
A purely functional library for
modular arithmetic and its application to

certifying large prime numbers

Benjamin Grégoire and Laurent Théry

INRIA Sophia-Antipolis, France
[Benjamin.Gregoire|Laurent.Thery]@sophia.inria.fr

Abstract. Computing efficiently with numbers can be crucial for some
theorem proving applications. In this paper, we present a library of mod-
ular arithmetic that has been developed within the Coq proof assistant.
The library proposes the usual operations that have all been proved cor-
rect. The library is purely functional but can also be used on top of some
native modular arithmetic. With this library, we have been capable of
certifying the primality of numbers with more than 13000 digits.

1 Safe computation and theorem proving

Recent formalisations such as the four colour theorem [?] and the Flyspeck
project [?] have shown all the benefits one can get from having a formal system
where both proving and computing are possible. In the Coq proof assistant [?],
computation is provided by the logic. A direct application of having computa-
tion inside the logic is the so-called two-level approach [?]. To illustrate it, let
us consider the problem of proving the primality of some natural numbers. Sup-
pose that we have defined a predicate prime: a number is prime if it has exactly
two divisors, 1 and itself. How do we now prove that 17 is prime? The usual
approach is to interactively build a proof object using tactics. Of course, this
task can be automated by writing an ad-hoc tactic. Still, behind the scene, the
system will have to build a proof object and the larger the number to be proved
prime is, the larger the proof term will be. The two-level approach proposes an
alternative strategy in two steps. In the first step, one writes a semi-decision
procedure for the problem in the programming language of Coq. In our case, it
amounts to writing a function test from natural numbers to booleans such that if
the function returns true then the number is prime. For example, if the natural
number is n, the function can check that there is no divisor between 2 and

√
n

by a simple iteration. In the second step, one proves that the function meets its
specification. This means proving for our function test that

∀n, test n = true→ prime n

Note that implication is sufficient for the two-level approach to work. Proving
equivalence would not be of much interest here. A better way of proving that

a number n is not prime is to find externally a factor p of n and only check
internally that p divides n.

Once the second step has been completed, for 17 to be certified as prime, it
is sufficient to prove that the function test applied to 17 returns true. As the
function test directly evaluates inside Coq, this last proof is simply the reflexivity
of equality. Using the two-level approach, we have just transformed the problem
of building a large proof object into a conversion problem: showing that test 17
is convertible to true. The size of the proof object is then independent of the
number to be proved prime.

A recent improvement of the evaluation mechanism [?] has made the two-
level approach much more attractive. The evaluation inside Coq is now as fast as
the bytecode evaluation of the Ocaml language [?]. The only restriction when
writing programs inside Coq is that programs must be purely functional, i.e.
side effects are not allowed, and must always terminate. This is the price to pay
to safely combine proofs and computations. Obviously, for this approach to be
used, the Coq system should provide efficient functional implementations for
the usual data structures: numbers, strings, vectors, hash tables, . . .

The contribution of this paper is to propose a purely functional library to
compute efficiently with large numbers inside Coq. The key idea of the library
is to implement a representation of numbers that accommodates the divide and
conquer strategy to speed up computation. The paper is organised as follows.
In Section ??, we present the current arithmetic of Coq and explain why a new
representation of numbers is needed in order to compute efficiently with large
numbers. In Section ??, we give an overview of our new library based on this
new representation. In Section ??, we detail two possible instantiations of the
library. Finally, Section ?? presents an application of the library to the particular
problem of certifying large prime numbers.

2 Linear versus tree representation of numbers

In the standard library of Coq, strictly positive numbers are represented as
linear structures, low bits first.

Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.

xH is 1, (xO p) is two times the value of p and (xI p) is two times plus one the
value of p. For example, 17 and 18 are represented as xI (xO (xO (xO (xH))))
and xO (xI (xO (xO (xH)))) respectively. The choice of the representation has
some direct impact on the way operations are implemented. To illustrate this on
an example, let us consider the comparison function Pcmp. It takes two positive
numbers and returns a comparison value

Inductive comparison: Set := Eq | Lt | Gt.

