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Abstract Cops and robber games, introduced by Winkler and Nowakowski (in Dis-
crete Math. 43(2–3), 235–239, 1983) and independently defined by Quilliot (in J.
Comb. Theory, Ser. B 38(1), 89–92, 1985), concern a team of cops that must capture
a robber moving in a graph. We consider the class of k-chordal graphs, i.e., graphs
with no induced (chordless) cycle of length greater than k, k ≥ 3. We prove that k − 1
cops are always sufficient to capture a robber in k-chordal graphs. This leads us to
our main result, a new structural decomposition for a graph class including k-chordal
graphs.

We present a polynomial-time algorithm that, given a graph G and k ≥ 3, either
returns an induced cycle larger than k in G, or computes a tree-decomposition of
G, each bag of which contains a dominating path with at most k − 1 vertices. This
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allows us to prove that any k-chordal graph with maximum degree Δ has treewidth at
most (k − 1)(Δ − 1) + 2, improving the O(Δ(Δ − 1)k−3) bound of Bodlaender and
Thilikos (Discrete Appl. Math. 79(1–3), 45–61, 1997. Moreover, any graph admitting
such a tree-decomposition has small hyperbolicity).

As an application, for any n-vertex graph admitting such a tree-decomposition,
we propose a compact routing scheme using routing tables, addresses and headers of
size O(k logΔ+ logn) bits and achieving an additive stretch of O(k logΔ). As far as
we know, this is the first routing scheme with O(k logΔ + logn)-routing tables and
small additive stretch for k-chordal graphs.

Keywords Treewidth · Chordality · Compact routing · Cops and robber games

1 Introduction

Because of the huge size of real-world networks, an important current research effort
concerns exploiting their structural properties for algorithmic purposes. Indeed, in
large-scale networks, even algorithms with polynomial-time in the size of the instance
may become unpractical. Therefore, it is important to design algorithms depending
only quadratically or linearly on the size of the network when its topology is expected
to satisfy some properties. Among these properties, the chordality of a graph is the
length of its longest induced (i.e., chordless) cycle. The (Gromov) hyperbolicity of
a graph reflects how the metric (distances) of the graph is close to the metric of a
tree. More precisely, a graph has hyperbolicity ≤ δ if, for any u,v,w ∈ V (G) and
any shortest paths Puv,Pvw,Puw between these three vertices, any vertex in Puv is
at distance at most δ from Pvw ∪ Puw [31]. Intuitively, in a graph with small hyper-
bolicity, any two shortest paths between the same pair of vertices are close to each
other. Several recent works take advantage of such structural properties of large-scale
networks for algorithm design (e.g., routing [21, 37]). Indeed, Internet-type networks
have a so-called high clustering coefficient (see e.g. [42, 49]), leading to the existence
of very few long chordless cycles, whereas their low (logarithmic) diameter implies
a small hyperbolicity [26].

Another way to study tree-likeness of graphs is by tree-decompositions. Intro-
duced by Robertson and Seymour [44], such decompositions play an important role
in design of efficient algorithms. Roughly speaking, a tree-decomposition maps each
vertex of a graph to a subtree of the decomposition tree in a way that the subtrees
assigned to adjacent vertices intersect [13, 44]. The nodes of the decomposition tree
are called bags, and the size of a bag is the number of vertices assigned to it. The
width of a tree-decomposition is the maximum size over its bags minus 1, and the
treewidth of a graph is the smallest width over its tree-decompositions. By using dy-
namic programming based on a tree-decomposition, many NP-hard problems have
been shown to be linear time solvable for graphs of bounded treewidth [25]. In par-
ticular, there are linear-time algorithms to compute an optimal tree-decomposition of
a graph with bounded treewidth [12, 14]. However, from the practical point of view,
this approach has several drawbacks. First, all above-mentioned algorithms are linear
in the size of the graph but (at least) exponential in the treewidth. Moreover, due to
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the high clustering coefficient of large-scale networks, their treewidth is expected to
be large [26]. Hence, to face these problems, it is important to focus on the structure
of the bags of the tree-decomposition, instead of trying to minimize their size. For
instance, several works study the diameter of the bags [28, 38]. In this work, we con-
sider tree-decompositions in which each bag admits a particular small dominating set.
Such decompositions turn out to be applicable to a large family of graphs (including
k-chordal graphs).

1.1 Our Results

Our results on tree decomposition are inspired by a study of the so called cops and
robber games (Winkler and Nowakowski [41], Quilliot [43]). The aim of such a game
is to capture a robber moving in a graph, using as few cops as possible. This problem
has been intensively studied in the literature, allowing for a better understanding of
the structure of graphs [17].

Outline of the Paper We start by presenting our results for the cops and robber
problem in Sect. 2. Next, using these results, in Sect. 3 we provide a new type of
efficiently computable tree-decomposition which we call good tree decomposition.
Our tree decomposition turns out to be applicable to many real-world graph classes
(including k-chordal graphs), and has several algorithmic applications. Finally, we
focus on the applications of this decomposition to the compact routing problem, a
research area in which tree decompositions have already proved useful [27]. The ob-
jective of compact routing is to provide a scheme for finding a path from a sender
vertex to a known destination, taking routing decisions for the packet at every step
using only very limited information stored at each vertex. In Sect. 4, we show how
to use our tree decomposition to minimize the additive stretch of the routing scheme
(i.e., the difference between the length of a route computed by the scheme and that
of a shortest path connecting the same pair of vertices) in graphs admitting a k-good
tree-decomposition for any given integer k ≥ 3 (including k-chordal graphs), assum-
ing logarithmic size of packet headers and routing tables stored at each vertex.

The necessary terminology concerning cops and robber games, tree decomposi-
tions, and compact routing, is introduced in the corresponding sections.

