
k-Chordal Graphs: from Cops and Robber to
Compact Routing via Treewidth?

A. Kosowski1, B. Li2,3, N. Nisse2, and K. Suchan4,5

1 CEPAGE, INRIA, LaBRI, Talence, France
2 MASCOTTE, INRIA, I3S(CNRS/UNS), Sophia Antipolis, France

3 CAS & AAMS, Beijing, China
4 FIC, Universidad Adolfo Ibáñez, Santiago, Chile

5 WMS, AGH - University of Science and Technology, Krakow, Poland

Abstract. Cops and robber games concern a team of cops that must
capture a robber moving in a graph. We consider the class of k-chordal
graphs, i.e., graphs with no induced cycle of length greater than k, k ≥ 3.
We prove that k − 1 cops are always sufficient to capture a robber in
k-chordal graphs. This leads us to our main result, a new structural
decomposition for a graph class including k-chordal graphs.
We present a quadratic algorithm that, given a graph G and k ≥ 3,
either returns an induced cycle larger than k in G, or computes a tree-
decomposition of G, each bag of which contains a dominating path with at
most k−1 vertices. This allows us to prove that any k-chordal graph with
maximum degree ∆ has treewidth at most (k− 1)(∆− 1) + 2, improving
the O(∆(∆−1)k−3) bound of Bodlaender and Thilikos (1997). Moreover,
any graph admitting such a tree-decomposition has small hyperbolicity.
As an application, for any n-node graph admitting such a tree-decomposi-
tion, we propose a compact routing scheme using routing tables, addresses
and headers of size O(logn) bits and achieving an additive stretch of
O(k log∆). As far as we know, this is the first routing scheme with
O(logn)-routing tables and small additive stretch for k-chordal graphs.

Keyword: Treewidth, chordality, compact routing, cops and robber games.

1 Introduction

Because of the huge size of real-world networks, an important current research
effort concerns exploiting their structural properties for algorithmic purposes.
Indeed, in large-scale networks, even algorithms with polynomial-time in the size
of the instance may become unpractical. So, it is important to design algorithms
depending only quadratically or linearly on the size of the network when its
topology is expected to satisfy some properties. Among these properties, the
chordality of a graph is the length of its longest induced (i.e., chordless) cycle. The
hyperbolicity of a graph reflects how the metric (distances) of the graph is close to
the metric of a tree. A graph has hyperbolicity ≤ δ if, for any u, v, w ∈ V (G) and

? Partially supported by programs Fondap and Basal-CMM, Anillo ACT88 and Fonde-
cyt 11090390 (K.S.), FP7 STREP EULER (N.N.).

for any shortest paths Puv, Pvw, Puw between these three vertices, any vertex in
Puv is at distance at most δ from Pvw ∪Puw [Gro87]. Intuitively, in a graph with
small hyperbolicity, any two shortest paths between the same pair of vertices
are close to each other. Several recent works take advantage of such structural
properties of large-scale networks for algorithm design (e.g., routing [KPBV09]).
Indeed, Internet-type networks have a so-called high clustering coefficient (see
e.g. [WS98]), leading to the existence of very few long chordless cycles, whereas
their low (logarithmic) diameter implies a small hyperbolicity [dMSV11].

Another way to study tree-likeness of graphs is by tree-decompositions. In-
troduced by Robertson and Seymour, such decompositions play an important
role in design of efficient algorithms. Roughly speaking, a tree-decomposition
maps each vertex of a graph to a subtree of the decomposition tree in a way
that the subtrees assigned to adjacent vertices intersect [Bod98]. The nodes of
the decomposition tree are called bags, and the size of a bag is the number of
vertices assigned to it (assigned subtrees intersect the bag). The width of a tree-
decomposition is the maximum size over its bags, and the treewidth of a graph is
the smallest width over its tree-decompositions. By using dynamic programming
based on a tree-decomposition, many NP-hard problems have been shown to be
linear time solvable for graph with bounded treewidth [CM93]. In particular,
there are linear-time algorithms to compute an optimal tree-decomposition of
a graph with bounded treewidth [BK96]. However, from the practical point of
view, this approach has several drawbacks. First, all above-mentioned algorithms
are linear in the size of the graph but (at least) exponential in the treewidth.
Moreover, due to the high clustering coefficient of large-scale networks, their
treewidth is expected to be large [dMSV11]. Hence, to face these problems, it is
important to focus on the structure of the bags of the tree-decomposition, instead
of trying to minimize their size. For instance, several works study the diameter
of the bags [DG07]. In this work, we consider tree-decompositions in which each
bag admits a particular small dominating set. Such decompositions turn out to
be applicable to a large family of graphs (including k-chordal graphs).