As numbers are represented low bits first, to compare two numbers one needs
to walk down both numbers keeping track of what the current status of the
comparison is. This is what the auxiliary function Pcompare does. The main
function Pcomp starts the computation with the initial status being equality.

Fixpoint Pcompare (x y: positive) (r: comparison): comparison :=
match x, y with
| xH, xH => r
| xH, _ => Lt
| _ , xH => Gt
| xI x’, xI y’ => Pcompare x’ y’ r
| xO x’, xO y’ => Pcompare x’ y’ r
| xI x’, xO y’ => Pcompare x’ y’ Gt
| xO x’, xI y’ => Pcompare x’ y’ Lt
end.

Definition Pcmp x y := Pcompare x y Eq.

This is clearly not optimal but is the best one can do with this representation:
recursive calls only skip a single bit. Efficient algorithms for large numbers, like
Karatsuba multiplication [?], use a divide and conquer strategy. They require to
be able to split numbers in parts efficiently. This motivates our representation
based on a tree-like structure. Given an arbitrary one-word set w, we define the
two-word set w2 w as follows

Inductive w2 (w: Set): Set := WW : w -> w -> w2 w.

For example, (WW true false) is of type (w2 bool). We choose in an arbitrary
way that high bits are the first argument of WW, low bits the second one. Now we
use a recursive type definition and define the type of numbers of height n as

Fixpoint word (w: Set) (n:nat): Set :=
match n with
| O => w
| S n => w2 (word w n)
end.

An object of type (word w n) is a complete binary tree that contains 2n objects
of type w. Given a number, one has to choose an appropriate height to represent it
exactly. For example, taking the usual booleans for base words, a minimum height
of 2 is necessary to represent the number 13. With this height, numbers have
type (word bool 2) and (WW (WW true true) (WW false true)) denotes the
number 13.

Arithmetic operations are not going to be defined on the type word directly.
We use a technique similar to the one in [?]. A functor is first defined that allows
to build a two-word modular arithmetic on top of a single-word one. The functor
is then applied iteratively to get the final implementation. In the following, x, y
are used to denote one-word variables and xx, yy to denote two-word variables.

When defining a new function f , we just need to explain how to compute the
result on two-word values knowing how to compute it on one-word values. We
use the notation w f for the single-word version of f and ww f for the two-word
version. For example, let us go back to our comparison function Pcompare and
try to define it on our trees. We first suppose the existence of the comparison on
single words

Variable w_compare: w -> w -> comparison -> comparison.

and then define the function for two-word values

Definition ww_compare (xx yy: w2 w) (r: comparison) :=
match xx, yy with
WW xH xL, WW yH yL => w_compare xH yH (w_compare xL yL r)

end.

This is not the function that is in our library. Instead, we can take advantage of
the tree-like structure and compare high bits first.

Variable w_cmp: w -> w -> comparison.

Definition ww_cmp (xx yy: w2 w) :=
match xx, yy with
WW xH xL, WW yH yL =>
match w_cmp xH yH with Eq => w_cmp xL yL | cmp => cmp end

end.

The key property of our representation is that splitting number in two is for
free. The next section details why this property is crucial to implement efficient
algorithms for functions like multiplication, division and square root. Note that,
in term of memory allocation, having a tree structure does not produce any
overhead. In a functional setting, building a binary tree structure or building
the equivalent linear list of words requires the same number of cells.

One main drawback of our representation is that we manipulate only com-
plete binary trees. So, even if we choose carefully the appropriate height, half
of the words could be unnecessary to compute the final result. To soften this
problem, we have extended the definition of w2 to include an empty word W0.

Inductive w2 (w: Set): Set :=
| W0: w2
| WW: w -> w -> w2.