Main Contributions Our main contribution is the design of a polynomial-time algo-
rithm that, given a n-vertex graph G and an integer k ≥ 3, either returns an induced
cycle of length at least k + 1 in G or computes a tree-decomposition of G with each
bag having a dominating path of order (number of vertices on the path) at most k − 1.
More precisely, each bag of our tree-decomposition contains a chordless path with at
most k − 1 vertices, such that any vertex in the bag is either on the path or adjacent
to some vertex of the path. In the case when G admits such a decomposition, this
ensures that G has treewidth at most (k − 1)(Δ − 1) + 2 (where Δ is the maximum
degree), tree-length at most k and Gromov hyperbolicity at most � 3

2k�. In particular,
this shows that the treewidth of any k-chordal graph is upper-bounded by O(k · Δ),
improving the exponential bound of [16]. The proposed algorithm is mainly derived
from our proof of the fact that k−1 cops are sufficient to capture a robber in k-chordal
graphs (generalizing some results in [7, 24]).
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Our tree-decomposition may be used efficiently for solving problems using dy-
namic programming in graphs of small chordality and small maximum degree. In
particular, we present a compact routing scheme that uses our tree-decomposition and
that achieves an additive stretch ≤ 2k(�logΔ	 + 5

2 ) − 2�logΔ	 − 4 with routing ta-
bles, addresses and message headers of O(k · logΔ+ logn) bits. An earlier approach
of Dourisboure achieved stretch k + 1, but with routing tables of size O(log2 n).

1.2 Related Work

Chordality and Hyperbolicity Chordality and hyperbolicity are both parameters
measuring “tree-likeness” of a graph. Some papers consider relations between
them [11, 50]. In particular, the hyperbolicity of a k-chordal graph is at most k,
i.e. the hyperbolicity of a graph is at most its chordality. But the gap, i.e. the dif-
ference between the two parameters, may be arbitrary large (take a 3 × n-grid).
The seminal definition of hyperbolicity is the following. A graph G is δ-hyperbolic
provided that for any vertices x, y,u, v ∈ V (G), the two larger of the three sums
d(u, v) + d(x, y), d(u, x) + d(v, y) and d(u, y) + d(v, x) differ by at most 2δ [31].
With this definition, it is proved that any graph with tree-length at most k has hyper-
bolicity at most k [22]. This definition is equivalent to that of Gromov hyperbolicity
(mentioned at the beginning of the introduction), which we use in this paper, up to a
constant ratio [8]. No algorithm better than the O(n4)-brute force algorithm (testing
all 4-tuples in G) is known to compute hyperbolicity of n-vertex graphs. The prob-
lem of deciding whether the chordality of a graph G is at most k is NP-complete if
k is as part of the input. Indeed, if G′ is obtained by subdividing all the edges in G

once, then there is an induced cycle of length 2|V (G)| in G′ if and only if G has a
Hamilton cycle. It is coNP-hard to decide whether an n-vertex graph G is k-chordal
for k = Θ(n) [48].

There are several problems related to chordality are considered. Finding the
longest induced path is W [2]-complete [20]. In [34], the problem of deciding whether
there is an induced cycle passing through k given vertices is studied. This problem
is NP-Complete in planar graphs when k is part of the input and in general graphs
even for k = 2. However, this problem is Fixed Parameter Tractable (FPT) in planar
graphs, i.e., there is an algorithm to solve this problem in time O(f (k)p(n)) where f

is an arbitrary function of k and p is a polynomial in the size n of the graph. Finding
an induced cycle of size exactly k in d-degenerate graph (every induced subgraph has
a vertex of degree at most d) is FPT if k and d are fixed parameters [18]. Note that,
any planar graph is 5-degenerate.

Treewidth It is NP-complete to decide whether the treewidth of a graph G is at most
k [10]. For (4-)chordal graphs, cographs [15], circular arc graphs [47], chordal bipar-
tite graphs [33] and etc., the treewidth problem is polynomially solvable. Bodlaender
and Thilikos proved that the treewidth of a k-chordal graph for (k ≥ 4) with maxi-
mum degree Δ is at most Δ(Δ − 1)k−3 which implies that treewidth is polynomially
computable in the class of graphs with chordality and maximum degree bounded
by constants [16]. They also proved that the treewidth problem is NP-complete for
graphs with small maximum degree [16].
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Compact Routing In a name-independent routing scheme, the designer of the
scheme is not allowed to label the vertices in the way he wants, that is, each ver-
tex in the network has a predefined fixed label. Abraham et al. provided a universal
name-independent routing scheme with stretch linear in k and n1/kpolylog(n) space
in [6]. There are weighted trees for which every name-independent routing scheme
with space less than n1/k requires stretch at least 2k + 1 and average stretch at least
k/4 [5]. Subsequently, the interest of the scientific community was turned toward spe-
cific properties of graphs. Several routing schemes have been proposed for particular
graph classes: e.g., trees [29], bounded growth [2], bounded hyperbolic graph [23],
bounded doubling dimension [4, 35], excluding a fixed graph as a minor [1, 3], etc.
The best compact routing scheme in k-chordal graphs (independent from the max-
imum degree) is due to Dourisboure and achieves a stretch of k + 1 using routing
tables of size O(log2 n) bits [27]. A routing scheme achieving stretch k − 1 with a
distributed algorithm for computing routing tables of size O(Δ logn) bits has been
proposed in [40].

1.3 Notations

Throughout the paper, denote G as a simple connected undirected graph with vertex
set V and edge set E. Let n = |V | be the order of G and m = |E| is the size of G.
For any subgraph H of G, denoted as H ⊆ G, we use V (H) and E(H) to denote
the vertex and edge set of H , respectively. The set of vertices adjacent to v ∈ V in
G is denoted NG(v) and called open neighborhood of v. Let NG[v] = NG(v) ∪ {v}
be the closed neighborhood of v. We extend this notation for a vertex set U ⊂ V

to write NG[U ] = ⋃
u∈U NG[u] and NG(U) = NG[U ] \ U . Let dG(v) = |NG(v)| be

the degree of v and Δ denote the maximum degree among the vertices of G. If the
context is clear for graph G, then we use N(v) instead of NG(v) and similarly for
N [v], N(U) and N [U ]. The graph obtained from G by removing an edge {x, y} is
denoted G\ {x, y}; the result of removing a vertex v and all adjacent edges is denoted
G \ {v}. Like above, we extend this to denote removing sets of vertices or edges. For
U ⊂ V , the subgraph of G induced by U is denoted as G[U ]. It can be obtained as
the result of removing from G the vertices in V \ U , denoted by G \ (V \ U). Given
two paths P = (p1, . . . , pk) and Q = (q1, . . . , qr ), we denote their concatenation by
(P,Q) the path induced by V (P ) ∪ V (Q); to make descriptions more concise, we
omit the detail of reversing P or Q if necessary.

2 A Detour Through Cops and Robber Games

In this section, we study the cops and robber games introduced by Winkler and
Nowakowski [41], independently defined by Quilliot [43]. Given a graph G, a player
starts by placing k ≥ 1 cops on some vertices of G, then a visible robber is placed on
one vertex of G. Alternately, the cop-player may move each cop along one edge, and
then the robber can move to an adjacent vertex. The robber is captured if, at some
step, a cop occupies the same vertex.

