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It is interesting to find the tree-decomposition with bounded treewidth since many NP-hard problems have been shown
to be polynomial or even linear time solvable when restricted to the graph with bounded treewidth, given together with a
tree-decomposition. In this paper, we prove that for any graph G and an integer k≥ 3, we can find, in |V (G)|2 time, either
an induced cycle larger than k or a tree-decomposition with treewidth bounded by (k− 1)(∆− 1)+ 2 such that every
bag is a caterpillar with backbone chordless path of order at most k−1, where ∆ is the maximum degree. Moreover, we
get that the graph is k-hyperbolic if we find the tree-decomposition. Then we apply the tree-decomposition to design a
compact routing scheme for k-chordal graph using address, routing table and message header of size O(k logn) and the
additive stretch 4k−2+(4k−6) log∆.
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1 Introduction
Tree-decomposition and treewidth, introduced by Robertson and Seymour [RS84], play an important

role in the theory of graph minors. They are popular tools widely applied to solve various problems in many
different fields of computer science. Many NP-hard problems have been shown to be linear time solvable
for graph with bounded treewidth, given together with a proper tree decomposition. Thus it is interesting to
find tree-decomposition and to determine the treewidth in the graph.

Simply speaking, a tree-decomposition is a mapping of a graph into a tree that can be used to speed
up solving certain problems on the original graph. The treewidth measures the number of graph vertices
mapped onto any tree node in an optimal tree decomposition. Typically, there are many dynamical pro-
gramming algorithm, based on a given tree-decomposition with bounded treewidth, using time polynomial
in the number of vertices, but exponential in the treewidth of the graph, e. g., the maximum independent set
problem [CM93, Bod93b]. So it is important to find a tree-decomposition with small treewidth to design
the algorithm for hard problems.

Routing problem is one of the practical problems, in which tree-decomposition is applied [Dou05]. With
more and more complicated networks in our life, it is a basic activity to deliver a message from a sender to
a receiver. To do this, we need to find a path between the pair. If every sender knows the shortest path to any
receiver, then it is easy to deliver messages. However, in the context of large scale networks, it is impossible
for each processor to store all the information to take the shortest path to go to any of the processors since it
requires too big memory space. So the natural desirability is to find the path as short as possible with limited
information. This is the compact routing problem and the solution is a compact routing scheme, including
the routing information stored in processors’ local memory (routing table) and the routing function deciding
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the edge to take. The efficiency of a routing scheme is measured by its multiplicative stretch factor (resp.,
additive stretch factor, i.e., the maximum ratio (resp., difference) between the length of a route computed by
the scheme and that of a shortest path connecting the same pair of nodes. Considering the space complexity
of the routing scheme, it is important to have a routing table with small size, for which tree-decomposition
can be apply.
Our Contributions. First, for any graph G and an integer k ≥ 3, we can find, in |V (G)|2 time, either an
induced cycle larger than k or a tree-decomposition with treewidth bounded by (k− 1)(∆− 1) + 2 such
that every bag induces a caterpillar with backbone chordless path of order at most k− 1, where ∆ is the
maximum degree. So for k-chordal graph, which contains no induced cycle larger than k, we can always find
the tree-decomposition with nice structure and bounded treewidth. This improves the result of Bodlaender
and Thilikos, who bounded the treewidth by ∆(∆−1)k−3 [BT97]. Moreover, we get that G is k-hyperbolic
if we find the tree-decomposition. Secondly, we apply our tree-decomposition to design a compact routing
scheme for k-chordal graph. For each node the routing table, the address and the header of the message
are all of size O(k logn), which is a big improvement of O(log2 n) given by Dourisboure [Dou05], and the
additive stretch is 4k−2+(4k−6) log∆. When we consider the interval graph, a subclass of chordal graph,
the additive stretch is 10.
Related Work. There are lots of papers working on determining the treewidth and finding the optimal
tree-decompositions. Given a graph G and an integer k, it is NP-complete to decide whether the treewidth
of G is at most k or not [ACP87]. Bodlaender [Bod93a] gave a linear time algorithm, that either outputs
a tree-decomposition of G with treewidth at most k or determine that the treewidth of G is larger than
k, for all constant k. For chordal graph, cographs [BM93], circular arc graphs [SSR94], chordal bipartite
graphs [KK95] and etc., the treewidth problem is polynomial solvable. Bodlaender and Thilikos [BT97]
proved that the treewidth problem is NP-complete for graphs with small maximum degree. Also for k-
chordal graph, they bounded the treewidth with k and maximum degree ∆ by ∆(∆−1)k−3. Chordality and
hyperbolicity are both parameters measuring the tree-likeness of a graph. There have been some papers
working on the relation between the chordality and hyperbolicity of graph [BC03, WZ11]. The problem of
computing the chordality of a graph is NP-complete : Let G be an induced subgraph of a grid. Let H be
obtained from G by subdividing all its edges once. There is a correspondence between any induced cycle
in H and any cycle in G. Since computing the longest cycle in subgrid is NP-complete [IPS82], the result
follows. Finding the longest induced path is W [2]-complete [CF07] and the problem is Fixed Parameter
Tractable in planar graphs [KK09]. It is coNP-hard to decide wether the given graph G is k-chordal or not
for k = Θ(|V (G)|) [Ueh99].