1.1 Our results

Our results on tree decomposition are inspired by a study of the so called cops and
robber games. The aim of such a game is to capture a robber moving in a graph,
using as few cops as possible. This problem has been intensively studied in the
literature, allowing for a better understanding of the structure of graphs [BN11].

Outline of the paper. We start by presenting our results for the cops and robber
problem in Section 2. Next, using these results, in Section 3 we provide a new
type of efficiently computable tree-decomposition which we call good tree decom-
position. Our tree decomposition turns out to be applicable to many real-world
graph classes (including k-chordal graphs), and has several algorithmic applica-
tions. Finally, we focus on the applications of this decomposition to the com-
pact routing problem, a research area in which tree decompositions have already
proved useful [Dou05]. The objective of compact routing is to provide a scheme
for finding a path from a sender node to a known destination, taking routing de-
cisions for the packet at every step using only very limited information stored at

each node. In Section 4, we show how to use our tree decomposition to minimize
the additive stretch of the routing scheme (i.e., the difference between the length
of a route computed by the scheme and that of a shortest path connecting the
same pair of nodes) in graphs admitting with k-good tree-decomposition for any
given integer k ≥ 3 (including k-chordal graphs), assuming logarithmic size of
packet headers and routing tables stored at each node.

The necessary terminology concerning cops and robber games, tree decom-
positions, and compact routing, is introduced in the corresponding sections.

Main contributions. Our main contribution is the design of a O(m2) algorithm
that, given a m-edge graph G and an integer k ≥ 3, either returns an induced
cycle of length at least k + 1 in G or computes a tree-decomposition of G with
each bag having a dominating path of order ≤ k − 1. That is, each bag of our
tree-decomposition contains a chordless path with at most k − 1 vertices, such
that any vertex in the bag is either in the path or adjacent to some vertex of the
path. If G, with maximum degree ∆, admits such a decomposition, then G has
treewidth at most (k− 1)(∆− 1) + 2, tree-length at most k and hyperbolicity at
most b 32kc. In particular, this shows that the treewidth of any k-chordal graph
is upper-bounded by O(k ·∆), improving the exponential bound of [BT97]. The
proposed algorithm is mainly derived from our proof of the fact that k− 1 cops
are sufficient to capture a robber in k-chordal graphs.

Our tree-decomposition may be used efficiently for solving problems using
dynamic programming in graphs of small chordality and small maximum degree.
In this paper, we focus on different application. We present a compact routing
scheme that uses our tree-decomposition and that achieves an additive stretch
≤ 2k(dlog∆e + 5

2) − 5 with routing tables, addresses and message headers of
O(max{k·log∆, log n}) bits. An earlier approach of Dourisboure achieved stretch
k + 1, but with routing tables of size O(log2 n).

1.2 Related Work

Chordality and hyperbolicity. Chordality and hyperbolicity are both parameters
measuring the tree-likeness of a graph. Some papers consider relations between
them [WZ11]. In particular, the hyperbolicity of a k-chordal graph is at most
k, but the difference may be arbitrary large (take a 3 × n-grid). The seminal
definition of Gromov hyperbolicity is the following. A graph G is d-hyperbolic
provided that for any vertices x, y, u, v ∈ V (G), the two larger of the three sums
d(u, v)+d(x, y), d(u, x)+d(v, y) and d(u, y)+d(v, x) differ by at most 2d [Gro87].
This definition is equivalent to the one we use in this paper, using so called thin
triangles, up to a constant ratio. No algorithm better than the O(n4)-brute force
algorithm (testing all 4-tuples in G) is known to compute Gromov hyperbolicity
of n-node graphs. The problem of computing the chordality of a graph G is
NP-complete since it may be related to computing a longest cycle in the graph
obtained from G after subdividing all edges once. Finding the longest induced
path is W [2]-complete [CF07] and the problem is Fixed Parameter Tractable in
planar graphs [KK09].

Treewidth. It is NP-complete to decide whether the treewidth of a graph G is
at most k [ACP87]. The treewidth problem is polynomially solvable in chordal
graphs, cographs, circular arc graphs, chordal bipartite graphs, etc. [Bod98].
Bodlaender and Thilikos proved that the treewidth of a k-chordal graph with
maximum degree ∆ is at most ∆(∆−1)k−3 which implies that treewidth is poly-
nomially computable in the class of graphs with chordality and maximum degree
bounded by constants [BT97]. They also proved that the treewidth problem is
NP-complete for graphs with small maximum degree [BT97].