Aigner and Fromme introduced the notion of cop-number of a graph G, i.e., the
fewest number of cops cn(G), such that there exists a strategy for the cop-player that
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Fig. 1 Illustration for the proof of Theorem 1

assures to capture the robber whatever he does [7]. A long standing conjecture due
to Meyniel states that cn(G) = O(

√
n) for any n-vertex graph G [30]. To tackle this

question, many researchers have focused on particular graph classes and provided
many nice structural results (see the recent book [17]). For any n-vertex graph G,
cn(G) = O( n

2(1−o(1))
√

logn
) [39, 46], cn(G) ≤ 3 in any planar graph G [7], cn(G) ≤

3 + 3
2g in any graph G with genus at most g [45], cn(G) = O(m) in any graph G

excluding a m-edge graph as a minor [9], etc. Bounded hyperbolicity graphs have
been considered in [19]. The cop number of graphs with minimum degree d and
smallest induced cycle (girth) at least 8t − 3 is known to be Ω(dt ) [30]. Strangely,
little is known related to the largest induced cycle (chordality): in [7], it is shown that
cn(G) ≤ 3 for any 2-connected 5-chordal graph G. In this section, we consider the
class of k-chordal graphs.

Theorem 1 Let k ≥ 3. For any k-chordal connected graph G, cn(G) ≤ k − 1, and
there exists a strategy where all k − 1 cops always occupy a chordless path except for
the move that captures the robber.

Proof Let v ∈ V be any vertex and place all cops at it (see in Fig. 1(a)). Then, the
robber chooses a vertex. Now, at some step, assume that the cops are occupying
{v1, . . . , vi} which induce a chordless path, i ≤ k − 1, and it is the turn of the cops
(initially i = 1). Let N = ⋃

1≤j≤i N [vj ], if the robber occupies a vertex in N , it is
captured during the next move. Else, let R �= ∅ be the connected component of G \N

occupied by the robber. Finally, let S be the set of vertices in N that have some
neighbor in R. Clearly, since R is non-empty, so is S.

Now, there are two cases to be considered.

– If N(v1) ∩ S ⊆ ⋃
1<j≤i N [vj ]. This case may happen only if i > 1. Then, “re-

move” the cop(s) occupying v1. That is, the cops occupying v1 go to v2. Symmet-
rically, if N(vi)∩S ⊆ ⋃

1≤j<i N [vj ], then the cops occupying vi go to vi−1. Then,
the cops occupy a shorter chordless path while the robber is still restricted to R.
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– Otherwise, there is u ∈ (N(v1) ∩ S) \ (
⋃

1<j≤i N [vj ]) and v ∈ (N(vi) ∩ S) \
(
⋃

1≤j<i N [vj ]). First, we show that this case may happen only if i < k − 1. In-
deed, let P be a shortest path between such u and v with all internal vertices in
R (possibly, P is reduced to an edge). Such a path exists by definition of S. Then
(v1, . . . , vi, v,P,u) is a chordless cycle of length at least i + 2 (See in Fig. 1(b)).
Since G is k-chordal, this implies that i + 2 ≤ k.

Then one cop goes to vi+1 := v while all the vertices in {v1, . . . , vi} remain oc-
cupied. Since v ∈ S, it has some neighbor in R, and then, the robber is restricted to
occupy R′, the connected component of G\ (N ∪N [v]) which is strictly contained
in R.

Therefore, proceeding as described above strictly reduces the area of the robber (i.e.,
R) after < k steps, R decreases progressively and the robber is eventually captured. �

Note that previous Theorem somehow extends the model in [24], where the au-
thors consider the game when two cops always remaining at distance at most 2 from
each other must capture a robber. It is possible to improve the previous result in
the case of 4-chordal graphs, i.e. k = 4. In the following theorem, we prove that
cn(G) ≤ 2 for any 4-chordal connected graph G.

Theorem 2 For any 4-chordal connected graph G, cn(G) ≤ 2 and there always
exists a winning strategy for the cops such that they are always at distance at most
one from each except for the move that captures the robber.

Proof Initially, place the cops on any two adjacent vertices. At some step of the
strategy, let us assume that the cops are on two adjacent vertices a and b (or a = b)
and it is the turn of the cops. If the robber stands at some vertex in N = N [a] ∪N [b],
then it is captured during the next move. Hence, let R be the connected component
of G \ N where the robber stands. Let S ⊆ N be the set of the vertices adjacent to a

or b and at least one vertex of R, i.e., S is an inclusion-minimal separator between
{a, b} and R.

We will prove that there is z ∈ {a, b} and a vertex c in S ∩ N(z), such that, S ⊂
N [z] ∪ N [c] = N ′. Since c ∈ S, N(c) ∩ V (R) �= ∅. Hence, if the cops move from
a, b to c, z, which can be done in one step, then the robber is constrained to occupy
a vertex of R′ where R′ is the connected component of G \ N ′ which is strictly
contained in R. Note that, R′ is a proper subgraph of R. Iterating such moves, the
robber will eventually be captured.

It remains to prove the existence of z ∈ {a, b} and c ∈ S ∩ N(z), such that, S ⊆
N [z] ∪ N [c].
– If there is z ∈ {a, b} such that S ⊆ N [z], then any vertex in N(z) ∩ S satisfies the

requirements.
– Else, let c ∈ S \ N(b) (such a vertex exists because otherwise we would be in

the previous case). Clearly, S ∩ N(a) ⊆ N [a] ∪ N [c]. Now, let x ∈ S \ N(a). By
definition of S, there is a path P from x to c with internal vertices in R. Moreover,
all internal vertices of P are at distance at least two from a and b; also c is not
adjacent to b and x is not adjacent to a. Hence, considering the cycle a, b, x,P, c,
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there must be an edge between x and c because G is 4-chordal. So S \ N(a) ⊂
N(c). Therefore, S = (S ∩ N(a)) ∪ (S \ N(a)) ⊆ N [a] ∪ N [c].

The bound provided by this theorem is tight because of the cycle with 4 vertices. �

Theorem 1 relies on chordless paths P in G such that N [V (P )] is a separator of
G, i.e., there exist vertices a and b of G such that all paths between a and b intersect
N [V (P )]. In the next section, we show how to adapt this to compute particular tree-
decompositions.

