trees as above is assumed
implicitly. We only describe our algorithms with input graphs being 2-trees.

Remark 2.2. Combined with the completion processing, all algorithms proposed in this
paper extend to solve the corresponding problems on series-parallel graphs with the same time
complexity.

Following the idea of vertex elimination[30], our algorithm for the PCST problem on 2-
tree G = (V, E) goes as follows, where the computation of measures (defined below) has to
take both vertex prize and edge cost into account and thus uses different formulas from those
designed by [30] for the SMT problem on 2-trees; their formulas only need to deal with edge
cost. As target set is not presented (explicitly) in the PCST problem by Lemma 2.1, our task
is accomplished by introducing five measures, instead of six as [30] did for the SMT problem,
st(u, v), dt(u, v), un(u, v), nv(u, v), nn(u, v) for each arc (u, v) that corresponds to edge uv ∈ E.
These measures record the values computed so far for the subgraph S of G which has been
reduced onto the edge uv.

Tst(u,v) is a tree in S containing both u and v such that its value, written as st(u, v), is
minimum;

Tdt(u,v) is the union of two vertex-disjoint trees in S, one containing u and the other con-
taining v, such that its value, written as dt(u, v), is the minimum;

Tun(u,v) is a tree in S containing u but v such that its value, written as un(u, v), is minimum;
Tnv(u,v) is a tree in S containing v but u such that its value, written as nv(u, v), is minimum;
Tnn(u,v) is a tree in S containing neither u nor v such that its value, written as nn(u, v), is

minimum.
Note that Tnn(u,v) might be empty, i.e., possibly Tnn(u,v) = (∅, ∅). For brevity, we put

Π ≡ {st, dt, nv, un, nn} and say that measure π(u, v) corresponds to forest Tπ(u,v) for every
π ∈ Π, where the graph theoretical term “forest” refers to any acyclic graph, i.e., a union
of vertex-disjoint trees. Since edge uv can also be written as vu, we shall use implicitly the
relations:

st(u, v) ≡ st(u, v), dt(u, v) ≡ dt(v, u), un(u, v) ≡ nu(v, u),
nv(u, v) ≡ vn(v, u), nn(u, v) ≡ nn(v, u).
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If measures st(u, v), un(u, v), nv(u, v), nn(u, v) of an edge uv in G for S = G are available,
then the minimum among them is clearly the value of an optimal PCST. On the other hand,
computing these measures for S = G is time consuming if one simply enumerates an exponential
number of trees in G. To get around the difficulty, we consider an O(m + n) number of
subgraphs S of G, and update the measures together with their corresponding forests in a
dynamic programming manner (when reducing the graph sequentially) until the measures for
S = G are obtained (the graph is reduced to a single edge).

Initially, graph F is set to be G, and every edge uv ∈ E(F ) = E is reduced to itself (i.e.,
S = uv). Furthermore, after initial setting

st(u, v) = cuv − pu − pv, Tst(u,v) = ({u, v}, uv);
dt(u, v) = −pu − pv, Tdt(u,v) = ({u, v}, ∅);
un(u, v) = −pu, Tun(u,v) = ({u}, ∅);
nv(u, v) = −pv, Tnv(u,v) = ({v}, ∅);
nn(u, v) = 0, Tnn(u,v) = (∅, ∅);

(1)

the following has been satisfied:

Remark 2.3. Every edge uv of the graph F is associated with five measures π(u, v), π ∈ Π,
and their corresponding forests such that (i)–(v) are satisfied for the subgraph S of G which
has been reduced onto uv.

If F is an edge, then we are done. Consider F of at least three vertices. By Remark 2.1, F
has a triangle S on vertices u, v, z, where z has degree 2 in F . We shall reduce this triangle S
in F onto the edge uv by removing vertex z together its incident edge uz, zv from F , and at
the same time updating measures of uv together with their corresponding forests as specified
below. We proceed by making a couple of remarks.

Remark 2.4. S is also considered as the subgraph of G which is the union of subgraphs of
G that have been reduced onto uv, vz, uz, respectively.

Fig.2. Trees in a Triangle

Remark 2.5. As Fig. 2 shows, there are exactly four trees S1, S2, S3, S4 in S containing both
u and v. These trees are also viewed as trees in G given by

S1 = Tst(u,v) ∪ Tun(u,z) ∪ Tnv(z,v), S2 = Tst(u,v) ∪ Tst(u,z) ∪ Tdt(z,v),

S3 = Tst(u,v) ∪ Tdt(u,z) ∪ Tst(z,v), S4 = Tdt(u,v) ∪ Tst(u,z) ∪ Tst(z,v).

Remark 2.6. As Fig.2 shows, there are exactly three forests S5, S6, S7 in S each of which
consists of two vertex-disjoint trees, one containing u and the other containing v. These forests
when viewed in G are given by S5 = Tdt(u,v) ∪ Tun(u,z) ∪ Tnv(z,v), S6 = Tdt(u,v) ∪ Tst(u,z) ∪
Tdt(z,v), S7 = Tdt(u,v) ∪ Tdt(u,z) ∪ Tst(z,v).

Remark 2.7. There are exactly two trees S8 = Tun(u,v)∪Tun(u,z) and S9 = Tun(u,v)∪Tst(u,z)∪
Tzn(z,v) in S each of which contains u but v. There are exactly two trees S10 = Tnv(u,v)∪Tnv(z,v)

and S11 = Tnv(u,v) ∪ Tnz(u,z) ∪ Tst(z,v) in S each of which contains v but u.
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Remark 2.8. There are exactly four trees S12 = Tnn(u,v), S13 = Tnn(u,z), S14 = Tnn(z,v),
S15 = Tnz(u,z)∪Tzn(z,v) in S each of which contains neither u nor v. Tnn(u, z) is a tree containing
neither u nor z. We use this tree (notation) just before the step that deletes z. At that moment,
Tnn(u, z) means a tree in the subgraph S reduced to edge uz that contains neither u nor z.
Note the vertices of S except for u and z have been deleted. Because v is still present, we see
that it is outside S. It follows that the tree Tnn(u, z) does not contain v. Similar reasoning
shows that Tnn(z, v) is a tree containing neither u nor v.

Remark 2.9. According to Remarks 2.5–2.8, the values of forests Si, i = 1, 2, · · · , 15, in G
can be computed by using current measures as follows:

• ν(S1, c, p) = st(u, v) + un(u, z) + nv(z, v) + pu + pv,
ν(S2, c, p) = st(u, v) + st(u, z) + dt(z, v) + pu + pz + pv,
ν(S3, c, p) = st(u, v) + dt(u, z) + st(z, v) + pu + pz + pv,
ν(S4, c, p) = dt(u, v) + st(u, z) + st(z, v) + pu + pz + pv;
• ν(S5, c, p) = −pu − pv = dt(u, v) + un(u, z) + nv(z, v) + pu + pv,

ν(S6, c, p) = cuz − pu − pz − pv = dt(u, v) + st(u, z) + dt(z, v) + pu + pz + pv,
ν(S7, c, p) = czv − pu − pz − pv = dt(u, v) + dt(u, z) + st(z, v) + pu + pz + pv;
• ν(S8, c, p) = un(u, v)+un(u, z)+ pu, ν(S9, c, p) = un(u, v)+ st(u, z)+ zn(z, v)+ pu + pz;
• ν(S10, c, p) = nv(u, v)+nv(z, v)+pv , ν(S11, c, p) = nv(u, v)+nz(u, z)+st(z, v)+pz +pv;
• ν(S12, c, p) = nn(u, v), ν(S13, c, p) = nn(u, z), ν(S14, c, p) = nn(z, v),

ν(S15, c, p) = nz(u, z) + zn(z, v) + pz.

For any set S of subgraphs of G, we use Min (S) to denote an arbitrary subgraph R ∈ S
whose value ν(R, c, p) is the minimum among all elements of S. Now we update the measures
of uv and their corresponding forests by

st(u, v) =
4

min
i=1

ν(Si, c, p), Tst(u,v) = Min({S1, S2, S3, S4});

dt(u, v) =
7

min
i=5

ν(Si, c, p), Tdt(u,v) = Min({S5, S6, S7});

un(u, v) =
9

min
i=8

ν(Si, c, p), Tun(u,v) = Min({S8, S9}); (2)

nv(u, v) =
11

min
i=10

ν(Si, c, p), Tnv(u,v) = Min({S10, S11});

nn(u, v) =
15

min
i=12

ν(Si, c, p), Tnn(u,v) = Min({S12, S13, S14, S15}).

It is routine to check from Remarks 2.5–2.8 that, with the update (2), Remark 2.3 still holds
for the new F (with z and its two incident edges deleted), after reducing S which is a triangle
in the old F (with z and both incident edges present) and also a subgraph of G (recalling
Remark 2.4).