Compact routing. In [AGM+08], a universal name-independent routing scheme
with stretch linear in k and n1/kpolylog(n) space is provided. There are weighted
trees for which every name-independent routing scheme with space less than n1/k

requires stretch at least 2k + 1 and average stretch at least k/4 [AGD06]. Sub-
sequently, the interest of the scientific community was turned toward specific
properties of graphs. Several routing schemes have been proposed for particular
graph classes: e.g., trees [FG01], bounded doubling dimension [AGGM06], ex-
cluding a fixed graph as a minor [AG06], etc.The best compact routing scheme in
k-chordal graphs (independent from the maximum degree) is due to Dourisboure
and achieves a stretch of k+1 using routing tables of size O(log2 n) bits [Dou05].
A routing scheme achieving stretch k − 1 with a distributed algorithm for com-
puting routing tables of size O(∆ log n) bits has been proposed in [NSR12].

2 A detour through Cops and Robber games

Let us formally define a cops’ strategy to capture a robber. Given a graph G,
a player starts by placing k ≥ 1 cops on some vertices of G, then a visible
robber is placed on one vertex of G. Alternately, the cop-player may move each
cop along one edge, and then the robber can move to an adjacent vertex. The
robber is captured if, at some step, a cop occupies the same vertex. The cop-
number of a graph G, denoted by cn(G), is the fewest number of cops required to
capture a robber in G (see the recent book [BN11]). Bounds on the cop-number
have been provided for various graph classes and provided many nice structural
results [BN11]. We consider the class of k-chordal graphs.

Theorem 1. Let k ≥ 3. For any k-chordal connected graph G, cn(G) ≤ k − 1,
and there exists a strategy where all k − 1 cops always occupy a chordless path.

Proof. Let v ∈ V be any vertex and place all cops at it. Then, the robber chooses
a vertex. Now, at some step, assume that the cops are occupying {v1, · · · , vi}
which induce a chordless path, i ≤ k− 1, and it is the turn of the cops (initially
i = 1). Let N = ∪j≤iN [vj], if the robber occupies a vertex in N , it is captured
during the next move. Else, let R 6= ∅ be the connected component of G \ N
occupied by the robber. Finally, let S be the set of vertices in N that have some
neighbor in R. Clearly, while R is not empty, then so does S.

Now, there are two cases to be considered. If N(v1)∩S ⊆ ∪1<j≤iN [vj]. This
case may happen only if i > 1. Then, ”remove” the cop(s) occupying v1. That

is, the cops occupying v1 go to v2. Symmetrically, if N(vi) ∩ S ⊆ ∪1≤j<iN [vj],
then the cops occupying vi go to vi−1. Then, the cops occupy a shorter chordless
path while the robber is still restricted to R.

Hence, there is u ∈ (N(v1) ∩ S) \ (∪1<j≤iN [vj]) and v ∈ (N(vi) ∩ S) \
(∪1≤j<iN [vj]). First, we show that this case may happen only if i < k − 1.
Indeed, otherwise, let P be a shortest path between such u and v with all internal
vertices in R (possibly, P is reduced to an edge). Such a path exists by definition
of S. Then, v1, · · · , vi, v, P, u is a chordless cycle of length at least i+ 2. Since G
is k-chordal, this implies that i+2 ≤ k. Then, one cop goes to v = vi+1 while all
the vertices in {v1, · · · , vi} remain occupied. Since v ∈ S, it has some neighbor
in R, and then, the robber is restricted to occupy R′ the connected component
of G \ (N ∪N [v]) which is strictly contained in R.

Therefore, proceeding as described above strictly reduces the area of the
robber (i.e., R) after < k steps and then the robber is eventually captured. ut

Note that previous Theorem somehow extends the model in [CN05] where
the authors consider the game when two cops always reminding at distance at
most 2 from each other must capture a robber. It is possible to improve the
previous result in case k = 4. Indeed, for any 4-chordal connected graph G,
then cn(G) ≤ 2. Due to lack of space, the proof is omitted and can be found
in [KLNS12].

Theorem 1 relies on chordless paths P in G such that N [P] is a separator
of G. In next section, we show how to adapt this to compute particular tree-
decompositions.

3 Structured Tree-decomposition

In this section, we present our main contribution, that is, an algorithm that,
given a n-node graph G and an integer k ≥ 3, either returns an induced cycle of
length at least k+1 in G or computes a tree-decomposition of G with interesting
structural properties. First, we need some definitions.