For example, the number 13 can be represented at height 3 as

WW W0 (WW (WW true true) (WW false true))

With this extension, we lose uniqueness of representation. Still, there is a notion
of canonicity, W0 should always be preferred to a sub-tree full of zeros. Note
that, in our development, all functions have been carefully written in order to

preserve canonicity, but canonicity is not part of their specification since it is
not necessary to ensure safe computations. Using w_0 to represent the one-word
zero, the final version of the comparison function is then

Definition ww_cmp (xx yy: w2 w) :=
match xx, yy with
| W0, W0 => Eq
| W0, WW yH yL =>

match w_cmp w_0 yH with Eq => w_cmp w_0 yL | _ => Lt end
| WW xh xl, W0 =>

match w_cmp xH w_0 with Eq => w_cmp xL w_0 | _ => Gt end
| WW xH xL, WW yH yL =>

match w_cmp xH yH with Eq => w_cmp xL yL | cmp => cmp end
end.

3 The certified library

Our library includes the usual functions: comparison, successor, predecessor, op-
posite, addition, subtraction, multiplication, square, Euclidean division, modulo,
integer square root, gcd, and power. It is a modular library: we manipulate trees
(or words) of the same height (resp. of the same size). For addition and sub-
traction, we also provide an exact version that returns a word and a carry. For
multiplication, we also provide an exact version returning two words.

Since we want to use our library in the context of the two-level approach, we
must carefully choose the algorithms we implement. Furthermore, semi-decision
procedures must also be certified, so every function of our library must come
along with its proof of correctness.

Specifications are expressed using predicates over integers. For this, we use
two interpretation functions [| |] and [[]]. Given a one-word element x, its cor-
responding integer value is [|x|]. Given a two-word element xx, its corresponding
integer value is [[xx]]. The base of the arithmetic, i.e. one plus the maximum
value that fits in a single-word, is wB. We write w_0 (resp. w_1) for the word with
corresponding integer value 0 (resp. 1). From these definitions, the following
statement holds

∀x y, [[WW x y]] = [|x|] ∗ wB + [|y|]
Once a function is defined, its correctness has to be proved. For example, for
the comparison defined in the previous section, one needs to prove that if the
function w_cmp meets its specification

∀x y, match w_cmp x y with
| Eq → [|x|] = [|y|] | Lt → [|x|] < [|y|] | Gt → [|x|] > [|y|]
end

so does the function ww_cmp

∀xx yy, match ww_cmp xx yy with
| Eq → [[xx]] = [[yy]] | Lt → [[xx]] < [[yy]] | Gt → [[xx]] > [[yy]]
end

3.1 Words and carries

Carries are important for operations like addition and subtraction. In our func-
tional setting, carries encapsulate words

Inductive carry (w: Set): Set :=
| C0: w -> carry
| C1: w -> carry.

Two interpretation functions [+| |] and [–| |] are associated with carries. One
interprets the carry positively: [+|C1 x|] = wB + [|x|] and [+|C0 x|] = [|x|]. The
other interprets it negatively (i.e. a borrow): [–|C1 x|] = [|x|]−wB and [–|C0 x|] =
[|x|]. To illustrate how carries are manipulated, let us consider the successor
function. In our library, it is represented by two functions

w_succ: w -> w
w_succ_c: w -> carry w

The first function represents the modular version, the second the exact version.
With these two functions, it is possible to define the version for two-word ele-
ments. For example, the definition for the modular version is

Definition ww_succ xx :=
match xx with
| W0 => WW w_0 w_1
| WW xH xL =>
match w_succ_c xL with
| C0 l => WW xH l
| C1 l => WW (w_succ xH) w_0
end

end.

Note that, unlike what happens in imperative languages, returning a carry al-
locates a memory cell. So in our implementation we avoid as much as possible
to create them. When we know in advance that the result always returns (resp.
does not return) a carry, we can call the modular function instead. An example
of such a situation is a naive implementation of the exact function that adds 2
to a one-word element by calling twice the successor function:

Definition w_add2 x :=
match w_succ_c x with
| C0 y => w_succ_c y
| C1 y => C1 (w_succ y)
end.