Clearly, the new graph F remains a 2-tree. We continue the process-picking a triangle
in F and reducing it. The process is repeated to update measures and their corresponding
forests, until F is reduced to a single edge uv (equivalently, G has been reduced onto edge uv).
Proceeding inductively, we have shown that Remark 2.3 holds throughout.

The following pseudo-code gives the details of our algorithm, where the first part (Steps
2–4) initializes measures; the second part (Steps 5–10) repeatedly updates measures and cor-
responding forests until only one edge is left (equivalently, current graph contains no vertex
of degree 2); and the last part (Steps 11–13) picks the minimum among the final measures
st(u, v), un(u, v), nv(u, v), nn(u, v), and outputs its corresponding tree in G as the solution to
the PCST instance on 2-tree G.
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Algorithm for PCST on 2-tree (Alg Pcst)

Input 2-tree G = (V, E) with c ∈ RE
+, p ∈ RV

+

Output An optimal tree T ∗ of the PCST problem on (G, c, p) with optimal value ν∗

1. F ← G

2. for every uv ∈ E do begin

3. Set measure π(u, v) and its corresponding forest Tπ(u,v), for π ∈ Π, as in (1)

4. end-for

5. while F contains more than two vertices do begin

6. Take vertex z ∈ V (F ) of degree 2 in F , and uz, zv ∈ E(F )

7. Compute forests Si and their values ν(Si, c, p), i = 1, 2, · · · , 15 as in Remarks
2.5–2.9

8. Update measure π(u, v) and its corresponding forest Tπ(u,v), for π ∈ Π, as in (1)

9. Remove z from F

10. end-while

11. ν∗ ← min
{
st(u, v), un(u, v), nv(u, v), nn(u, v)

}
, where E(F ) =

{
uv

}

12. T ∗ ← Tπ(u,v), where π ∈ {st, un, nv, nn} and π(u, v) = ν∗

13. Output T ∗ and ν∗

Theorem 2.2. Given any PCST instance on a 2-tree of n vertices, Algorithm Alg Pcst
outputs its optimal PCST and optimal value in O(n) time.

Proof. Let T ∗ and ν∗ be the output of Alg Pcst at Step 13. Recalling Remark 2.3, it follows
from Steps 11–13 that T ∗ is a tree in G and has value ν(T ∗, c, p) = ν∗. Let uv be the final
edge of F at Step 11. Then, by Step 11, ν∗ = min{st(uv), un(u, v), nv(u, v), nn(uv)} equals the
value of an optimal PCST, showing that T ∗ is an optimal PCST in G. Hence Alg Pcst solves
the PCST problem on 2-trees exactly.

Note that it takes O(1) time for Alg Pcst to finish a single implementation of Step 3 and
that of Steps 6–8. Since the for-loop (Steps 2–4) repeats |E| times, the while-loop (Steps 5–10)
repeats |V | times, the algorithm runs in time O(|V | + |E|), which is O(n), as |E| = 2|V | − 3
holds for every 2-tree G = (V, E). �

To facilitate understanding, we elaborate the implementation Alg Pcst on the example
depicted in Fig.3, where the numbers beside the edges and vertices are their associated costs
and prizes.
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Fig.3. An Instance for the PCST on 2-tree

For brevity, we use Π(u̇, v̇) ≡ (st(u̇, v̇), dt(u̇, v̇), u̇n(u̇, v̇), nv̇(u̇, v̇), nn(u̇, v̇)) ∈ R5 to express
the measures of edge u̇v̇ in the graph in operation. Firstly, Steps 2–4 initialize the measures
together with the corresponding forests

Tst(u̇,v̇) = ({u̇, v̇}, u̇v̇), Tdt(u̇,v̇) = ({u̇, v̇}, ∅), Tu̇n(u̇,v̇) = ({u}, ∅),
Tnv̇(u̇,v̇) = ({v}, ∅), Tnn(u̇,v̇) = (∅, ∅) (3)

for every edge u̇v̇ in the graph, and obtain

Π(u, s) = (−17,−19,−3,−16, 0), Π(s, v) = (−11,−22,−16,−6, 0),
Π(u, v) = (4,−9,−3,−6, 0); (4)
Π(u, t) = (−9,−18,−3,−15, 0), Π(t, v) = (−16,−21,−15,−6, 0); (5)
Π(u, z) = (14,−4,−3,−1, 0), Π(z, v) = (−5,−7,−1,−6, 0). (6)

Then Steps 5–9 update the measures and the corresponding forests when deleting vertices s, t, z
from the graph in order. So the measures and the corresponding forests of uv are updated three
times before the whole graph is reduced to a single edge uv.

First, when deleting s, by using (3) for u̇v̇ ∈ {us, sv, uv} and (4), Alg Pcst finds

Min({S1, S2, S3, S4}) = S4 = Tdt(u,v) ∪ Tst(u,s) ∪ Tst(s,v) = ({u, s, v}, {us, sv}),
Min({S5, S6, S7}) = S6 = Tdt(u,v) ∪ Tst(u,s) ∪ Tdt(s,v) = ({u, s, v}, us),
Min({S8, S9}) = S9 = Tun(u,v) ∪ Tst(u,s) ∪ Tsn(s,v) = ({u, s}, us),
Min({S10, S11}) = S11 = Tnv(u,v) ∪ Tns(u,s) ∪ Tst(s,v) = ({s, v}, sv),
Min({S12, S13, S14, S15}) = S15 = Tns(u,s) ∪ Tsn(s,v) = ({s}, ∅);

and accordingly updates

Π(u, v) = (−12,−23,−17,−11,−16); Tst(u,v) = ({u, s, v}, {us, sv}), Tdt(u,v) = ({u, s, v}, us),
Tun(u,v) = ({u, s}, us), Tnv(u,v) = ({s, v}, sv), Tnn(u,v) = ({s}, ∅). (7)

Second, when deleting t, by using (3) for u̇v̇ ∈ {ut, tv}, (5) and (7), Alg Pcst finds

Min({S1, S2, S3, S4}) = S4 = Tdt(u,v) ∪ Tst(u,t) ∪ Tst(t,v) = ({u, v, s, t}, {us, ut, tv}),
Min({S5, S6, S7}) = S7 = Tdt(u,v) ∪ Tdt(u,t) ∪ Tst(t,v) = ({u, s, v, t}, {us, tv}),
Min({S8, S9}) = S9 = Tun(u,v) ∪ Tst(u,t) ∪ Ttn(t,v) = ({u, s, t}, {us, ut}),
Min({S10, S11}) = S11 = Tnv(u,v) ∪ Tnt(u,t) ∪ Tst(t,v) = ({s, v, t}, {sv, tv}),
Min({S12, S13, S14, S15}) = S12 = Tnn(u,v) = ({s}, ∅);

and accordingly updates

Π(u, v) = (−24,−33,−23,−21,−16);
Tst(u,v) = ({u, v, s, t}, {us, ut, tv}), Tdt(u,v) = ({u, s, v, t}, {us, tv}),
Tun(u,v) = ({u, s, t}, {us, ut}), Tnv(u,v) = ({s, v, t}, {sv, tv}), Tnn(u,v) = ({s}, ∅).

(8)
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Third, when deleting z, by using (3) for u̇v̇ ∈ {uz, zv}, (6) and (8), Alg Pcst finds

Min({S1, S2, S3, S4}) = S1 = Tst(u,v) ∪ Tun(u,z) ∪ Tnv(z,v) = ({u, v, s, t}, {us, ut, tv}),
Min({S5, S6, S7}) = S5 = Tdt(u,v) ∪ Tun(u,z) ∪ Tnv(z,v) = ({u, s, v, t}, {us, tv}),
Min({S8, S9}) = S8 = Tun(u,v) ∪ Tun(u,z) = ({u, s, t}, {us, ut}),
Min({S10, S11}) = S10 = Tnv(u,v) ∪ Tnv(z,v) = ({s, v, t}, {sv, tv}),
Min({S12, S13, S14, S15}) = S12 = Tnn(u,v) = ({s}, ∅);

and accordingly updates

Π(u, v) = (−24,−33,−23,−21,−16); Tst(u,v) = ({u, v, s, t}, {us, ut, tv}),
Tdt(u,v) = ({u, s, v, t}, {us, tv}), Tun(u,v) = ({u, s, t}, {us, ut}),
Tnv(u,v) = ({s, v, t}, {sv, tv}), Tnn(u,v) = ({s}, ∅).

Finally, since only one edge, which is uv, is left, Alg Pcst outputs

ν∗ = min{−24,−23,−21,−16}= −24 = st(u, v) T ∗ = Tst(u,v) = ({u, v, s, t}, {us, ut, tv}).
It is easy to see from Lemma 2.1 that with easy preprocessing, Alg Pcst works for in-

stances with nonempty target sets. As observed from the above example, our algorithm for the
PCST is more versatile than Wald-Colbourn algorithm for the SMT: with an empty target set,
our algorithm outputs a tree of value −24, saying that it is profitable; while Wald-Colbourn
algorithm returns nothing because it never starts.