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I}, T = (I,M)),
where T is a tree and {Xi|i ∈ I} is a family of subsets, called bags, of vertices of
G such that (1) V = ∪i∈IXi; (2) ∀{uv} ∈ E there is i ∈ I such that u, v ∈ Xi;
and (3) ∀v ∈ V , {i ∈ I|v ∈ Xi} induces a (connected) subtree of T . The width of
a tree-decomposition is the size (minus 1) of its largest bag and its `-width is the
maximum diameter of the subgraphs induced by the bags. The treewidth denoted
by tw(G), resp., tree-length denoted by tl(G), of a graph G is the minimum width,
resp., `-width, over all possible tree-decompositions of G [DG07].

Let k ≥ 2. A k-caterpillar is a graph that has a dominating set, called back-
bone, which induces a chordless path of order at most k− 1. That is, any vertex
of a k-caterpillar either belongs to the backbone or is adjacent to a vertex of the
backbone. A tree-decomposition is said to be k-good if each of its bags induces
a k-caterpillar.

Theorem 2. There is a O(m2)-algorithm that takes a m-edge graph G and an
integer k ≥ 3 as inputs and: either returns an induced cycle of length at least
k + 1; or returns a k-good tree-decomposition of G;

Proof. The proof is by induction on |V (G)| = n. We prove that either we find
an induced cycle larger than k, or for any chordless path P = {v1, . . . , vi} with
i ≤ k − 1, there is a k-good tree-decomposition for G with one bag containing
NG[P]. Obviously, it is true if |V (G)| = 1. Now we assume that it is true for any
graph G with n′ nodes, 1 ≤ n′ < n, and we show it is true for n-node graphs.

Let G be a connected n-node graph, n > 1. Let P = {v1, . . . , vi} be any
chordless path with i ≤ k − 1 and let N = NG[P], Nj = NG[vj] for j = 1, . . . , i
and G′ = G \N . There are three cases to be considered:

Case 1. G′ = ∅. In this case, we have G = N . The desired tree-decomposition consists
of one node, corresponding to the bag N .

Case 2. G′ is disconnected. Let C1, . . . , Cr, r ≥ 2, be the connected components
of G′ For any j ≤ r, let Gj be the graph induced by Cj ∪ N . Note that
any induced cycle in Gj , j ≤ r, is an induced cycle in G. By the induction
hypothesis, either there is an induced cycle C larger than k in Gj , then C
is also an induced cycle larger than k in G, or our algorithm computes a
k-good tree-decomposition TDj of Gj with one bag Xj containing N . To
obtain the k-good tree-decomposition of G, we combine the TDj ’s, j ≤ r,
by adding a bag X = N adjacent to all the bags Xj for j = 1, . . . , r. It is
easy to see that this tree-decomposition satisfies our requirements.

Case 3. G′ is connected. We consider the order of the path P = {v1, . . . , vi}. In
the following proof, first we prove that if the order of path P , i = k − 1,
then we can find either an induced cycle larger than k or the required tree-
decomposition for G. Subsequently, we prove it is also true for path with
length i < k − 1 by reversed induction on i. More precisely, if i < k − 1,
either we find directly the desired cycle or tree-decomposition, or we show
that there exists a vertex vi+1 such that P ′ = P ∪{vi+1} is a chordless path
with order i+1. By reverse induction on i we can find either an induced cycle
larger than k or a k-good tree-decomposition of G with one bag containing
NG[P ′] ⊇ NG[P].

(a) If i = k − 1, then we consider the following two cases.
– Assume first that there is u ∈ NG(P) ∪ {v1, vi} (in particular, u /∈
P \ {v1, vi}) such that NG(u) ⊆ NG[P \ {u}]. Let G̃ = G \ u. Then
G̃ is a graph with n′ = n − 1 vertices. By the induction hypothesis
on n′ < n, the algorithm either finds an induced cycle larger than k
in G̃, then it is also the one in G; Otherwise our algorithm computes
a k-good tree-decomposition T̃D of G̃ with one bag X̃ containing
NG̃[P \ {u}]. To obtain the required tree-decomposition of G, we

just add vertex u into the bag X̃. The tree-decomposition is still
k-good.

– Otherwise, there exist two distinct vertices v0 ∈ NG(v1) and vi+1 ∈
NG(vi) and there are vertices u1, u2 ∈ V (G′) (possibly u1 = u2) such

that {v0, u1} ∈ E(G) and {vi+1, u2} ∈ E(G). If {v0, vi+1} ∈ E(G),
P ∪ {v0, vi+1} is an induced cycle with k+ 1 vertices. Otherwise, let
Q be a shortest path between u1 and u2 in G′ (Q exists since G′ is
connected). So P ∪{vi+1, u2}∪Q∪{u1, v0} is an induced cycle with
at least k + 1 vertices in G.