3 Structured Tree-Decomposition

In this section, we present our main contribution, that is, an algorithm that, given a n-
vertex graph G and an integer k ≥ 3, either returns an induced cycle of length at least
k + 1 in G or computes a tree-decomposition of G. First, we need some definitions.

A tree-decomposition of a graph G = (V ,E) is a pair ({Xi |i ∈ I }, T = (I,M)),
where T is a tree and {Xi |i ∈ I } is a family of subsets, called bags, of vertices of
G such that (1) V = ⋃

i∈I Xi ; (2) ∀{u,v} ∈ E there is i ∈ I such that u,v ∈ Xi ;
and (3) ∀v ∈ V , {i ∈ I |v ∈ Xi} induces a (connected) subtree of T . The width of a
tree-decomposition is the size of its largest bag minus 1 and its �-width is the largest
distance between two vertices of a bag of a tree-decomposition. The treewidth [44]
denoted by tw(G) (resp., tree-length [28] denoted by t l(G)) of a graph G is the
minimum width (resp., �-width), over all possible tree-decompositions of G.

Let k ≥ 2. Let us define a k-super-caterpillar as a graph that has a dominating
set, called backbone, which induces a chordless path of order at most k − 1. That is,
any vertex of a k-super-caterpillar either belongs to the backbone or is adjacent to a
vertex of the backbone. A tree-decomposition is said to be k-good if each of its bags
induces a k-super-caterpillar. Clearly, the width of a k-good tree decomposition is at
most O(kΔ) and its �-width is at most k.

Theorem 3 Given an m-edge-graph G and an integer k ≥ 3, there is a O(m2)-
algorithm which:

– either returns an induced cycle of length at least k + 1;
– or returns a k-good tree-decomposition of G.

Proof The proof is by induction on |V (G)| = n. We prove that either we find an
induced cycle larger than k, or for any chordless path P = (v1, . . . , vi) with i ≤ k−1,
there is a k-good tree-decomposition for G with one bag containing NG[V (P )]. Note
that the later case does not mean that a large induced cycle does not exist. Obviously,
it is true if |V (G)| = 1. Now we assume that it is true for any graph G with n′ vertexs,
1 ≤ n′ < n, and we show it is true for n-vertex graphs.

Let G be a connected n-vertex graph, n > 1. Let P = (v1, . . . , vi) be any chordless
path with i ≤ k − 1 and let N = NG[V (P )] and G′ = G \ N . There are three cases to
be considered:
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Case 1. Let G′ = ∅. In this case, we have V (G) = N . The desired tree-decomposition
consists of one node, corresponding to the bag N .

Case 2. Let G′ be disconnected. Let C1, . . . ,Cr , r ≥ 2, be the connected components
of G′ For any j ≤ r , let Gj be the graph induced by Cj ∪ N . Note that
any induced cycle in Gj , for any j ≤ r , is an induced cycle in G. By the
induction hypothesis, either there is an induced cycle C larger than k in Gj ,
then C is also an induced cycle larger than k in G, or our algorithm computes
a k-good tree-decomposition T Dj of Gj with one bag Xj containing N .
To obtain the k-good tree-decomposition of G, we combine the T Dj ’s, for
j ≤ r , by adding a bag X = N adjacent to all the bags Xj for j = 1, . . . , r .
It is easy to see that this tree-decomposition satisfies our requirements.

Case 3. Let G′ be connected. We consider the order of the path P = (v1, . . . , vi).
In the following proof, first we prove that if the order of path P , i = k − 1,
then we can find either an induced cycle larger than k or the required tree-
decomposition for G. Subsequently, we prove it is also true for path with
order i < k − 1 by backward induction on i. More precisely, if i < k − 1, ei-
ther we find directly the desired cycle or tree-decomposition, or we show that
there exists a vertex vi+1 such that P ∪{vi+1} induces a chordless path P ′ of
order i + 1. By backward induction on i we can find either an induced cycle
larger than k or a k-good tree-decomposition of G with one bag containing
NG[V (P ′)] ⊇ NG[V (P )].
(a) If i = k − 1, then we consider the following two cases.

– Assume first that there is u ∈ NG(V (P )) ∪ {v1, vi} (in particular,
u /∈ P \{v1, vi}) such that NG(u) ⊆ NG[V (P )\{u}] (See in Fig. 2(a)).
Let G̃ = G \ {u}. Then G̃ is a graph with n′ = n − 1 vertices. By
the induction hypothesis on n′ < n, the algorithm either finds an in-
duced cycle larger than k in G̃, then it is also the one in G; Other-
wise our algorithm computes a k-good tree-decomposition T̃ D of G̃

with one bag X̃ containing N
G̃
[V (P ) \ {u}]. To obtain the required

tree-decomposition of G, we just add vertex u into the bag X̃. The
tree-decomposition is still k-good.

– Otherwise, there exist two distinct vertices v0 ∈ NG(v1) \NG(V (P ) \
v1) and vi+1 ∈ NG(vi)\NG(V (P )\vi) and there are vertices u1, u2 ∈
V (G′) (possibly u1 = u2) such that {v0, u1} ∈ E(G) and {vi+1, u2} ∈
E(G) (See in Fig. 2(b)). If {v0, vi+1} ∈ E(G), (P, v0, vi+1) is an
induced cycle with k + 1 vertices. Otherwise, let Q be a shortest
path between u1 and u2 in G′ (Q exists since G′ is connected). So
(P, vi+1, u2,Q,u1, v0) is an induced cycle with at least k + 1 ver-
tices in G.

(b) If i < k − 1, we proceed by backward induction on i. Namely, assume
that, for any chordless path Q with i + 1 vertices, our algorithm either
finds an induced cycle larger than k in G or computes a k-good tree-
decomposition of G with one bag containing N [V (Q)]. Note that the
initialization of the induction holds for i = k−1 as described in case (a).
We show it still holds for a chordless path with i vertices. We consider
the following two cases.
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Fig. 2 Illustration for the proof of Theorem 3

– Either there is u ∈ NG(V (P ))∪{v1, vi} (in particular, u /∈ P \{v1, vi})
such that NG(u) ⊆ NG[V (P ) \ {u}]. That is, we are in the same case
as the first item of (a). We proceed as above and the result holds by
induction on n.