3 Two Risk Models

In this section, we consider the PCST problem with interval data. Given a undirected graph
G = (V, E), each edge e ∈ E is associated with a cost interval [c−e , c+

e ], and each vertex v ∈ V is
associated with a prize interval [p−v , p+

v ]. These intervals indicate possible ranges of construction
cost of edge e and collection prize of vertex v, respectively. We define the risk at edge e as

r(xe) ≡ c+
e − xe

c+
e − c−e

when charging cost xe ∈ [c−e , c+
e ] and the risk at vertex v as

r(yv) ≡ yv − p−v
p+

v − p−v

when collecting prize yv ∈ [p−v , p+
v ]. For ease of description, we make the notational convention

that 0
0 = 0. With these definitions, risks r(xe) and r(yv) both range from 0 to 1. In particular,

r(xe) = 0 when xe = c+
e (r(yv) = 0 when yv = p−v ), meaning no risk occurs if the payment is

high enough (the expected prize is low enough). On the other hand, r(xe) = 1 when xe = c−e
(r(yv) = 1 when yv = p+

v ), meaning a full risk is doomed at the lowest payment (the highest
prize). Let T denote the set of trees in G. We define the value of T ∈ C with charged payment
x ∈ RE(T )

+ and collected prize y ∈ RV (T )
+ as

ν(T, x, y) ≡ x(E(T ))− y(V (T )),

where by x ∈ R∅
+ (in case of E(T ) = ∅) we mean that x is a null vector which will be written

as null.
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Let B be a given budget bound on constructing a PCST in G. It is required that T ∈ T
with charged payment x and collected prize y satisfy ν(T, x, y) ≤ B. So in case of negative B,
the construction of tree T must make profit. To assure the feasibility of ν(T, x, y) ≤ B subject
to

xe ∈ [c−e , c+
e ], ∀ e ∈ E(T ) and yv ∈ [p−v , p+

v ], ∀ v ∈ V (T ), (9)

bound B obviously cannot be smaller than, Bmin, the optimal value of the PCST problem with
respect to ce = c−e for every e ∈ E and pv = p+

v for every v ∈ V . Meanwhile, Bmax ≡ c+(E) is a
trivial upper bound on ν(T, x, y) for any T ∈ T, x ∈ RE(T )

+ and y ∈ RV (T )
+ satisfying (9). We

assume B ∈ [Bmin, Bmax] throughout.
In Subsections 3.1 and 3.2 below, we will study, respectively, two risk models for the PCST

problem that adopt distinct objective functions: min-max risk and min-sum risk, under budget
constraints. We deduce evenness property and extremeness property for the optimal solutions
of these two models, respectively. Building on these properties, we design strongly polynomial-
time algorithms solving the PCST problem on series-parallel graphs under these two risk models
to the optimality.

3.1 PCST Problem under Min-Max Risk Model

The PCST problem under min-max risk model, denoted by MMR PCST, is to find a tree T
along with payment x and prize y such that the maximum risk at edges and vertices in T is
minimized and the value ν(T, x, y) is no greater than the given budget B. This problem can be
formulated as follows:

(MMR PCST) min
T∈T,ν(T,x,y)≤B

max
e∈E(T ),v∈V (T )

{(c+
e − xe)/(c+

e − c−e ), (yv − p−v )/(p+
v − p−v )}

s.t. xe ∈ [c−e , c+
e ], ∀ e ∈ E(T ); yv ∈ [p−v , p+

v ], ∀ v ∈ V (T ).

Let (T ∗, x∗, y∗) be an optimal solution to the MMR PCST problem, where T ∗ is called an
optimal tree. We reserve symbol r∗ for the value rm(T ∗, x∗, y∗) of the optimal solution, i.e.,

r∗ ≡ rm(T ∗, x∗, y∗) ≡ max
e∈E(T∗),v∈V (T∗)

{ c+
e − x∗

e

c+
e − c−e

,
y∗

v − p−v
p+

v − p−v

}
. (10)

The following lemma shows that (T ∗, x∗, y∗) possesses an evenness property-the risks of edges
and vertices are all equal, which will play an important role in our algorithm design.

Lemma 3.1. Evenness property] For every edge e and every vertex v in T ∗, it holds that

c+
e − x∗

e

c+
e − c−e

=
y∗

v − p−v
p+

v − p−v
= r∗.

Proof. Note from (10) that

Q =
{

e ∈ E(T ∗) :
c+
e − x∗

e

c+
e − c−e

= r∗
}⋃{

v ∈ V (T ∗) :
y∗

v − p−v
p+

v − p−v
= r∗

}
�= ∅

and if the lemma fails, then there exists f ∈ E(T ∗) with 0 ≤ (c+
f − x∗

f )/(c+
f − c−f ) < r∗ or

u ∈ V (T ∗) with 0 ≤ (y∗
u − p−u )/(p+

u − p−u ) < r∗. Consequently, we can take sufficiently small
ε > 0 such that the MMR PCST has a solution (T ∗, x′, y′) with x′ ∈ RE(T∗)

+ and y′ ∈ RV (T∗)
+
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given by

x′
e =

⎧
⎪⎨

⎪⎩

x∗
e + ε, if e ∈ Q ∩ E,

x∗
e − |Q|ε, if e = f,

x∗
e, otherwise,

y′
v =

{
y∗

v − ε, if v ∈ Q ∩ V,

y∗
v , otherwise,

x′
e =

{
x∗

e + ε, if e ∈ Q ∩ E,

x∗
e , otherwise,

y′
v =

⎧
⎪⎨

⎪⎩

y∗
v − ε, if v ∈ Q ∩ V,

y∗
v + |Q|ε, if v = u,

y∗
v , otherwise.

In either case, we have rm(T ∗, x′, y′) < r∗, a contradiction to the optimality of r∗, proving the
lemma. �

For determining the optimal value r∗, we introduce more notations. For any r ∈ [0, 1], let

xr
e = c+

e − r(c+
e − c−e ) for every e ∈ E, yr

v = p−v + r(p+
v − p−v ) for every v ∈ V, (11)

and let T r = Topt(G, ∅; xr, yr) ∈ T be an optimal PCST with respect cost xr and prize yr.
Then

ν(T r, xr, yr) = min
T∈T

ν(T, xr, yr) for all r ∈ [0, 1]. (12)

Observe that the restriction of xr∗
to E(T ∗), denoted by xr∗ |E(T∗), is exactly x∗, and the

restriction of yr∗
to V (T ∗), denoted by yr∗ |V (T∗), is exactly y∗. Therefore (12) guaran-

tees ν(T r∗
, xr∗

, yr∗
) ≤ ν(T ∗, x∗, y∗) ≤ B. By the definition of r∗ in (10), it turns out that

(T r∗
, xr∗

, yr∗
) is an optimal solution to the MMR PCST problem, which allows us to assume

T ∗ = T r∗
. The next lemma shows that the budget bound B acts as a threshold in deriving an

estimation on the value of r in comparison with r∗.

Lemma 3.2. If ν(T r, xr, yr) > B, then r < r∗; otherwise r ≥ r∗.

Proof. If r ≥ r∗, then by definitions in (11), we have xr
e ≤ xr∗

e for every e ∈ E, yr
v ≥

yr∗
v for every v ∈ V , and therefore ν(T r∗

, xr, yr) ≤ ν(T r∗
, xr∗

, yr∗
) ≤ B. Note from (12)

that ν(T r, xr, yr) ≤ ν(T r∗
, xr, yr). Thus ν(T r, xr, yr) ≤ B, provided r ≥ r∗. The equivalent

statement reads: if ν(T r, xr, yr) > B, then r < r∗.
Recalling (10), the optimality of r∗ implies ν(T r, xr , yr) > B provided r < r∗. Hence, if

ν(T r, xr , yr) ≤ B, then r ≥ r∗. �

From the definitions of xr, yr, T r, we have (T 0, x0, y0) a trivial optimal solution to the
MMRPCST problem if ν(T 0, x0, y0) ≤ B. To avoid triviality, we assume ν(T 0, x0, y0) > B
whenever we discuss the MMRPCST problem. It follows from Lemma 3.2 and (10) that

r∗ ∈ (0, 1], which in turn implies ν(T ∗, x∗, y∗) = B, (13)

as otherwise we could increase x∗
e a little bit for every edge e ∈ E(T ∗), decrease y∗

v a little bit
for every vertex v ∈ V (T ∗), and obtain a smaller r∗. By virtue of (13), Lemmas 3.1 and 3.2,
we can apply Megiddo’s parametric search method[24], to determine in polynomial time the
value of r∗ for the MMR PCST on series-parallel graphs, as shown in the following algorithm
Alg Mmr. Given input of 2-tree G, Alg Mmr works on a graph F , which is reduced from G
by deleting degree-2 vertices step by step, and a search interval [rl, ru], which is narrowed down
from [0, 1] recursively, and is always guaranteed to contain r∗. (The detailed pseudo-code of
Alg Mmr is available upon request to the corresponding author).