(b) If i < k − 1, we proceed by reverse induction on i. Namely, assume
that, for any chordless path Q with i + 1 vertices, our algorithm ei-
ther finds an induced cycle larger than k in G or computes a k-good
tree-decomposition of G with one bag containing N [Q]. Note that the
initialization of the induction holds for i = k−1 as described in case (b).
We show it still holds for a chordless path with i vertices. We consider
the following two cases.

– Either there is u ∈ NG(P) ∪ {v1, vi} (in particular, u /∈ P \ {v1, vi})
such that NG(u) ⊆ NG[P \ {u}]. That is, we are in the same case
as the first item of (a). We proceed as above and the result holds by
induction on n.

– Or there is w ∈ NG(v1) ∪NG(vi) \ P such that P ∪ {w} is chordless
(i.e., w is a neighbor of v1 or vi but not both). Therefore, we apply
the induction hypothesis (on i) on P ′ = P ∪{w}. By the assumption
on i, either our algorithm returns an induced cycle larger than k or it
computes a k-good tree-decomposition of G with one bag containing
NG[P ′] ⊇ NG[P].

To conclude, we describe the algorithm and study its complexity. Let G be a m-
edge n-node graph with maximum degree ∆. Roughly, the algorithm proceeds by
steps. At each step, one vertex is considered and the step takes O(m) time. We
prove that at each step (but the initial step), at least one edge will be considered
and that all edges are considered at most once. This implies a time-complexity of
O(m2) for the algorithm. Due to lack of space, the proof of the time-complexity
is omitted and can be found in [KLNS12]. ut

From the above theorem, it is easy to get the following corollaries. Due to
lack of space, the proof is omitted and can be found in [KLNS12].

Theorem 3. Let G be a graph that admits a k-good tree-decomposition. Then
tw(G) ≤ (k − 1)(∆ − 1) + 2 where ∆ is its maximum degree, tl(G) ≤ k, and
hyperbolicity at most b 32kc.

Corollary 1. Any k-chordal graph G with maximum degree ∆ has treewidth at
most (k − 1)(∆− 1) + 2, tree-length at most k and hyperbolicity at most b 32kc.

Corollary 2. There is an algorithm that, given a m-edge graph G and k ≥ 3,
states that either G has chordality at least k + 1 or G has hyperbolicity at most
b 32kc, in time O(m2).

4 Application of k-good tree-decompositions for routing

In this section, we propose a compact routing scheme for any n-node graph
G that admit a k-good tree-decomposition (this includes k-chordal graphs). ∆
denotes the maximum degree of G and, for any v ∈ V (G), dv is its degree.

4.1 Model and performance of the routing scheme

We propose a labelled routing scheme which means that we are allowed to give
one identifier, name(v), of O(log n) bits to any vertex v of G. Moreover, fol-
lowing [FG01], we consider the designer-port model, which allows us to give
a label of O(log dv) bits to any edge of G incident to v ∈ V (G). More pre-
cisely, in our case, for any e ∈ E(G) and any v ∈ V (G) incident to e, e re-
ceives one port-number qe,v ∈ {1, · · · , dv} plus one bit. Finally, to any node
v ∈ V (G), we assign a routing table, denoted by Table(v), where are stored
local information of size O(max{k · log∆, log n}) bits. Any message has a header
that contains the address name(t) of the destination t, three modifiable integers
pos ∈ {−1, 0, · · · , k− 1}, cntd, cnt′d ∈ {−1, 0, · · · , ∆+ 1}, one bit start and some
memory, called path, of size O(k · log∆) bits. start and path change only once.

Following our routing scheme, a message at some node v uses its header,
name(v), Table(v) and the port-numbers of the edges incident to v to compute
its new header and to choose an edge e = {v, u} along which is goes. Arriving
at u, the message also knows by which edge it arrived. The length of the path
followed by a message from a source s ∈ V (G) to a destination t ∈ V (G), using
the routing scheme, is denoted by |P (s, t)|, and the stretch of the scheme is
maxs,t∈V (G) |P (s, t)| − d(s, t) where d(s, t) is the distance between s and t in G.

To design our routing scheme, we combine the compact routing scheme
in trees of [FG01] together with the k-good tree-decomposition. Roughly, the
scheme consists in following the paths in a BFS-tree F of G, using the scheme
in [FG01], and uses one bag of the tree-decomposition as a short-cut between
two branches of F . Intuitively, if the source s and the destination d are ”far
apart”, then there is a bag X of the tree-decomposition that separates s and d
in G. The message follows the path in F to the root of F until it reaches X,
then an exhaustive search is done in X until the message finds an ancestor y of
d, and finally it follows the path from y to d in F using the scheme of [FG01].
The remaining part of this Section is devoted to the proof of the next Theorem
that summarizes the performances of our routing scheme.