– Or there is w ∈ (NG(v1)∪NG(vi)) \V (P ) such that (P,w) is chord-
less (i.e., the vertex w is a neighbor of v1 or vi but not both and
w /∈ NG(V (P ) \ {v1, vi})). Therefore, we apply the induction hypoth-
esis (on i) on P ′ = (P,w). By the assumption on i, either our al-
gorithm returns an induced cycle larger than k or it computes a k-
good tree-decomposition of G with one bag containing NG[V (P ′)] ⊇
NG[V (P )].

Now we describe the algorithm and study its complexity. Let G be an m-edge n-
vertex graph with maximum degree Δ. Roughly speaking, the algorithm proceeds
by steps. At each step, one vertex is considered and the step takes O(m) time. We
prove that at each step (but the initial one), at least one edge will be considered and
that each edge is considered at most once (but one vertex may be considered several
times). This implies a time-complexity of O(m2) for the algorithm.

The algorithm starts from an arbitrary vertex v ∈ V (G) and computes the con-
nected components C1, . . . ,Cj of G \ N [v] (j ≥ 1) in time O(m) [32]. We start
with the k-good tree-decomposition for the induced graph of N [v] in G that con-
sists of one bag B = N [v] adjacent to, for any i ≤ j , each bag Bi = {v} ∪ {w ∈
N(v) : N(w) ∩ Ci �= ∅}. This takes time O(m).

Now, at some step of the strategy, assume that we have built a k-good tree-
decomposition (T ,X ) of a connected subgraph G0 of G. Let C1, . . . ,Cj (j ≥ 1)
be the connected components of G \ G0, and, for any i ≤ j , let Si be the set of the
vertices of G0 that are adjacent to some vertex of Ci . Assume finally that, for any
i ≤ j , there is a leaf bag Bi ⊃ Si of (T ,X ) where Pi = Bi \ Si is a chordless path
dominating Bi and has minimum number of vertices.

For any e ∈ E(G), we say that e = {x, y} is alive if there is i ≤ j such that x ∈
Si ∪Ci and y ∈ Ci . Note that, if an edge is alive, such an integer i is unique. An edge
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that is not alive is said dead. Note also that, after the initial step, all edges in the bag
B are dead and other edges are alive.

The next step consists of the following. Choose any i ≤ j and let w be any vertex
of Si such that Q = Pi ∪ {w} is a chordless path. (Such w exists because Pi is the
dominating path with the minimum order. Suppose Pi = {v1, . . . , vl}. If NG(v1) \
V (Pi) = ∅, then the chordless path Pi \ v1 dominates Bi and has less vertices than
Pi . So NG(v1)\V (Pi) �= ∅. If any w ∈ NG(v1)\V (Pi) is a neighbor of some vertices
in Pi , then the chordless path Pi \v1 dominates Bi and has less vertices than Pi .) Note
that by definition of Si , there is at least one edge from w to Ci and that such an edge
is alive before this step. We add the bag B ′ = Q ∪ Bi ∪ (N(w) ∩ Ci) adjacent to Bi .
If Q is larger than k, by the above proof, the algorithm finds a large cycle. Otherwise,
the connected components C′

1, . . . ,C
′
r of Ci ∪ Bi \ B ′ are computed in time O(m).

Let S′
h, h ≤ r , be the subset of the vertices of Si that are adjacent to some vertex

in C′
h, and let Qh be the smallest subpath of Q dominating S′

h. Computing the sets
S′

1, . . . , S
′
r only requires a time O(m) since we have only to check the edges in B ′.

For any h ≤ r , add a bag B ′
h = Qh ∪ S′

h adjacent to B ′.
One can check that this algorithm follows the above proof and that it eventually

computes the desired tree-decomposition or returns a large cycle.
To conclude, we can check that the set of edges alive after one step is contained

in the set of edges alive before this step, and that, at each step at least one edge (the
one(s) from w to Ci ) becomes dead. Therefore, at each step, the number of alive
edges strictly decreases and the algorithm terminates when there are no more. Since
each step takes time O(m) and there are at most m steps, the result follows. �

The following two theorems discuss some properties of the graphs with k-good
tree decompositions.

Theorem 4 Let G be a graph that admits a k-good tree-decomposition. Let Δ be the
maximum degree of G. Then tw(G) ≤ (k − 1)(Δ − 1) + 2 and t l(G) ≤ k.

Proof It directly follows the fact that, in a k-good tree-decomposition, each bag has
a dominating path with < k vertices. �

Recall that a graph G has Gromov hyperbolicity ≤ δ if, for any u,v,w ∈ V (G)

and any shortest paths Puv,Pvw,Puw between these three vertices, any vertex in Puv

is at distance at most δ from Pvw ∪ Puw . In the next theorem, we prove that the
Gromov hyperbolicity of the graph admitting a k-good tree-decomposition is at most
� 3

2k�.
Notice that the result given in [22] refers to the seminal hyperbolicity and does not

imply our result for Gromov hyperbolicity.

Theorem 5 Any graph G that admits a k-good tree-decomposition has Gromov hy-
perbolicity at most � 3

2k�.

Proof Let G = (V ,E) be a graph that admits a k-good tree-decomposition ({Xi |i ∈
I }, T = (I,M)). Let T be rooted at bag X0, 0 ∈ I . For any u,v ∈ V , let us denote the
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distance between u and v in G by d(u, v). By definition of a k-good decomposition,
for any i ∈ I and for any u,v ∈ Xi , we have d(u, v) ≤ k.

Let x, y, z ∈ V and let P1,P2,P3 be any three shortest paths in G between x and
y, y and z, x and z respectively. Let u ∈ P1. To prove the Theorem, we show that
there is v ∈ P2 ∪ P3 such that d(u, v) ≤ � 3

2k�.
First, let us assume that there is i ∈ I such that u ∈ Xi and there is v ∈ (P2 ∪P3)∩

Xi �= ∅. In that case, d(u, v) ≤ k and the result holds.
Otherwise, let Tu be the subtree of T induced by {i ∈ I : u ∈ Xi}. Similarly,

let Tx be the subtree of T induced by {i ∈ I : x ∈ Xi} and Ty be the subtree of T

induced by {i ∈ I : y ∈ Xi}. Let P be the path in T between Tx and Ty . Note that P

may be empty if V (Tx) ∩ V (Ty) �= ∅. Let j ∈ V (Tx) ∪ V (Ty) ∪ P that is closest to
Tu in T . If j ∈ V (Tu), then Xj is a separator between x and y or x ∈ Xj or y ∈ Xj .
If x ∈ Xj or y ∈ Xj , then we are in the first case above; otherwise we have Xj is
a separator between x and y. Then z ∈ Xj or z cannot be in both the component of
G \Xj containing x and of the one containing y. So one of the paths P2 or P3 should
pass trough Xj and we are in the first case again.