In the case when the first increment has created a carry, we are sure that the
second increment cannot raise any carry, so we can directly call the function
w_succ. Also, we use a combination of partial evaluation and continuation pass-
ing style to get shorter definitions. This has proved to ease considerably the
proving phase without changing the efficiency of functions.

3.2 Shifting bits

If most of the operations work at word level, some functions (like the shifting
operation) require to work at a lower level, i.e. the bit level. Surprisingly, all the
operations we had to perform at bit level can be built using a single function

w_add_mul_div : positive -> w -> w -> w

Evaluating (w_add_mul_div p x y) returns a new word that is composed for
its last p bits by the first bits of y and for the remaining bits by the last bits of
x. Its specification is

∀p x y, 2p < wB⇒
[|w_add_mul_div p x y|] = ([|x|] ∗ 2p + ([|y|] ∗ 2p)/wB)mod wB

Two degenerated versions of this function are of direct interest. Calling it with
w_0 as second argument implements the shift left. Calling it with w_0 as first
argument implements the shift right.

3.3 Divide and conquer algorithms

Karatsuba multiplication Speeding up the multiplication was the main mo-
tivation of our tree representation for numbers. The multiplication is represented
in our library by the function

w_mul_c: w -> w -> w2 w

and its specification is

∀x y, [[w_mul_cx y]] = [|x|] ∗ [|y|]

The naive implementation on two-word elements follows the simple equation

[[WW xh xl]] ∗ [[WW yh yl]] =
[|xh|] ∗ [|yh|] ∗ wB2 + ([|xh|] ∗ [|yl|] + [|xl|] ∗ [|yh|]) ∗ wB + [|xl|] ∗ [|yl|]

Thus, performing a multiplication requires four submultiplications. Karatsuba
multiplication [?] saves one of these submultiplications

[[WW xh xl]] ∗ [[WW yh yl]] =
let h = [|xh|] ∗ [|yh|] in
let l = [|xl|] ∗ [|yl|] in
h ∗ wB2 + ((h + l)− ([|xh|]− [|xl|]) ∗ ([|yh|]− [|yl|])) ∗ wB + l

Karatsuba multiplication is more efficient than the naive one only when numbers
are large enough. So our library includes both implementations for multiplica-
tion. They are used separately to define two different functors. The functor with
the naive multiplication is only used for trees of “small” height.

Recursive Division The general Euclidean division algorithm that we have
used is the usual schoolboy method that iterates the division of two words by
one word. It is then crucial to perform this two-by-one division efficiently. The
algorithm we have implemented is the one presented in [?]. The idea is to use
the recursive call on high bits to guess an approximation of the quotient and
then to perform an appropriate adjustment to get the exact quotient.

In our development, the two-by-one division takes three words and returns a
pair composed of the quotient and the remainder

Variable w_div21: w -> w -> w -> w * w

and its specification is

∀x1 x2 y, let q, r = w_div21x1 x2 y in
[|x1|] < [|y|] ⇒ wB/2 ≤ [|y|] ⇒ [[WW x1 x2]] = [|q|] ∗ [|y|] + [|r|] ∧ 0 ≤ [|r|] < [|y|]

The two conditions deserve some explanation. The first one ensures that the
quotient fits in one word. The second one ensures that the recursive call computes
an approximation of the quotient that is not too far from the correct value.