Theorem 4. For any n-node m-edge graph G with maximum degree ∆ and
with a k-good tree-decomposition, there is a labelled routing scheme R with the
following properties. R uses addresses of size O(log n) bits, port-numbers of size
O(log∆) bits and routing tables of size O(max{k · log∆, log n}) bits. The routing
tables, addresses and port-numbers can be computed in time O(m2). Except the
address of the destination (not modifiable), the header of a message contains
O(k · log∆) modifiable bits. The header and next hop is computed in time O(1)
at each step of the routing. Finally, the additive stretch is ≤ 2k(dlog∆e+ 5

2)−5.

4.2 Data structures

Routing in trees [FG01]. Since, we use the shortest path routing scheme
proposed in [FG01] for trees, we start by recalling some of the data structures
they use. Let T be a tree rooted in r ∈ V (T). For any v ∈ V (T), let Tv be the
subtree of T rooted in v and let wT (v) = |V (Tv)| be the weight of v. Consider
a Depth-First-Search (DFS) traversal of T , starting from r, and guided by the
weight of the vertices, i.e., at each vertex, the DFS numbering visits first the
largest subtree, then the second largest subtree, and so on. For any v ∈ V (T), let
IdT (v) ∈ {1, · · · , n} be the rank of v in the DFS. It is important to note that, for
any u, v ∈ V (T), v ∈ V (Tu) if and only if IdT (u) ≤ IdT (v) ≤ IdT (u)+wT (u)−1.

For any v ∈ V (T) and any e incident to v, the edge e receives a port-number
pT (e, v) at v as follows. pT (e, v) = 0 if v 6= r and e leads to the parent of v in T ,
i.e., e is the first edge of the path from v to r. Otherwise, let u1, · · · , ud be the
children of v (d = dv if v = r and d = dv − 1 otherwise) ordered by the size of
their weight, i.e., such that wT (u1) ≥ · · · ≥ wT (ud). Then, let pT ({ui, v}, v) = i,
for any i ≤ d. Finally, each vertex v ∈ V (T) is assigned a routing table RTT (v)
and an address `T (v) of size O(log n) bits allowing a shortest path routing in
trees (see details in [FG01]).

Our data structures. Let G be a graph with the k-good tree-decomposition
(T = (I,M), {Xi|i ∈ I}). Let r ∈ V (G). Let F be a Breadth-First-Search(BFS)
tree of G rooted at r. Let T be rooted in b ∈ I such that r ∈ Xb.

We use (some of) the data structures of [FG01] for both trees F and T .
More precisely, for any v ∈ V (G), let IdF (v), wF (v), `F (v) and RTF (v) defined
as above for the BFS-tree F . Moreover, for any edge e ∈ E(G) incident to v,
let pe,v = −1 if e /∈ E(F) and pe,v = pF (e, v) is defined as above if e ∈ E(F).
These structures will be used to route in F .

For any i ∈ I, let IdT (i) and wT (i) be defined as above for the tree T . For
any v ∈ V (G), let Bv ∈ I be the bag of T containing v, i.e., v ∈ XBv

, and that
is closest to the root b of T . To simplify the notations, we set IdT (v) = IdT (Bv)
and wT (v) = wT (Bv). These structures will be used to decide “where” we are in
the tree-decomposition when the message reaches v ∈ V (G).

For any v ∈ V (G), let {u1, · · · , udv
} = N(v) be its neighborhood ordered

such that IdF (u1) < IdF (u2) < · · · < IdF (udv
). We give a second port-number

to any edge. More precisely, for any e = {v, ui}, i ≤ dv, let qe,v = i. This ordering
will allow to decide quickly, in time O(log∆) by binary search, whether a vertex
has some particular vertex in its neighbors.

Finally, for any i ∈ I, let Pi = (v1, · · · , v`) be the backbone of Bi with
` ≤ k − 1 (recall we consider a k-good tree decomposition). Let {e1, · · · , e`−1}
be the set of edges of Pi in order. We set Backbonei = {qe1,v1 , qe1,v2

, qe2,v2
,

· · · , , qe`−1,v`−1
, qe`−1,v`}. For any v such that IdT (v) = i ∈ I, if v = vj ∈ Pi,

then back(v) = (∅, j) and if v /∈ Pi, let back(v) = (qe,v, j) where e = {v, vj} and
vj (j ≤ `) is the neighbor of v in Pi with j minimum. This information will be
used to cross a bag (using its backbone) of the tree-decomposition.