Algorithm for MMR PCST on 2-tree (Alg Mmr)

Input 2-tree G = (V, E) with c− ∈ RE
+, c+ ∈ RE

+, p− ∈ RV
+, p+ ∈ RV

+ , B ∈ R+

Output The optimal value r∗ of the MMR PCST problem along with its optimal tree T ∗
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1. Initially, set F ← G and [rl, ru]← [0, 1].

2. Let r be a symbol representing a variable in [rl, ru]. The algorithm proceeds to solve
the PCST problem on (G, xr, yr) in a similar way to Alg Pcst (see Page 7). To avoid
confusion, the five measures associated with uv ∈ E (cf. (i)–(v) on Page 5), for the
PCST on (G, xr, yr), are written as str(u, v), dtr(u, v), unr(u, v), nvr(u, v), nnr(u, v) with
superscript r indicating the cost metric xr and prize metric yr.

3. Similar to Steps 2–4 of Alg Pcst, the algorithm initializes five measures str(u, v)← xr
uv−

yr
u − yr

v, dtr(u, v) ← −yr
u − yr

v, · · · for every uv ∈ E, where str(u, v), dtr(u, v), unr(u, v),
nvr(u, v), nnr(u, v) are all set to be linear functions of r ∈ [rl, ru] (recalling (1) and (11)).

4. The algorithm repeatedly deletes degree-2 vertices from F , update measures in a way
analogous to Steps 5–10 of Alg Pcst, and narrows down [rl, ru] as well.

4.1. Take degree-2 vertex z in F and uz, zv ∈ E(F ).

4.2. Compute ν(S1, x
r, yr)← str(u, v)+unr(u, z)+nvr(z, v)+yr

u+yr
v, · · · ν(S15, x

r, yr)←
nzr(u, z) + znr(z, v) + yr

z (cf. Remark 2.9), which are fifteen linear functions of
r ∈ [rl, ru].

4.3. Update measures str(u, v)←
4

min
i=1

ν(Si, x
r, yr), · · · , nnr(u, v)←

15

min
i=12

ν(Si, x
r , yr) (cf.

(2)) by applying the O(k log k) algorithm[24] for finding the minimum of k linear
functions on the same interval [a, b], which is a piecewise linear function with at
most k − 1 nondifferentiable points in (a, b).

4.4. Narrow down [rl, ru] to make every measure πr(u, v), π ∈ {st, dt, un, nv, nn} a linear
function of r ∈ [rl, ru] as follows. Whenever πr(u, v) is not linear on [rl, ru], the algo-
rithm finds a nondifferentiable point r◦ ∈ (rl, ru) of it, applies Alg Pcst to compute
ν(T r◦ , xr◦ , yr◦), and then narrows interval [rl, ru] ← [r◦, ru] if ν(T r◦ , xr◦ , yr◦) > B
and [rl, ru] ← [rl, r◦] otherwise. (After the narrowing, ro is not a nondifferentiable
point of πr(u, v) on (rl, ru), and by Lemma 3.2, interval [rl, ru] still contains r∗.)
Hence the step accomplishes its goal in O(n) time.

4.5. Delete z along with its incident edges uz, zv from F .

Steps 4.1–4.5 are repeated (in the process the algorithm also builds up forests correspond-
ing to measures) until F becomes a single edge uv.

5. Applying the approach used in Step 4.4, the algorithm first derives piecewise linear func-
tion νr ← min

{
str(u, v), unr(u, v), nvr(u, v), nnr(u, v)

}
, and then narrows down the

interval [rl, ru] such that νr = πr(u, v) is a linear function of r ∈ [rl, ru], for some
π ∈ {st, un, nv, nn}. (Note that the tree T ∗ ← Tπr(u,v) ∈ T corresponding to πr(u, v) is
an optimal PCST on (G, xr, yr) for all r ∈ [rl, ru].)

6. Let r∗ ∈ [rl, ru] be a solution to the equation νr = B in variable r ∈ [rl, ru]. Then output
r∗ and T ∗.

By (13), the r∗ found this way is the optimal value of the MMR PCST problem. Clearly,
T ∗ = Tπr∗ (u,v) is the corresponding optimal tree. The proof of the following theorem could not
be included due to the space limit, which is available upon request.

Theorem 3.3. Given any MMR PCST instance on a 2-tree of n vertices, Algorithm Alg Mmr
outputs its optimal value r∗ in O(n2) time.
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3.2 PCST Problem under Min-Sum Risk Model

The PCST problem under min-sum risk model, denoted by MSR PCST, is to find a tree T in
given graph G = (V, E) along with payment x ∈ RE(T )

+ and prize y ∈ RV (T )
+ such that the sum

of risks at edges and vertices in T :

rs(T, x, y) ≡
∑

e∈E(T )

c+
e − xe

c+
e − c−e

+
∑

v∈V (T )

yv − p−v
p+

v − p−v
=

∑

e∈E(T )

r(xe) +
∑

v∈V (T )

r(yv)

is minimized and the value ν(T, x, y) is no greater than the given budget bound B ∈ [Bmin, Bmax].
This problem can be formulated as follows:

(MSR PCST) min
T∈T,ν(T,x,y)≤B

( ∑

e∈E(T )

c+
e − xe

c+
e − c−e

+
∑

v∈V (T )

yv − p−v
p+

v − p−v

)

s.t. xe ∈ [c−e , c+
e ], ∀ e ∈ E(T ); yv ∈ [p−v , p+

v ], ∀ v ∈ V (T ).

The MSR PCST problem has an optimal solution that enjoys the following extremeness
property-the edge payments and vertex prizes hit lower or upper limits with at most one ex-
ceptional edge and at most one exceptional vertex.

Lemma 3.4 (Extremeness Property). There exists an optimal solution (T ∗, x∗, y∗) to the
MSR PCST problem which contains an edge f ∈ E(T ∗) if E(T ∗) �= ∅ and a vertex u ∈ V (T ∗)
such that

xf ∈ [c−f , c+
f ], xe ∈ {c−e , c+

e } for all e ∈ E(T ∗) \ {f} if E(T ∗) �= ∅;
yu ∈ [p−u , p+

u ], yv ∈ {P−
v , p+

v } for all v ∈ V (T ∗) \ {u}.
(14)

Proof. Let (T ∗, x∗, y∗) be an optimal solution to the MSR PCST problem such that the union
of sets

E(T ∗, x∗, y∗) ≡ {e : e ∈ E(T ∗), x∗
e ∈ (c−e , c+

e )},
V(T ∗, x∗, y∗) ≡ {v : v ∈ V (T ∗), y∗

v ∈ (p−v , p+
v )}

contains as few elements as possible. The minimality guarantees |E(T ∗, x∗, y∗)| ≤ 1 and
|V(T ∗, x∗, y∗)| ≤ 1, verifying the lemma.

If |E(T ∗, x∗, y∗)| > 1, then there exist distinct edges g, f ∈ E(T ∗, x∗, y∗) with c+
g − c−g ≤

c+
f − c−f . Take δ = min{c+

g − x∗
g, x

∗
f − c−f } and define x′ ∈ RE(T∗)

+ by setting x′
g = x∗

g + δ,
x′

f = x∗
f − δ and x′

e = x∗
e for every e ∈ E(T ∗) \ {g, f}. It follows that (T ∗, x′, y∗) is an optimal

solution to the MSR PCST with E(T ∗, x′, y∗) � E(T ∗, x∗, y∗) and V(T ∗, x′, y∗) = V(T ∗, x∗, y∗)
violating the minimality of |E(T ∗, x∗, y∗)|+ |V(T ∗, x∗, y∗)|.

If |V(T ∗, x∗, y∗)| > 1, then there exist distinct vertices u, z ∈ V(T ∗, x∗, y∗) with p+
u − p−u ≤

p+
z − p−z . Take δ = min{y∗

u − p−u , p+
v − y∗

v} and define y′ ∈ RV (T∗)
+ by setting y′

u = y∗
u − δ,

y′
z = y∗

z + δ and y′
v = y∗

v for every v ∈ V (T ∗) \ {u, z}. It follows that (T ∗, x∗, y′) is an optimal
solution to the MSR PCST with V(T ∗, x∗, y′) � V(T ∗, x∗, y∗) and E(T ∗, x∗, y′) = E(T ∗, x∗, y∗)
violating the minimality of |E(T ∗, x∗, y∗)|+ |V(T ∗, x∗, y∗)|. �

To find an optimal solution specified in Lemma 3.4, we employ the following algorithm
Alg Gt to transform the original given 2-tree G = (V, E) with c−, c+ ∈ RE

+ and p−, p+ ∈ RV
+

to a new graph G̃ = (Ṽ , Ẽ) with c, w ∈ RẼ
+ and p, q ∈ RṼ

+ . See Fig.4 for an illustration.