Before defining the function ww_div21 for two-word elements, we need to
define the intermediate function w_div32 that divides three one-word elements
by two one-word elements. Its specification is

∀x1 x2 x3 y1 y2, let q, rr = w_div32 x1 x2 x3 y1 y2 in
[[WW x1 x2]] < [[WW y1 y2]] ⇒ wB/2 ≤ [|y1|] ⇒

[|x1|] ∗ wB2 + [|x2|] ∗ wB + [|x3|] = [|q|] ∗ [[WW y1 y2]] + [[rr]] ∧
0 ≤ [[rr]] < [[WW y1 y2]]

The two conditions play the same roles as the ones in the specification of
w_div21. As the code is a bit intricate, here we just explain how the function
proceeds. It first calls w_div21 to divide x1 and x2 by y1. This gives a pair (q, r)
such that

[|x1|] ∗ wB + [|x2|] = [|q|] ∗ [|y1|] + [|r|]

q is considered as the approximation of the final quotient. The condition wB/2 ≤
[|y1|] ensures that if this approximation is not exact, then it exceeds the real
value of at most two units. So the quotient can only be q, q − 1 or q − 2. As we
have

[|x1|] ∗ wB2 + [|x2|] ∗ wB + [|x3|] = [|q|] ∗ [[WW y1 y2]] + ([[WW r x3]]− [|q|] ∗ [|y2|])

we know in which situation we are by testing the sign of the candidate remainder.
In our modular arithmetic, it amounts to checking whether or not the subtraction
of (w_mul_c q y2) from (WW r x3) produces a borrow. If it is positive or zero (no
borrow), the quotient is q. If it is negative (a borrow), we have to consider q− 1
and add in consequence (WW y1 y2) to the candidate remainder. We test again
the sign of this new candidate. If it is positive, the quotient is q − 1, otherwise
is q − 2. The definition of ww_div21 is now straightforward. Forgetting the W0
constructor, we have

Definition ww_div21 xx1 xx2 yy :=
match xx1, xx2, yy with
....
| WW x1H x1L, WW x2H x2L, WW yH yL =>

let (qH, rr) := w_div32 x1H x1L x2H yH yL in
match rr with
| W0 => (WW qH w_0, WW w_0 x2L)
| WW rH rL =>
let (qL, s) := w_div32 rH rL x2L yH yL in
(WW qH qL, s)

end
end.

These two divisions can only be used if the divisor y is greater than equal to
wB/2. This is not restrictive because, if y is too small, we can always find an n
such that y ∗ 2n ≥ wB/2. If we have x ∗ 2n = q ∗ (y ∗ 2n) + r for some x and r,
then r can be written as r = 2n ∗ r′, so x = q ∗ y + r′. Hence, to perform the
division of two numbers of the same size, we first shift divisor and dividend by
n. The shifted dividend fits in two words and its high part is smaller than the
shifted divisor. Then, we use the two-by-one division. The resulting quotient is
correct and we just have to unshift the remainder.

Recursive Square Root The algorithm for computing the integer square root
is similar to the one for division. It was first described in [?] and has already
been formalised in a theorem prover [?]. It requires the number to be split in
four. For this reason it is represented by the following function in our library

w_sqrt2: w -> w -> w * carry w;

The function returns the integer square root and the rest. Its specification is

∀x y, let s, r = w_sqrt2 x y in
wB/4 ≤ [|x|] ⇒ [[WW x y]] = [|s|]2 + [+|r|] ∧ [+|r|] ≤ 2 ∗ [|s|]

As for division, the input must be large enough so that the recursive call that
computes the approximation is not too far from the exact value.

The definition of the square root needs a support function that implements
a division by twice a number

w_div2s: carry w -> w -> w -> carry w * carry w

with its specification

∀x1 x2 y, let q, r = w_div2s x1 x2 y in
wB/2 ≤ [|y|] ⇒ [+|x1|] ≤ 2 ∗ [|y|] ⇒

[+|x1|] ∗ wB + [|x2|] = [+|q|] ∗ (2 ∗ [|y|]) + [+|r|] ∧ 0 ≤ [+|r|] < 2 ∗ [|y|]

The idea of the algorithm is summarised by the following equation

let qh, r = w_sqrt2 xh xl in
let ql, r1 = w_div2s r yh qh in
[[WW xh xl]] ∗ wB2 + [[WW yh yl]] = [[WW qh ql]]2 + ([+|r1|] ∗ wB + [|yl|]− [|ql|]2)

(WW qh ql) is a candidate for the square root of (WW (WW xh xl) (WW yh yl)).
Because of the condition on the input, we are sure that the integer square root
is either (WW qh ql) or (WW qh ql) − 1. It is the sign of [+|r1|] ∗ wB + [|yl|] − [|ql|]2
that indicates which one to choose.