We are now ready to define the address name(v) and the routing table
Table(v) of any v ∈ V (G).

Now for every v ∈ V (G), we define the address name(v) = 〈`F (v), IdT (v)〉.
Note that, in particular, `F (v) contains IdF (v). We also define the routing table
of v as Table(v) = 〈RTF (v), wT (v), Backbone(v), back(v)〉.

Next table summarizes all these data structures.
notation description

name(v) `F (v) the address of v in tree F [FG01]
idT (v) the identifier of the highest bag Bv containing v in T
RTF (v) the routing table used of v for routing in F [FG01]

Table(v) wT (v) the weight of the subtree of T rooted in Bv

Backbone(v) information to navigate in the backbone of Bv

back(v) information to reach the backbone of Bv from v

Clearly, name(v) has size O(log n) bits and Table(v) has size O(max{k ·
log∆, log n}) bits. Moreover, any edge e incident to v receives two port-numbers
pe,v and qe,v of size O(log∆) bits. Actually, we can replace pe,v by one bit be,v
that equals 1 if e ∈ E(F) and be,v = 0 otherwise. Indeed, if u1, · · · , udv are the
neighbors of v ordered by increasing IdF , (pe′1,v, · · · , pe′d′ ,v) is the subsequence of

(qe1,v, · · · , qedv ,v) (where ei = {v, ui}, i ≤ dv) obtained by keeping only the edges
e′ with be′,v = 1. Therefore, it is possible to compute pe,v using the port-numbers
q and the bits b. In the sequels, we use pe,v and qe,v for an easier description.

4.3 Routing algorithm in k-good tree-decomposable graphs

Let us consider a message that must be sent to some destination t ∈ V (G). Ini-
tially, the header of the message contains name(t), the three counters pos, cntd,
cnt′d = −1, the bit start = 0 and the memory path = ∅. Let v ∈ V (G) be the
current node where the message stands. First, using IdF (t) in `F (t) ∈ name(t),
IdF (v) in name(v) and wF (v) in RTF (v) ∈ Table(v), it is possible to decide
in constant time if v is an ancestor of t in F (which is the case iff IdF (v) ≤
IdF (t) ≤ IdF (v) + wF (v) − 1). Similarly, using IdT (t) in name(t), IdT (v) in
name(v) and wT (v) in Table(v), it is possible to decide if the highest bag Bv

containing v is an ancestor of Bt in T . There are several cases to be considered.

– If v is the ancestor of t in F then, using RTF (v) and the scheme in trees
of [FG01], the message follows the edge leading to the child w of v in F on
the shortest path in F toward t.
Since w is still an ancestor of t (or w = t) and F is a BFS-tree, the message
will go on in that manner until it reaches t via a shortest path from v to t
in G.

– Else, if path = ∅, then
• if neither Bv is an ancestor of Bt in T nor Bt = Bv, then the message

follows the edge leading to the parent of v in F , i.e., the edge with
port-number pe,v = 0.
Note that, going on that way, the message will eventually reach a node
w such that either w is an ancestor of t in F or Bw is an ancestor of Bt

in T since, by this rule, the message goes toward the root r of F (via a
shortest path) and because Br is the ancestor of any bag in T .

• Else, Backbone(v) is first copied in path in the header of the message.
The goal of it is to explore the bagBv using its backbone P = {v1, · · · , v`}
(` < k), until the message finds an ancestor of t. Clearly, an ancestor of
t belongs to Bv since either Bv = Bt, or Bv is an ancestor of Bt and
therefore, Bv is a separator between r and t, or r ∈ Bv.
The first phase of the exploration of Bv is to reach its end v1. To do so,
the message uses back(v) = (q, j) ∈ Table(v). First, pos is set to j. Then,
if v /∈ P , i.e., q 6= ∅, the message uses the port-number q. Doing so, it
reaches the node vj ∈ P . Finally, if j = 1, start is set to 1, cntd = 0 and
cnt′d = dv1 +1. This last operation means that the message can start the
exploration of Bv from v1. Note that, from now, path 6= ∅ and pos 6= −1.

– Else, if start = 0, then the message is at v = vj ∈ P where P = {v1, · · · , v`} is
the backbone of some bag of the tree-decomposition. Moreover, in the field
path of the header, there are the port-numbers allowing to follow P . The
message follows the corresponding port-number to reach vj−1. pos = j − 1.
If j − 1 = 1, start is set to 1, cntd = 0 and cnt′d = dv1 + 1.