Risk Models for the Prize Collecting Steiner Tree Problems with Interval Data 15

Algorithm for Graph Transformation (Alg Gt)

Input (G, c−, c+, p−, p+)
Output (G̃, c, p, w, q) along with (G, c, w) and (Ĝ, ĉ, ŵ, p̂, q̂)

1. Construct graph G = (V , E) with c, w ∈ RE
+ as follows: Set V ≡ V and E ≡ {e, e : e ∈ E}

in such a way that every edge e ∈ E corresponds to two edges e, e ∈ E both having the
same ends as e. For every e ∈ E, set ce ≡ c−e , ce ≡ c+

e ; we ≡ 1, we ≡ 0 if c−e �= c+
e and set

we = we ≡ 0 otherwise.

2. Construct 2-tree Ĝ = (V̂ , Ê) with ĉ, ŵ ∈ RÊ
+ and p̂−, p̂+ ∈ RV̂

+ as follows: Set V̂ ≡
V ∪ {ve : e ∈ E} and Ê ≡ {e ∈ E : e ∈ E} ∪ {e1 ≡ veu, e2 ≡ vev : u, v ∈ V , uv = e ∈ E}.
For every e ∈ E, set ĉe1 = ĉe2 ≡ 1

2ce, ŵe1 = ŵe2 ≡ 1
2we, p̂+

ve
= p̂−ve

≡ 0. For every
v ∈ V = V , set p̂−v ≡ p−v and p̂+

v ≡ p+
v .

3. Construct graph G̃ = (Ṽ , Ẽ) with c, w ∈ RẼ
+ and p, q ∈ RṼ

+ as follows: Set Ṽ ≡ {v1, v2 :
v ∈ V̂ } and Ẽ ≡ {u1v1, u1v2, u2v1, u2v2 : uv ∈ Ê}. For every uv ∈ Ê and i, j ∈ {1, 2}, set
cuivj ≡ ĉuv, wuivj ≡ ŵuv. For every v ∈ V̂ , set pv1 ≡ p̂+

v , pv2 ≡ p̂−v ; set qv1 ≡ 1, qv2 ≡ 0 if
p̂−v �= p̂+

v and qv1 = qv2 ≡ 0 otherwise.

Fig.4. Producing graphs G, Ĝ and G̃ from G.

The main idea behind the transformation is to make a correspondence between solutions
to the MSR PCST on (G, c−, c+, p−, p+) of extremeness property and PCSTs in G̃. Take the
instances depicted in Fig.4 as an example. Consider tree T = G together with payment xe = c+

e

and prizes yu = p+
u , yv = p−v . It corresponds tree T in G spanned by e with cost ce = c+

e ,
weight we = 0 (indicating risk r(xe) = 0 of e) and prizes yu = p+

u , yv = p−v . In turn, T

together with its associated cost, weight and prizes corresponds to tree T̂ in Ĝ going through
e1 = uve and e2 = vev of costs ĉei

= ce/2 = c+
e /2, weights ŵei

= we/2 = 0, i = 1, 2, and
prizes yu = p+

u , yv = p−v , yve
= 0. Finally, the terminal correspondence gives tree T̃ in G̃ going

through f1 = u1ve1 , f2 = ve1v2 of costs cfi = ĉei
= ce/2 = c+

e /2, weights wfi = ŵei
= we/2 = 0,

i = 1, 2, prizes pu1 = yu = p+
u , pv2 = yv = p−v , pve1

= yve
= 0, and qualities qu1 = 1 (indicating

risk r(yu) = 1 of u), qv2 = 0 (indicating risk r(yv) = 0 of v), qve1
= 0. It is clear that

ν(T, x, y) = c+
e − p+

u − p−v = ν(T̃ , c, p) and rs(T, x, y) = r(xe) + r(yu) + r(yv) = 0 + 1 + 0 =
w(E(T̃ )) + q(V (T̃ )).

Observe that G̃ in Fig.4 contains no vertex of degree 2, and thus it is not a 2-tree by
Remark 2.1. Generally, we have the following.

Remark 3.1. The graph G̃ output by Alg Gt is not a 2-tree.
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Observe that |V̂ | = n + |E|, and every tree in

T̃ ≡ {
T̃ : T̃ is a tree in G̃, and |V (T̃ ) ∩ {v1, v2}| ≤ 1, ∀ v ∈ V̂

}
.

has at most |V̂ | vertices. Since 2-tree G has |E| = 2n− 3 edges,

Every tree T ∈ T̃ contains at most 3n− 3 vertices. (15)

Note that there is a 1-1 correspondence between the set T̃ and the set of pairs (T̂ , ŷ), where

T̂ is a tree in Ĝ and ŷ ∈ RV (T̂ )
+ with ŷv ∈ {p+

v , p−v } for every v ∈ V (T̂ ). The bijection
“pair1(T̃ ) ≡ (T̂ , ŷ) if and only if tree (T̂ , ŷ) ≡ T̃” satisfies the following conditions for every
edge uv ∈ E:
• u1v1 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂+

u , ŷv = p̂+
v ;

• u1v2 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂+
u , ŷv = p̂−v ;

• u2v1 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂−u , ŷv = p̂+
v ;

• u2v2 ∈ E(T̃ ) if and only if uv ∈ E(T̂ ) and ŷu = p̂−u , ŷv = p̂−v .

Lemma 3.5. If tree (T̂ , ŷ) = T̃ , then ν(T̃ , c, p) = ν(T̂ , ĉ, ŷ).
In addition, there is a 1-1 correspondence between the pairs (T , y), where T is a tree

in G and y ∈ RV (T )
+ with yv ∈ {p+

v , p−v } for every v ∈ V (T ), and the pairs (T̂ , ŷ), where
T̂ ∈ T̂ ≡ {

T̂ ′ : T̂ ′ is a tree in Ĝ, E(T̂ ′) ∩ {e1, e2, e} = {e} or {e1, e2} or ∅, ∀ e ∈ E
}

and

ŷ ∈ RV (T̂ )
+ with ŷv ∈ {p̂+

v , p̂−v } for every v ∈ V (T̂ ). The bijection “add (T , y) ≡ (T̂ , ŷ) if and
only if con (T̂ , ŷ) ≡ (T , y)” satisfies the following conditions for every edge e = uv ∈ E:
• e ∈ E(T ) if and only if e ∈ E(T̂ ) and ŷu = yu, ŷv = yv;
• e ∈ E(T ) if and only if {e1, e2} ⊆ E(T̂ ) and ŷu = yu, ŷv = yv, ŷve

= 0.

Lemma 3.6. If add (T , y) = (T̂ , ŷ), then ν(T̂ , ĉ, ŷ) = ν(T , c, y).
Moreover, there is a 1-1 correspondence between the pairs (T , y), where T is a tree in G and

y ∈ RV (T )
+ with yv ∈ {p+

v , p−v } for every v ∈ V (T ), and the triples (T, x, y), where T is a tree in
G and x ∈ RE(T )

+ with xe ∈ {c+
e , c−e } for every e ∈ E(T ). The bijection “ triple (T , y) ≡ (T, x, y)

if and only if pair2(T, x, y) ≡ (T , y)” satisfies V (T ) = V (T ) and the following conditions for
every edge e ∈ E:
• e ∈ E(T ) if and only if e ∈ E(T ) and xe = c−e ;
• e ∈ E(T ) if and only if e ∈ E(T ) and xe = c+

e .

Lemma 3.7. If triple (T , y) = (T, x, y), then ν(T, x, y) = ν(T , c, y).
From Lemmas 3.5–3.7, we can establish a 1-1 correspondence between trees T̃ ∈ T̃ and

triples (T, x, y) such that T is a tree in G, x ∈ RE(T )
+ , xe ∈ {c+

e , c−e } for every edge e ∈ E(T ),
and y ∈ RV (T )

+ , yv ∈ {p+
v , p−v } for every vertex v ∈ V (T ). The following theorem summarizes

the correspondence.

Theorem 3.8. Let tree (T, x, y) ≡ tree( add( pair2(T, x, y))) = T̃ , i.e., triple (T̃ ) ≡ triple( con
( pair1(T̃ ))) = (T, x, y). Then ν(T, x, y) = ν(T̃ , c, p) and rs(T, x, y) = W (T̃ , w, q), where
W (T̃ , w, q) ≡ w(E(T̃ )) + q(V (T̃ )).

For solving the MSR PCST problem on 2-tree G = (V, E), we resort to the Weight Con-
strained PCST problem (WC PCST). Given (G̃, c, p, w, q, ζ), where ζ is an integer, and (G̃, c, w,

p, q) with c, w ∈ RE(G̃)
+ and p, q ∈ RV (G̃)

+ is the output of Alg Gt on input (G, c−, c+, p−, p+),
the WC PCST problem consists of finding a tree T ∈ T̃ with W (T, w, q) ≤ ζ and a minimum
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value with respect to c, p as follows:

(WC PCST) min
T∈T̃,W (T,w,q)≤ζ

(
c(E(T ))− p(V (T ))

)
.