Assume that j /∈ V (Tu), then we have that either Xj is a separator between x

and u or x ∈ Xj , and that either Xj is a separator between y and u or y ∈ Xj . Let
Pxu and Puy be the subpaths of P1 from x to u and from u to y respectively. By
remark above, there exist vertices w ∈ Pxu ∩ Xj and t ∈ Puy ∩ Xj . Possibly, w = t .
Then d(w,u) + d(u, t) = d(w, t) because P1 is a shortest path, therefore, d(w,u) +
d(u, t) = d(w, t) ≤ k. So there is � ∈ Xj with d(u, �) ≤ � k

2�.
Finally, let us show that there is h ∈ (P2 ∪P3)∩Xj . If x ∈ Xj or y ∈ Xj or z ∈ Xj ,

it is obvious. Otherwise, z cannot be in both the component of G \ Xj containing x

and of the one containing y, because Xj separates x and y in G. Therefore one of the
paths P2 or P3 should pass trough Xj .

To conclude, d(u,h) ≤ d(u, �) + d(�,h) ≤ � k
2� + k ≤ � 3

2k�. �

From the above theorems, it is easy to get the following corollaries.

Corollary 1 Any k-chordal graph G with maximum degree Δ has treewidth at most
(k − 1)(Δ − 1) + 2, tree-length at most k and Gromov hyperbolicity at most � 3

2k�.

Proof By definition of k-chordal graph and Theorem 3, any k-chordal graph admits
a k-good tree-decomposition. The result follows from Theorems 4 and 5. �

Corollary 2 There is an algorithm that, given an m-edge graph G and k ≥ 3, states
that either G has chordality at least k + 1 or G has Gromov hyperbolicity at most
� 3

2k�, in time O(m2).

4 Application of k-Good Tree-Decompositions for Routing

In this section, we propose a compact routing scheme for any n-vertex graph G that
admits a k-good tree-decomposition (including k-chordal graphs). Recall that Δ de-
notes the maximum degree of G and that the degree of any v ∈ V (G) is denoted as
dG(v).



Algorithmica

4.1 Model and Performance of the Routing Scheme

We propose a labelled routing scheme which means that we are allowed to give one
identifier, name(v), of O(logn) bits to any vertex v of G. Moreover, following [29],
we consider the designer-port model, which allows us to choose the permutation of
ports (assign a label of logdG(v) bits to any edge incident to v in V (G)). Finally,
to any vertex v ∈ V (G), we assign a routing table, denoted by Table(v), where local
information of O(k · logΔ + logn) bits is stored. Any message has a header that
contains the address name(t) of the destination t , three modifiable integers pos ∈
{−1,1,2, . . . , k − 1}, cnt, cnt′ ∈ {−1,0, . . . ,Δ + 1}, one bit start and some memory,
called path, of size O(k · logΔ) bits. The two items start and path change only once.

Following our routing scheme, a vertex v that receives a message uses its header,
name(v), Table(v) and the port-numbers of the edges incident to v to compute its
new header and to choose the edge e = {v,u} over which it relays the message.
Then, the vertex u knows that the message arrived from v. The length of the path
followed by a message from a source s ∈ V (G) to a destination t ∈ V (G), us-
ing the routing scheme, is denoted by |P(s, t)|, and the stretch of the scheme is
maxs,t∈V (G)(|P(s, t)| − d(s, t)) where d(s, t) is the distance between s and t in G.

To design our routing scheme, we combine the compact routing scheme in trees
of [29] together with the k-good tree-decomposition. Roughly, the scheme consists
of following the paths in a BFS-tree F of G according to the scheme in [29], and
using one bag of the tree-decomposition as a short-cut between two branches of F .
Intuitively, if the source s and the destination t are “far apart”, then there is a bag X

of the tree-decomposition that separates s and t in G. The message follows the path
in F to the root of F until it reaches X, then an exhaustive search is done in X until
the message finds an ancestor y of t , and finally it follows the path from y to t in F

using the scheme of [29]. The remaining part of this Section is devoted to the proof
of the next Theorem that summarizes the performances of our routing scheme.

Theorem 6 For any n-vertex m-edge graph G with maximum degree Δ and with a
k-good tree-decomposition, there is a labelled routing scheme R with the following
properties. The scheme R uses addresses of size O(logn) bits, port-numbers of size
O(logΔ) bits and routing tables of size O(k · logΔ + logn) bits. The routing tables,
addresses and port-numbers can be computed in time O(m2). Except the address
of the destination (not modifiable), the header of a message contains O(k · logΔ)

modifiable bits. The header and next hop are computed in time O(1) at each step of
the routing. Finally, the additive stretch is ≤ 2k(�logΔ	 + 5

2 ) − 2�logΔ	 − 4.

4.2 Data Structures

4.2.1 Routing in Trees [29]

Since we use the shortest path routing scheme proposed in [29] for trees, we start by
recalling some of the data structures that this scheme uses. Let F be a tree rooted in
r ∈ V (F). For any v ∈ V (F), let Fv be the subtree of F rooted in v and let wF (v) =
|V (Fv)| be the weight of v. Consider a Depth-First-Search (DFS) traversal of F ,
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starting from r , and guided by the weight of the vertices, i.e., at each vertex, the DFS
visits first the largest subtree, then the second largest subtree, and so on. For any
v ∈ V (F), let IdF (v) ∈ {1, . . . , n} be the preordering rank of v in the DFS.

Lemma 1 For any u,v ∈ V (F), v ∈ V (Fu) if and only if IdF (u) ≤ IdF (v) ≤
IdF (u) + wF (u) − 1.

For any v ∈ V (F) and any e incident to v, the edge e receives a port-number
pF (e, v) at v as follows. Set pF (e, v) = 0 if v �= r and e leads to the parent of v in F ,
i.e., the edge e is the first edge on the path from v to r . Otherwise, let (u1, . . . , ud) be
the children of v (where d = dF (v) if v = r and d = dF (v) − 1 otherwise) ordered
by their weight, i.e., such that wF (u1) ≥ · · · ≥ wF (ud). Then, let pF ({ui, v}, v) = i,
for any i ≤ d . Finally, each vertex v ∈ V (F) is assigned a routing table RTF (v) and
an address �F (v) of size O(logn) bits allowing a shortest path routing in trees (see
details in [29]).