– Else, if start = 1, then the exploration of a bag containing an ancestor of
t has begun. The key point is that any ancestor w of t in F is such that
IdF (w) ≤ IdF (t) ≤ IdF (w) +wF (w)−1. Using this property, in each vertex
vj of the backbone P = {v1, · · · , v`}, the message explores the neighbors of
vj by binary search.

• If cntd = cnt′d − 1, the neighborhood of the current node v = vj , where
j = pos, has already been explored and no ancestor of t has been found.
In that case, using path, the message goes to vj+1 the next vertex in the
backbone. pos = j + 1.

• Otherwise, let pn = b cnt
′
d+cntd
2 c. The message takes port-number r in

v (considering the port-numbers q, i.e., considering all neighbors of v)
toward vertex w. If w is an ancestor of t, we go to the first case of the
algorithm. Otherwise, the message goes back to v = vj . This is possible
because our model allows a message to remember the port-number by
which it arrived to a node. Moreover, if IdF (w) < IdF (t) + wF (w)− 1,
then cntd is set to r and cnt′d is set to pn otherwise.

The fact that the message eventually reaches its destination follows the above
description. Moreover, the computation of the next hop and the modification of
the header clearly take time O(1). Due to lack of space, the proof of the stretch,
described in next lemma, is omitted and can be found in [KLNS12].

Lemma 1. Our routing scheme has stretch ≤ 2k(dlog∆e+ 5
2)− 5.

5 Conclusion and Further Work

It would be interesting to reduce the O(k · log∆) stretch due to the dichotomic
search phase of our routing scheme. Another interesting topic concerns the com-
putation of tree-decompositions not trying to minimize the size of the bag but
imposing some specific algorithmically useful structure.

References

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Discrete Methods, 8:277–284, 1987.

[AG06] I. Abraham and C. Gavoille. Object location using path separators. In
PODC, pages 188–197. ACM, 2006.

[AGD06] I. Abraham, C. Gavoille, and D.Malkhi. On space-stretch trade-offs: Lower
bounds. In SPAA, pages 217–224, 2006.

[AGGM06] I. Abraham, C. Gavoille, A.V. Goldberg, and D. Malkhi. Routing in net-
works with low doubling dimension. In ICDCS, page 75, 2006.

[AGM+08] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact
name-independent routing with minimum stretch. ACM T. Alg., 4(3), 2008.

[BK96] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for
the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

[BN11] A. Bonato and R. Nowakovski. The game of Cops and Robber on Graphs.
American Math. Soc., 2011.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci., 209(1-2):1–45, 1998.

[BT97] H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with small
chordality. Disc. Ap. Maths, 79(1-3):45–61, 1997.

[CF07] Y. Chen and J. Flum. On parameterized path and chordless path problems.
In CCC, pages 250–263, 2007.

[CM93] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. TCS, 109:49–82, 1993.

[CN05] N. E. Clarke and R. J. Nowakowski. Tandem-win graphs. Discrete Mathe-
matics, 299(1-3):56–64, 2005.

[DG07] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small
diameter. Discrete Mathematics, 307(16):2008–2029, 2007.

[dMSV11] F. de Montgolfier, M. Soto, and L. Viennot. Treewidth and hyperbolicity
of the internet. In NCA, pages 25–32. IEEE Comp. Soc., 2011.

[Dou05] Y. Dourisboure. Compact routing schemes for generalised chordal graphs.
J. of Graph Alg. and App, 9(2):277–297, 2005.

[FG01] P. Fraigniaud and C. Gavoille. Routing in trees. In 28th Int. Col. on Aut.,
Lang. and Prog. (ICALP), pages 757–772, 2001.

[Gro87] M. Gromov. Hyperbolic groups. Essays in Group Theory, 8:75–263, 1987.
[KK09] Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced

cycle in planar graphs and bounded genus graphs. In 20th Annual ACM-
SIAM Symp. on Discrete Alg. (SODA), pages 1146–1155. SIAM, 2009.

[KLNS12] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-chordal graphs: from
cops and robber to compact routing via treewidth, 2012. Report, INRIA-
RR7888, http://www-sop.inria.fr/members/Bi.Li/RR-7888.pdf.

[KPBV09] D. V. Krioukov, F. Papadopoulos, M. Boguñá, and A. Vahdat. Greedy
forwarding in scale-free networks embedded in hyperbolic metric spaces.
SIGMETRICS Performance Evaluation Review, 37(2):15–17, 2009.

[NSR12] N. Nisse, K. Suchan, and I. Rapaport. Distributed computing of efficient
routing schemes in generalized chordal graphs. TCS, 2012. To appear.

[WS98] D. J. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, 1998.

[WZ11] Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph. Electr. J.
Comb., 18(1), 2011.