For routing problem, there is a series of papers investigated the tradeoff between the stretch and the size
of the routing table. For any n node graph, [PU89] shows that every routing scheme with s stretch requires
at least Ω(n1/(2s+4)) for local routing table. For trees, [FG01] gives the optimal labeled routing scheme
with O(logn) local routing table. For k-chordal graph, [Dou05] designs a routing scheme with O(log2 n)
routing table and additive stretch k+1. And in [NSR08], there is a routing scheme with O(∆ logn) routing
table and additive stretch k−1.

2 Tree-decomposition
In this section, for a given a graph G = (V,E) and an integer k ≥ 3, we prove that we can find either an

induced cycle larger than k in G or a tree-decomposition with nice structure and bounded treewidth for G.
Moreover, we discuss about the hyperbolicity of the graph.
Definition 1 A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I},T = (I,M)), where T is a tree
and {Xi|i ∈ I} is a family of subsets, called bags, of vertices of G such that

– V (G) = ∪i∈IXi ;
– for every edge uv ∈ E(G) there exists (at least) one i ∈ I such that u,v ∈ Xi ;
– for every vertex v ∈V (G), {i ∈ I|v ∈ Xi} induces a (connected) subtree of T .

The treewidth of a tree-decomposition ({Xi|i ∈ I},T = (I,M)) is maxi∈I |Xi|−1. The treewidth of a graph
G is the minimum treewidth over all possible tree-decomposition of G.
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Definition 2 A caterpillar is a graph consists of a chordless path, called backbone, and any set of leaves
attached to this path.
Definition 3 A graph G = (V,E) is k-hyperbolic if it satisfies : taken any three vertices x,y,z ∈ V (G), for
any vertex v ∈ Pxy, dG(v,u) ≤ k for any u ∈ Pxz ∪Pyz where Pxy,Pxz,Pyz are any shortest path between x,y,
x,z and y,z respectively.
Notation : For graph G = (V,E), NG(v) is the set of the neighbors of v. NG(S) =∪v∈SNG(v)\S and NG[S] =
NG(S)∪S for subset S⊆V .

Theorem 1 Given a graph G = (V,E) and an integer k ≥ 3, we have the following results :
(i) we can find either an induced cycle with order larger than k or a tree-decomposition ({Xi|i ∈ I},T =
(I,M)) with treewidth bounded by (k− 1)(∆− 1)+ 2 such that Xi induces a caterpillar with backbone a
chordless path Pi of order at most k− 1, i. e. for v ∈ Xi, we have v ∈ NG[Pi], i ∈ I. Moreover, the time
complexity is O(|V (G)|2) ;
(ii) we claim that either G is not k-chordal or G is k-hyperbolic.

Sketch of proof. (i) The proof is by induction on |V (G)|. We prove that either we find an induced cycle
larger than k, or for any chordless path P = {v1, . . . ,vi} with i ≤ k−1, there is a tree-decomposition for G
with one bag containing NG[P] and every bag inducing a caterpillar with backbone a chordless path of order
at most k−1. (ii) It is easily obtained from (i).

Then it is easy to obtain the following corollary for k-chordal graph.

Corollary 1 Given a k-chordal graph G = (V,E), we can find a tree-decomposition ({Xi|i∈ I},T = (I,M))
such that Xi induces a caterpillar with backbone a chordless path Pi of order at most k−1, i. e. for v ∈ Xi,
we have v ∈ NG[Pi], i ∈ I. Moreover, the time complexity is O(|V (G)|2).

3 Routing Scheme for k-Chordal Graph
In this section, applying the special tree-decomposition in Corollary1, we give a routing scheme for k-

chordal graph which uses message headers, addresses and local memories of size O(k logn) bits per node,
and the additive stretch 4k−2+(4k−6) log∆, where ∆ is the maximum degree.

Let G be a k-chordal graph. Let F be a BFS-tree of G rooted at r and ({Xi|i ∈ I},T = (I,M)) be a
tree-decomposition of G from Corollary1. We need some notations introduced in [FG01] to construct the
addresses and routing tables. Since of limited space, we just describe the main idea of the routing algorithm.
Main Idea of the Routing Algorithm Let s,d be two vertices of G, s the sender and d the receiver. If s is
the ancestor of d in the BFS-tree F , then we can use the algorithm in [FG01] and obtain the shortest path
from s to d. In the following, we consider the case that s is not the ancestor of d in F . Firstly, We route
along the path from s to r in the tree F until we arrive the first node u such that Bu is an ancestor of Bd in
T , where Bu (Bd) is the bag containing u (d) with minimum identifier [FG01] in the tree-decomposition T .
(The node u exists, since u = r satisfies at least.) Then in the bag Bu, there is a node a, which is an ancestor
of d in tree F , since Bu either is an separator of d and r or contains at least one of d and r. So we search a
in the bag Bu after arriving u. Then we route from a to d in the tree F .
Remark For interval graph, subclass of chordal graph, we have a caterpillar BFS-tree F . Then we can prove
that our routing algorithm obtain the additive stretch 2.
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