The WC PCST problem on G̃ is solved following similar ideas presented in Section 2. With
each ordered pair (u, v) corresponding to an edge uv of Ĝ, we associate (13ζ + 13) measures to
summarize the value incurred so far in the subgraph S of G̃ which has been reduced onto the
edge uv. Specifically, for each ξ = 0, 1, 2, · · · , ζ, we have the following measures.

• stij(u, v, ξ) is the minimum among all values of trees T in S with W (T, w, q) ≤ ξ and ui,
vj ∈ V (T ), for i, j ∈ {1, 2}.
• dtij(u, v, ξ) is the minimum among all total values of any two vertex disjoint trees T1

and T2 in S with W (T1, w, q) + W (T2, w, q) ≤ ξ and ui ∈ V (T1) while vj ∈ V (T2), for
i, j ∈ {1, 2}.
• uni(u, v, ξ) is the minimum among all values of trees T in S with W (T, w, q) ≤ ξ and

ui ∈ V (T ) while v1, v2 /∈ V (T ), for i = 1, 2.

• nvi(u, v, ξ) is the minimum among all values of trees T in S with W (T, w, q) ≤ ξ and
vi ∈ V (T ) while u1, u2 /∈ V (T ), for i = 1, 2.

• nn(u, v, ξ) is the minimum among all values of trees T in S with W (T, w, q) ≤ ξ and
ui, vj /∈ V (T ), for i, j ∈ {1, 2}.

Algorithm for Weight Constrained PCST Problem (Alg Wc)

Input (G̃, c, p, w, q, ζ)
Output The optimal value νζ and an optimal solution T̃ζ ∈ T̃ of the WC PCST problem

1. Initially, put F ← Ĝ and L← 2n(c+(E) + p+(V)). For every (u, v, ξ) with uv ∈ E(G), set

stij(u, v, ξ)← cuivj − pui − pvj , if wuivj + qui + qvj ≤ ξ; L otherwise, i, j = 1, 2;

dtij(u, v, ξ)← −pui − pvj , if qui + qvj ≤ ξ; L otherwise, i, j = 1, 2;

uni(u, v, ξ)← −pui , if qui ≤ ξ; L otherwise, i = 1, 2;

nvi(u, v, ξ)← −pvi , if qvi ≤ ξ; L otherwise, i = 1, 2;

nn(u, v, ξ)← 0.

2. Update the measures when sequentially deleting degree-2 vertex z in F (its corresponding
two degree-4 vertices in G̃). Let u, v be the neighbors of z in the current graph F . Using
measures for (u, v), (u, z) and (z, v) which have been computed, the algorithm updates
the measures associated with (u, v, ξ), ξ = 0, 1, 2, · · · , ζ, for all i, j ∈ {1, 2} as follows:

stij(u, v, ξ)← min
{
stij(u, v, ξ1) + uni(u, z, ξ2) + nvj(z, v, ξ3) + pui + pvj ,
stij(u, v, ξ3h+1)+stih(u, z, ξ3h+2)+dthj(z, v, ξ3h+3)+pui +pzh

+pvj ,
stij(u, v, ξ3h+7)+dtih(u, z, ξ3h+8)+sthj(z, v, ξ3h+9)+pui +pzh

+pvj ,
dtij(u, v, ξ3h+13)+stih(u, z, ξ3h+14)+sthj(z, v, ξ3h+15)+pui+pzh

+pvj ,

h = 1, 2 |
3k∑

h=3k−2

ξh = ξ, 1 ≤ k ≤ 7; ξ1, ξ2, · · · , ξ21 ≥ 0
}
.

dtij(u, v, ξ)← min
{
dtij(u, v, ξ1) + uni(u, z, ξ2) + nvj(z, v, ξ3) + pui + pvj ,
dtij(u, v, ξ3h+1)+stih(u, z, ξ3h+2)+dthj(z, v, ξ3h+3)+pui +pzh

+pvj ,
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dtij(u, v, ξ3h+7)+dtih(u, z, ξ3h+8)+sthj(z, v, ξ3h+9)+pui +pzh
+pvj ,

h = 1, 2 |
3k∑

h=3k−2

ξh = ξ, 1 ≤ k ≤ 5; ξ1, ξ2, · · · , ξ15 ≥ 0
}
.

uni(u, v, ξ)← min
{
uni(u, v, ξ1) + uni(u, z, ξ2) + pui ,
uni(u, v, ξ3h) + stih(u, z, ξ3h+1) + znh(z, v, ξ3h+2) + pui + pzh

, h = 1, 2
| ξ1 + ξ2 = ξ3 + ξ4 + ξ5 = ξ6 + ξ7 + ξ8 = ξ, ξ1, ξ2, . . . , ξ8 ≥ 0

}
.

nvi(u, v, ξ)← min
{
nvi(u, v, ξ1) + nvi(z, v, ξ2) + pvi ,
nvi(u, v, ξ3h) + nzh(u, z, ξ3h+1) + sthi(z, v, ξ3h+2) + pzh

+ pvi , h = 1, 2
| ξ1 + ξ2 = ξ3 + ξ4 + ξ5 = ξ6 + ξ7 + ξ8 = ξ, ξ1, ξ2, . . . , ξ8 ≥ 0

}
.

nn(u, v, ξ)← min
{

min
{
nzh(u, z, ξ2h−1) + znh(z, v, ξ2h) + pzh

, h = 1, 2 | ξ2h−1, ξ2h ≥ 0,

ξ2h−1 + ξ2h = ξ, h = 1, 2
}
, nn(u, v, ξ), nn(u, z, ξ), nn(z, v, ξ)

}
.

3. In the end, Ĝ is reduced to a single edge uv (corresponding to four edges u1v1, u1v2, u2v1,
u2v2 in G̃), where E(F ) = {uv}. Take the minimum, denoted as νζ , among the nine final
measures stij(u, v, ζ), uni(u, v, ζ), nvi(u, v, ζ), nn(u, v, ζ), i, j ∈ {1, 2}. Output νζ and an
optimal solution T̃ζ (which is a tree in G̃ corresponding to the minimum measure, and
has been constructed during the process of computing measures in a way analogous to
Alg Pcst). Note that T̃ζ ∈ T̃.

The above algorithm Alg Wc turns out an extension of the dynamic programming al-
gorithm by [11] for solving the constrained SMT problem on 2-trees. The difference is that
our algorithm makes additional consideration on vertex prizes (see the formulas following “←”
in Steps 1–2 above) for graph G̃ which is not a 2-tree (recall Remark 3.1), while Chen-Xue
algorithm uses simpler formulas to update measures for an input 2-tree without vertex prize
parameter.

Theorem 3.9. Given any 2-tree G = (V, E) of n vertices, Algorithm Alg Wc outputs an
optimal solution T̃ζ and the optimum value νζ of the WC PCST problem on G̃ in O(n3) time,
where G̃ = (Ṽ , Ẽ) is constructed by Algorithm Alg Gt.

Proof. The correctness of the algorithm can be proved in a similar way to that in the proof of
Theorem 2.2. To see the O(n3) time complexity, by Theorem 3.8 we notice that W (T̃ , w, q) =
rs(T, x, y) ≤ 2n− 1 for all T̃ ∈ T̃, where (T, x, y) = triple (T̃ ). So we may assume ζ ≤ 2n− 1.
Thus, it suffices to prove that νζ can be computed in O(|V (Ĝ)|ζ2). For this purpose, we
only need to show that all measures can be updated in O(ζ2) time when a degree-2 vertex is
considered and deleted in Step 2. The task is accomplished by applying the technique proposed
in the proof of Theorem 3.2 of [11]. For instance, to obtain stij(u, v, ξ1) + uni(u, z, ξ2) +
nvj(z, v, ξ3) with ξ1 + ξ2 + ξ3 = ξ, for all possible ξ1, ξ2, ξ3 ∈ {0, 1, · · · , ξ}, we can first compute
LR(ξ0) = stij(u, v, ξ1) + uni(u, z, ξ2) with ξ1 + ξ2 = ξ0, for all ξ0 = 0, 1, · · · , ξ and ξ1 =
0, 1, · · · , ξ0; and then compute LR(ξ0) + nvj(z, v, ξ3) with ξ0 + ξ3 = ξ, for all ξ0 = 0, 1, · · · , ξ.
�

Now we are ready to present our algorithm for the MSRPCST problem on (G, c−, c+, p−,
p+, B), where G is a 2-tree. In the following pseudo-code, (T, x, y) denotes a solution to the
MSR PCST problem with at most one edge f ∈ E(T ) and one vertex u ∈ V (T ) for which
extremeness property (14) holds. Moreover, for the specified edge f (when E(T ) �= ∅) and
vertex u, the risk sum rs(T, x, y) is minimum among all solutions (T ′, x′, y′) of the MSR PCST
problem such that f ∈ E(T ′) (when E(T ) �= ∅), u ∈ V (T ′), and (14) holds with T ′ in place of T .
The basic idea makes use of the two equalities in the conclusion of Theorem 3.8, which imply that
�rs(T, x, y)� or �rs(T, x, y)�+1 is the smallest value of integer ζ that can guarantee the optimal
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value of the WC PCST on (G̃, c, p, w, q, ζ) not exceeding B (≥ ν(T, x, y)). Since ζ ∈ [0, 2n− 1],
as argued in the proof of Theorem 3.9, the following algorithm Alg Msr performs a binary
search in Steps 7–11 to determine integer β with �rs(T, x, y)� ≤ β ≤ �rs(T, x, y)�+2 by utilizing
Alg Wc. Then Alg Msr considers in Steps 12–14 every one-vertex tree T . Subsequently in
Steps 15–33, for every u ∈ V and every f ∈ E, Alg Msr finds a solution (T, x, y) with
minimum risk sum such that u ∈ V (T ), f ∈ E(T ) and (14) holds. To enforce u ∈ V (T )
and f = ab ∈ E(T ), Alg Msr reassigns u, a, b prize intervals [M,M], [p−a +M, p+

a +M],
[p−b +M, p+

b +M], respectively, where M = c+(E) + 1, and assigns f cost interval [0, 0]. In
turn, for ζ = β, β−1, β−2, Alg Msr finds optimal trees T̃ζ of the WC PCST on (G̃, c, p, w, q, ζ),
and modifies x′

f , y′
u in triple (T̃ζ) = (T, x′, y′) to make it a best possible solution (T, x, y) of

the MSR PCST problem on (G, c−, c+, p−, p+, B). Finally, Alg Msr outputs the (T, x, y) with
smallest rs(T, x, y).

Algorithm for MSR PCST on 2-tree (Alg Msr)

Input 2-tree G = (V, E) with c− ∈ RE
+, c+ ∈ RE

+, p− ∈ RV
+, p+ ∈ RV

+ , and B ∈ R+

Output An optimal solution (T ∗, x∗, y∗) of the MSR PCST problem that satisfies Lemma 3.4.

1. Call Alg Gt to construct G̃ = (Ṽ , Ẽ), w ∈ {0, 1}Ẽ, q ∈ {0, 1}Ṽ , c ∈ RẼ
+, p ∈ RṼ

+

2. Call Alg Wc to find optimal value ν2n−1 for WC PCST on (G̃, c, p, w, q, 2n− 1)

3. if ν2n−1 > B then stop (No feasible solution!)

4. Call Alg Wc to find the optimal value ν0 for WC PCST on (G̃, c, p, w, q, 0)

5. if ν0 ≤ B then output triple (T̃0), where T̃0 ∈ T̃, ν(T̃0, c, p) = ν0, and stop

6. T∗ ← ∅, α← 0, β ← 2n− 1, M← ∑

e∈E

c+
e + 1

7. while β − α > 1 do begin

8. γ ← �(β + α)/2�
9. Call Alg Wc to find optimal value νγ for WC PCST on (G̃, c, p, w, q, γ)

10. if νγ ≤ B then β ← γ else α← γ

11. end-while

12. for every u ∈ V do begin

13. if −p+
u ≤ B then T ← ({u}, ∅), yu ← max{p−u ,−B}, T∗ ← T∗ ∪ {(T,null, y)}

14. end-for

15. for every u ∈ V do begin

16. k− ← p−u , k+ ← p+
u , p−u ←M, p+

u ←M
17. for every f = ab ∈ E do begin

18. t− ← c−f , t+ ← c+
f , t+a ← p+

a , t−a ← p−a , t+b ← p+
b , t−b ← p−b

19. c−f ← 0, c+
f ← 0, p+

a ← p+
a +M, p−a ← p−a +M, p+

b ← p+
b +M, p−b ← p−b +M
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20. Call Alg Gt to construct G̃ = (Ṽ , Ẽ), c, w ∈ RẼ
+, p, q ∈ RṼ

+

21. for i = 0 : 2 do begin

22. Call Alg Wc to find an optimal solution T̃β−i ∈ T̃ for WC PCST
on (G̃, c, p, w, q, β − i), where the tree in triple (T̃β−i) contains u, f

23. end-for

24. c−f ← t−, c+
f ← t+, p+

a ← t+a , p−a ← t−a , p+
b ← t+b , p−b ← t−b

25. for i = 0 : 2 do begin

26. (T, x, y)← triple(T̃β−i)

27. if ν(T̃β−i, c, p)− xf + yu + t− − k+ ≤ B

28. then find an optimal solution (x0
f , y0

u) to min t+−xf

t+−t− + yu−k−

k+−k− subject to

xe − yv ≤ B− ν(T̃β−i, c, p) + xf − yu, t− ≤ xf ≤ t+, k− ≤ yu ≤ k+

29. xf ← x0
f , yu ← y0

u, T∗ ← T∗ ∪ {(T, x, y)}
30. end-for

31. end-for

32. p−u ← k−, p+
u ← k+

33. end-for

34. Output (T ∗, x∗, y∗) ∈ T∗ with minimum rs(T ∗, x∗, y∗)

Theorem 3.10. Given any MSR PCST instance on a 2-tree of n vertices, Algorithm Alg Msr
outputs its optimal solution in O(n5) time.

Proof. Since algorithm Alg Wc runs in O(n3) by Theorem 3.9, Steps 2–11 take O(n3 log n)
time, Steps 12–14 take O(n) time and Steps 15–33 take O(n5) time, the total running time of
Alg Msr is O(n5).

To prove the correctness, we note that the algorithm returns an optimal solution if it stops
before Step 7. If some optimal tree consists of only one vertex, then its corresponding optimal
solution is put to T∗ in Steps 12–14, and the solution output in Step 34 must be optimal. It
remains to consider the case where every optimal tree contains at least one edge. Let (T ∗, x∗, y∗)
be an optimal solution specified in Lemma 3.4, where f ∈ E(T ∗) and u ∈ V (T ∗) satisfy (14).
Putting x∗∗

f = c−f , y∗∗
u = p+

u , x∗∗
e = x∗

e , for every e ∈ E(T ∗) \ {f}, and y∗∗
v = y∗

v, for
every v ∈ V (T ∗) \ {u}, we have rs(T ∗, x∗∗, y∗∗) = rs(T ∗, x∗, y∗) − r(x∗

f ) − r(y∗
u) + 2. Let

T̃ ≡ tree (T ∗, x∗∗, y∗∗). It follows from Theorem 3.8 that W (T̃ , w, q) = rs(T ∗, x∗∗, y∗∗) and
ν(T̃ , w, q) = ν(T ∗, x∗∗, y∗∗) ≤ ν(T ∗, x∗, y∗) ≤ B. After Step 11, the optimal value νβ−1 of the
WC PCST on (G̃, c, p, w, q, β− 1) is greater than B, and the WC PCST on (G̃, c, p, w, q, β) has
an optimal tree T̃ ′ with ν(T̃ ′, c, p) = νβ ≤ B. Therefore W (T̃ , w, q) > β−1 and rs(T ∗, x∗, y∗) ≤
W (T̃ ′, w, q) ≤ β, implying

rs(T ∗ \ f \ u, x∗, y∗) ≡ rs(T ∗, x∗, y∗)− r(x∗
f )− r(y∗

u) = β − θ, where θ ∈ {0, 1, 2}. (16)

Next, we consider the execution of Alg Msr when Step 15 and Step 17 deal with the
specified u ∈ V (T ∗) and f ∈ E(T ∗). Let us first show that in Step 22, we can always find
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the desired T̃β−i. To avoid confusion, let c′, p′ denote the c, p on which Step 22 works. Using
similar approach to proving Lemma 2.1, we can guarantee u, a, b ∈ V (T ), where (T, x, y) =
triple(T̃β−i), by the optimality of T̃β−i and the correspondence between T̃β−i and T . In case
of f �∈ E(T ), since Step 19 associates f with cost interval [0, 0], it follows from the optimality of
ν(T, x, y) = ν(T̃β−i, c

′, p′) that there exists a path P in T connecting a and b such that xe = 0
for every e ∈ E(P ). Let T be modified by adding f and deleting one of edges on P , denoted
as g. Let x be modified by removing xg and setting xf = 0. Corresponding modifications
apply to T̃β−i to assure triple(T̃β−i)= (T, x, y). The validity of Step 22 follows. Moreover,
by (16) and the setting in Step 19, the WC PCST on (G̃, c′, p′, w, q, β − θ) examined by Step
22 has a solution T̃ ′′ = tree(T ∗, x′, y′), where x′

f = 0, y′
u =M, x′|E(T∗)−{f} = x∗|E(T∗)−{f},

y′|V (T∗)−{u} = y∗|V (T∗)−{u}, and W (T̃ ′′, c′, p′) = rs(T ∗, x′, y′) = rs(T ∗\f\u, x∗, y∗). So this
WC PCST has optimal value

ν(T̃β−θ, c
′, p′) ≤ ν(T ∗, x′, y′) = ν(T ∗, x∗, y∗)− x∗

f + y∗
u + 0−M ≤ B− x∗f + y∗u −M. (17)

Furthermore, let us consider the for-loop (Steps 25–30) dealing with i = θ. In Step 26,
(T, x, y) is set to triple(T̃β−θ). It can be deduced from Step (19) and (17) that ν(T̃β−θ, c, p)−
xf + yu ≤ B− x∗f + y∗u , giving

ν(T̃β−θ, c, p)− xf + yu + x∗
f − y∗

u ≤ B. (18)

Hence we have ν(T̃β−θ, c, p)− xf + xu + c−f − p+
u ≤ B, which leads the algorithm to Step 28 for

finding an optimal solution (x0
f , y0

u) of the LP over there. Observe from (18) that (x∗
f , y∗

u) is a
feasible solution to the LP, which yields

r(x0
f ) + r(y0

u) ≤ r(x∗
f ) + r(y∗

u).