4.2.2 Our Data Structures

Let G be a graph with the k-good tree-decomposition (T = (I,M), {Xi |i ∈ I }). Let
r ∈ V (G). Let F be a Breadth-First-Search (BFS) tree of G rooted at r . Let T be
rooted in b ∈ I such that r ∈ Xb .

We use (some of) the data structures of [29] for both trees F and T . More precisely,
for any v ∈ V (G), let IdF (v),wF (v), �F (v) and RTF (v) be defined as above for
the BFS-tree F . Moreover, we add dF (v) to store the degree of v in the tree F .
Set pe,v = pF (e, v) for edges that belong to F defined as above, the ports > dF (v)

will be assigned to edges that do not belong to F . Knowing dF (v), the ports that
correspond to edges in F can be easily distinguished from ports assigned to edges in
G \ E(F) ≡ F .

For any v ∈ V (G), let (u1, . . . , ud) = NF (v) be the neighborhood of v in F

ordered such that IdF (u1) < · · · < IdF (ud). We assign pei,v = dF (v) + i, where
ei = {v,ui}, for each ui in this order. This ordering will allow to decide whether one
of the vertices in NF (v) is an ancestor of a given vertex t in time O(logΔ) by binary
search.

For any i ∈ I , let IdT (i) and wT (i) be defined for the tree T as above. For any
v ∈ V (G), let Bv ∈ I be the bag of T containing v which is closest to the root b of
T . To simplify the notations, we set IdT (v) = IdT (Bv) and wT (v) = wT (Bv). These
structures will be used to decide “where” we are in the tree-decomposition when the
message reaches v ∈ V (G).

Finally, for any i ∈ I , let Pi = (v1, . . . , v�) be the backbone of Bi with � ≤ k − 1
(recall that we consider a k-good tree decomposition). Let (e1, . . . , e�−1) be the set
of edges of Pi in order. Set Backbonei = (pe1,v1,pe1,v2,pe2,v2, . . . , pe�−1,v�

). For any
v ∈ V (G) such that IdT (v) = i ∈ I , if v = vj ∈ Pi , then back(v) = (∅, j) and if
v /∈ Pi , let back(v) = (pev , j) where e = {v, vj } and vj (j ≤ �) is the neighbor of
v in Pi with j minimum. This information will be used to cross a bag (using its
backbone) of the tree-decomposition.

Now, for every v ∈ V (G), we define the address name(v) = 〈�F (v), IdT (v)〉. Note
that, in particular, �F (v) contains IdF (v). We also define the routing table of v as
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Table(v) = 〈RTF (v), dF (v),wT (v),Backbone(v),back(v)〉, where Backbone(v) =
Backbonei for i = Bv , i.e. the backbone of the bag containing v and closest to the
root of T .

Next table summarizes all these data structures.

notation description

name(v) �F (v) the address of v in tree F [29]
IdT (v) the identifier of the highest bag Bv containing v in T

Table(v) RTF (v) the routing table used of v for routing in F [29]
dF (v) the degree of v in F

wT (v) the weight of the subtree of T rooted in Bv

Backbone(v) information to navigate in the backbone of Bv

back(v) information to reach the backbone of Bv from v

Clearly, name(v) has size O(logn) bits and Table(v) has size O(k · logΔ+ logn)

bits. Moreover, any edge e incident to v receives a port-number pe,v of size O(logΔ)

bits.

4.3 Routing Algorithm in k-Good Tree-Decomposable Graphs

Let us consider a message that must be sent to some destination t ∈ V (G). Initially,
the header of the message contains name(t), the three counters pos, cnt, cnt′ = −1,
the bit start = 0 and the memory path = ∅, which stores the backbone of the bag con-
taining an ancestor (in F ) of the destination vertex of the message. Let v ∈ V (G) be
the current vertex where the message stands. First, using IdF (t) in name(t), IdF (v)

in name(v) and wF (v) in RTF (v) ∈ Table(v), it is possible by using Lemma 1 to de-
cide in constant time if v is an ancestor of t in F . Similarly, using IdT (t) in name(t),
IdT (v) in name(v) and wT (v) in Table(v), it is possible to decide if the highest bag
Bv containing v is an ancestor of Bt in T . There are several cases to be considered.

– If v is an ancestor of t in F , then using the protocol of [29] the message is passed
to the child w of v that is an ancestor of t in F towards t . Recursively, the message
arrives at t following a shortest path in G, since F is a BFS-tree.

– Else, if path = ∅, then
– if neither Bv is an ancestor of Bt in T nor Bt = Bv , then the message follows the

edge leading to the parent of v in F , i.e., the edge with port-number pe,v = 0.
Note that the message will eventually reach a vertex w that either is an ancestor
of t in F or Bw is an ancestor of Bt in T , since the message follows a shortest
path to the root r of F and Br is the ancestor of any bag in T .

– Else, an ancestor of t belongs to Bv since either Bv = Bt , or Bv is an ancestor
of Bt . (This is because T is a tree-decomposition, Bv has to contain a vertex on
the shortest path from t to r in F .) Now the goal is to explore the bag Bv using
its backbone P = (v1, . . . , v�) (� < k), until the message finds an ancestor of t

in F .
In this case we put the message on the backbone, and then explore the back-
bone using Backbone(v) copied in path in the header of the message. Using
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back(v) = (p, j) ∈ Table(v), pos is set to j . If p = ∅ then the message is al-
ready on the backbone. Otherwise, the message is sent over the port p. Recall
that by the definition of back(v), port p leads to vj ∈ P . The idea is to explore
the neighborhoods of vertices on the backbone, starting from v1. Note that in
what follows path �= ∅ and pos �= −1.

– Else, if start = 0 (This is the case initially), then the message is at v = vj ∈ P and
pos indicates the value of j . Moreover, in the field path of the header, there are
the port-numbers allowing to follow P . If pos > 1 then pos = j − 1 is set and the
message follows the corresponding port-number pej−1,vj

∈ Backbone(vj ) to reach
vj−1. Otherwise, start is set to 1, cnt = dF (v1) and cnt′ = dG(v1) + 1.

– Else, if start = 1, then the exploration of a bag containing an ancestor of t (or
t itself) has begun. The key point is that any ancestor w of t in F satisfies that
IdF (w) ≤ IdF (t) ≤ IdF (w) + wF (w) − 1 by Lemma 1. Using this property, for
each vertex vj of the backbone P = (v1, . . . , v�), the message visits vj first. If vj

is an ancestor of t or vj = t then we are in the first case; otherwise the message is
sent to the parent of vj in F . If vj ’s parent is an ancestor of t (or t itself) then we
are in the first case; otherwise we explore NF (vj ) by binary search. Notice that the
other neighbors of vj are its descendants in F , so if t has an ancestor among them,
then vj also is an ancestor of t .
– If cnt = cnt′ − 1, the neighborhood of the current vertex v = vj , where j = pos,

has already been explored and no ancestor of t has been found. In that case,
using path, the message goes to vj+1 the next vertex in the backbone. Then pos
is set to j + 1.

– Otherwise, let pn = � cnt′+cnt
2 �. The message takes port-number pn from v to-

wards vertex w. If w is an ancestor of t , we go to the first case of the al-
gorithm. Otherwise, the message goes back to v = vj . This is possible since
the vertex w knows the port over which the message arrives. Moreover, if
IdF (t) > IdF (w) + wF (w) − 1, then cnt is set to pn and cnt′ is set to pn

otherwise.

The fact that the message eventually reaches its destination follows from the above
description. Moreover, the computation of the next hop and the modification of the
header clearly take time O(1).

4.4 Performance of Our Routing Scheme

In this subsection, we give an upper bound on the stretch of the routing scheme de-
scribed in previous section.

Lemma 2 Our routing scheme has stretch ≤ 2k(�logΔ	 + 5
2 ) − 2�logΔ	 − 4.

Proof Let s be the source and t be the destination. Recall the main idea of the algo-
rithm: We route along the path from s to r in tree F until we arrive a vertex x, whose
bag Bx is an ancestor of t’s bag Bt in tree T . Then applying binary search algorithm,
we search in the bag Bx for a vertex y, which is an ancestor of t in tree F . In the end,
we route from y to t in tree F .
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Because F is a BFS tree and x is an ancestor of s in F , the length of the path
followed by the message from s to x is d(s, x), the distance between s and x in G.
Similarly, because y is an ancestor of t in F , the length of the path followed by the
message from y to t is d(y, t). Let track(x, y) be the length of the path followed by
the message in Bx from x to y. Therefore, the length of the path followed by the
message from s to t is d(s, x) + track(x, y) + d(y, d).

From the binary search algorithm, for any vertex of the backbone, the message
visits at most �logΔ	 neighbors and this causes a path of length 2�logΔ	. There are
at most k − 1 vertices on the backbone of the bag Bx . The worst case occurs when x

is the neighbor of the last vertex of the backbone vl , for l ≤ k − 1, then the message
goes to the first vertex of the backbone, v1, while y is a neighbor of vl . After arriving
at x, the message goes to v1, i.e., visits l ≤ k − 1 vertices, then it visits �logΔ	
neighbors of each of the l ≤ k − 1 vertices of the backbone and y is the last vertex
visited. Therefore, track(u, a) ≤ 2k(�logΔ	+1)−2�logΔ	−4. Then it is sufficient
to prove d(s, x) + d(y, t) ≤ d(s, t) + 3k.

If Bs is an ancestor of Bt , then x = s and d(s, x) = 0. Moreover, if Bt = Bx ,
d(y, t) = 0. Otherwise, let B be the nearest common ancestor of Bs and Bt in the
tree-decomposition T . Let Q be a shortest path between s and t . Because the set of
vertices in B separates s from t in G, let x′ be the first vertex of Q in B and let y′ the
last vertex of Q in B . Let Q = Q1 ∪ Q2 ∪ Q3 where Q1 is the subpath of Q from s

to x′, Q2 is the subpath of Q from x′ to y′ and Q3 is the subpath of Q from y′ to t .
Note that because each bag has diameter at most k, d(x′, y′) ≤ k.

We first show that x ∈ B . If Bx = B , it is trivially the case. Let Px be the path
followed from s to x. Since Bx is an ancestor of B , B separates s from x. There-
fore, Px ∩ B �= ∅. Let h be the first vertex of Px in B . Since h ∈ B , the highest bag
containing h is an common ancestor of Bs and Bt . Therefore, when arriving at h, the
message must explore Bh. Hence, we have h = x ∈ B .

Finally, since x ∈ B , d(x, x′) ≤ k. Moreover, y ∈ Bx therefore d(y, x) ≤ k.
Thus, d(y, y′) ≤ d(y, x)+ d(x, x′)+ |Q2| ≤ 2k + |Q2|. Finally, d(s, x) ≤ d(s, x′)+
d(x′, x) ≤ k + |Q1| and d(y, t) ≤ d(y, y′) + d(y′, t) ≤ 2k + |Q2| + |Q3|. Therefore,
d(s, x) + d(y, t) ≤ |Q1| + |Q2| + |Q3| + 3k ≤ |Q| + 3k = d(s, t) + 3k. �

5 Conclusion and Further Work

Inspired by the study of cops and robber games on k-chordal graphs, we get a
polynomial-time algorithm that, given a graph G and k ≥ 3, either returns an induced
cycle larger than k in G, or computes a k-good tree decomposition of G. A graph
with a k-good tree decomposition is proved to have bounded (O(k)) tree-length and
hyperbolicity; also its treewidth is bounded by O(k − 1)(Δ − 1) + 2, where Δ is the
maximum degree of the graph. Furthermore, a k-good tree decomposition is used to
design a compact routing scheme with routing tables, addresses and headers of size
O(k logΔ + logn) bits and achieving an additive stretch of O(k logΔ). It would be
interesting to reduce the O(k · logΔ) stretch due to the dichotomic search phase of
our routing scheme.

Any k-chordal graph admits a k-good tree decomposition, so it has treewidth at
most O(k − 1)(Δ − 1) + 2. A clique of size Δ + 1 is a (3-)chordal graph with
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treewidth Δ. Then the bound O(k − 1)(Δ − 1) + 2 is tight up to a constant ratio
2. For k > 3, it would be interesting to find a better bound or to prove the tightness.

A natural problem is to find the minimum k for a given graph G such that G has
a k-good tree decomposition. The complexity of this problem is still open even for
k = 2. It would also be interesting to use the k-good tree decomposition to solve other
combinatorial problems, e.g. the (connected) dominating set problem. Another inter-
esting topic concerns the computation of tree-decompositions not trying to minimize
the sizes of the bags but imposing some specific algorithmically useful structure to
the bags.
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