Subsequently, in Step 29, x, y are modified and then (T, x, y) is put to T∗, for which we have

rs(T, x, y) = rs(T ∗ \ f \ u, x∗, y∗) + r(x0
f ) + r(y0

u) ≤ β − θ + r(x∗
f ) + r(y∗

u) = rs(T ∗, x∗, y∗),

ν(T, x, y) = ν(T̃β−θ, c, p)− xf + yu + x0
f − y0

u ≤ B.

So (T, x, y) is an optimal solution to MSR PCST problem, and Alg Msr outputs an optimal
solution to MSR PCST problem at Step 34. �

3.3 Discussion

In the preceding subsections we propose two risk models, the MSR PCST and the MMR PCST,
for the PCST problem with interval data. These two models with the same data setting may
yield different solutions as shown by the example depicted in Fig.5.

Fig.5. Min-max Risk Model and Min-sum Model are Different.
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Both models investigate a cycle on k2 + 4 vertices, where k ≥ 8 is an integer. The cost
interval of every edge is specified beside the edge. In particular, c−e = 1/k2 and c+

e = (100k −
1)/(k2(k − 1)), for edge e = vivi+1, i = 1, 2, · · · , k2. Every vertex has prize interval [0, 0]. The
target set consists of two black vertices v1 and vk2+1. The tree in any solution to the MSR PCST
problem or to the MMR PCST problem must be one of the two paths T1 = v1u1u2u3vk2+1 and
T2 = v1v2v3 · · · vk2+1 between v1 and vk2+1. Given budget bound B = 100, using Lemmas 3.1
and 3.2, one can easily verify that the optimal solution to the MMR PCST is (T2,

100
k2 1,0) with

maximum risk 1/k, noting that every feasible solution (T1, x,0) must have some e ∈ E(T1) with
xe ≤ 25, giving a risk at least min

{
25−20
30−20 , 25−19

35−19

}
= 3

8 > 1
k . On the other hand, the optimal

solution to the MSR PCST problem is (T1, x,0) with x = (20, 30, 30, 20) that has risk sum 17
16 ,

noting that every feasible solution on T2 has risk sum at least k ≥ 8. In this example, the
optimal solution to the MMR PCST problem is very inefficient for the MSR PCST problem in
case of large k, and vice versa.

4 Simulation

We simulate the MMR PCST and the MSR PCST models in various of network situations
to investigate the solution behaviors and average performance of both models. Besides the
number N of target vertices and the budget bound B, we introduce the prize factor ρ ≡
(

1
n

∑

v∈V

p−
v +p+

v

2

)/(
1
m

∑

ij∈E

c−
ij

+c+
ij

2

)
to balance the costs at edges and the prizes at vertices, which

may be using different metrics in applications.

4.1 Methodology

To simulate the networks, we adopt some ideas of [18,23] and use the recursive definition of 2-
trees (see Section 2) to randomly generate two different graphs (depicted in Fig.6) with various
of parameters. The instances are designed to have a local structure similar to street map
instances of fiber optics networks

Fig.6. The Two Generated Instances: Graph I and Graph II (with 20 Target Vertices in Grey).

Simulation Method

1. Randomly generate two 75-vertex instances on 1× 1 Euclidian square as shown in Fig.6.
Then randomly select N target vertices with N = 10, 15 and 20, respectively.

2. Randomly generate the cost interval [c−ij , c
+
ij ] of edge vivj as follows: c−ij = (1 − αij)lij

and c+
ij = (1 + αij)lij , where lij is the Euclidian distance between vi and vj , which is

multiplied by a factor of 103 and rounded up to the nearest integer, and αij is a uniform
distributed random value in [0, 1].
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3. Randomly generate value dv for every vertex v ∈ V following a uniform distribution

such that 1
n

∑

v∈V

dv = ρ
(

1
m

∑

{ij}∈E

c−ij+c+
ij

2

)
, where the prize factor ρ takes three different

values, 0.5, 1 and 2, respectively. Generate the prize interval of vertex v as follows:
p−v = (1− λv)dv and p+

v = (1 + λv)dv, where λv is a uniform distributed random value in
[0, 1].

4. For each set of generated cost and prize intervals c−, c+ ∈ RE
+, p−, p+ ∈ RV

+, determine
the range [Bmin, Bmax] of the budget bound B, as specified at the beginning of Section 3
(see Page 9). Set Bmed = (Bmin + Bmax)/2.

5. For each generated instance, solve the MMR PCST and the MSR PCST problems by using
CPLEX as a program platform to implement the algorithms Alg Mmr and Alg Msr,
respectively.

4.2 Numerical Results and Analysis

We present some of the numerical results and analysis derived from Graph I, while the rest of
others are available upon request to the corresponding author.

Fig.7 demonstrates the optimal solutions to the MSR PCST problem as shown in (a,b,c)
and that to the MMR PCST problem as shown in (d,e,f) with different prize factors ρ, budget
bounds B, and target-vertex numbers N. As seen from Fig.7(1), when ρ becomes bigger, the
optimal trees of both models grow larger and contain more non-target leaves. This is because
more vertices have larger prizes and are more profitable to be included in the trees. Fig.7(2)
shows that the optimal trees of both models become smaller as B becomes bigger. The reason
behind this phenomenon is that collecting prizes by adding vertices may lead to adding edges
with the same amount of payments, so the trees tend to include a small number of edges and
vertices. From Fig.7(3) where ρ = 0.5 and B = Bmin, we observe that the optimal trees obtained
grow larger as N becomes bigger, and almost most of leaves in the trees are target vertices since
prizes at vertices are relatively smaller than costs on edges. In addition, there is no significant
difference in structures between optimal trees of two models. This is because, in this case, few
trees are feasible since the budget bounds are tight.

Fig.7. Optimums Vary with Prize Factor ρ, Budget Bound B and Target-vertex Number N.

Fig.8 demonstrates the optimum of the MSR PCST problem (on the left) and that of the
MMR PCST problem (on the right) with different parameters ρ, B, for N = 15. In addition to
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the natural observation that optimums of these two models decrease as B increases, we find the
minimum risk sums more sensitive to variation of prize factor ρ.

Fig.9 demonstrates, with prize factor ρ = 0.5, target-vertex number N = 10 and five different
budget bounds B, the risk sums of the optimal solutions (on the left) and the maximum risks
of the optimal solutions (on the right) of both models. The differences under the same metric
of risk sum are much less notable than that under the same metric of maximum risk. This
could be even more clearly observed in Fig.10 which shows the absolute and relative deviations
of the optimums of the two models, respectively. In particular, under the metric of risk sum
the relative deviation is no greater than 0.75; under the metric of maximum risk, however, the
relative deviation could be as high as 3. In other words, optimal solutions to MMR PCST
problem appear to be good solutions in terms of risk sum objective.

Following the above analysis, we conclude that the model of MMR PCST has better perfor-
mance than the model of MSR PCST in average. In addition to that, it takes only O(n2) time
to obtain an optimal solution to MMR PCST problem in contrast to O(n5) time for MSR PCST
problem.

5 Conclusion

In this paper, we have proposed two risk models for the PCST problem with interval data and
solved them to optimality for series-parallel graphs. Compared with other models for uncertain
optimization problems, their superiorities lie in not only keeping computational complexity
unchanged but also providing flexibility for decision makers. So far risk models have been
proved successful in dealing with several polynomial-time solvable problems. In the future, it
is worthwhile studying how to apply risk models to some other optimization problems with
interval data, particularly NP-hard optimization problems. Moreover, it is interesting to see if
our models and approaches can be extended to the problems where uncertainty is not described
using intervals.
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Fig.8. Optimums Vary with the Budget Bound B and Prize Factor ρ, where Target-vertex Number N = 15.
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Fig.9. Risk Sum (Left) and Maximum Risk (Right) Vary with Budget Bound B, where ρ = 0.5 and N = 10.
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Deviation of Risk Sum v/s Bound (Graph I)
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