4 Implementing base word arithmetic

The final step to complete our library is to define the arithmetic for the base
words. Once defined, we get the modular arithmetic for the desired size by apply-
ing an appropriate number of times our functors on top of this base arithmetic.
In a classical implementation, these base words would be machine words. Unfor-
tunately, machine words are not yet accessible from the Coq language.

4.1 Defined modular arithmetic

For the moment, the only way to have a modular arithmetic for base words
inside Coq is to define base words as a datatype. For example, we have for
two-bit words

Inductive word2 : Set := OO | OI | IO | II.

The functions are then defined by simple case analysis. For example, the exact
successor function is defined as

Definition word2_succ_c x :=
match x with
| OO => C0 OI
| OI => C0 IO
| IO => C0 II
| II => C1 OO
end.

We also need to give the proofs that every function meets its specification. These
proofs are also done by case analysis.

Rather than writing by hand functions and proofs, we have written an Ocaml
program instead. This program takes the word size as argument and generates
the desired base arithmetic with all its proofs. It is a nice application of meta-
proving. Unfortunately, functions and their corresponding proofs grow quickly
with the word size. For example, the addition for word8 is a pattern matching
of 65536 cases. word8 is actually the largest size Coq can handle.

The main benefit of this approach is to get an arithmetic library that is
entirely expressed in the logic of Coq. The library is portable: no extension of
the Coq kernel is needed.

4.2 Native modular arithmetic

To test our library with some machine word arithmetic, we use the extraction
mechanism that converts automatically Coq functions into Ocaml functions.
It is then possible to run the resulting program with the 31-bit native Ocaml
arithmetic or a simulated 64-bit arithmetic. Not all the functions that we have
implemented have their corresponding functions in the native modular arith-
metic, so some native code had to be developed for these functions. The formal
verification of this code is also possible and we did it for some of these functions.
Running the extracted library with machine word arithmetic gives an idea of the
speed-up we could get if we had a native arithmetic in Coq.

5 Evaluating the library

A way of applying the two-level approach for proving primality has been pre-
sented in [?]. It is based on the notion of prime certificate and more precisely
of Pocklington certificate. A prime certificate is an object that witnesses the pri-
mality of a number. The Pocklington certificates we have been using are justified
by the following theorem given in [?]:

Theorem 1. Given a number n, a witness a and some pairs of natural numbers
(p1, α1), . . . , (pk, αk) where all the pi are prime numbers, let

F1 = pα1
1 . . . pαk

k

R1 = (n− 1)/F1

s = R1/(2F1)
r = R1mod (2F1)

it is sufficient for n to be prime that the following conditions hold:

F1 is even, R1 is odd, and F1R1 = n− 1 (1)
(F1 + 1)(2F 2

1 + (r − 1)F1 + 1) > n (2)
an−1 = 1(mod n) (3)

∀i ∈ {1, . . . , k} gcd(a
n−1
pi − 1, n) = 1 (4)

r2 − 8s is not a square or s = 0 (5)

For a prime number n, the list [a, p1, α1, p2, α2, . . . , pk, αk] represents its Pock-
lington certificate. Even if generating a certificate for a given n can be cpu-
intensive, verifying conditions (1)-(5) is an order of magnitude simpler than
evaluating (test n) (computing an−1(mod n) requires a maximum of 2log2 n mod-
ular multiplications). In fact, only the verification of conditions (1)-(5) is crucial
for asserting primality. This requires safe computation and is done inside Coq.
The generation of the certificate is delegated to an external tool. This is a direct
application of the skeptic approach described in [?,?]. Note that this method of
certifying prime numbers is effective only if the prime number n is such that
n− 1 can be easily partially factorised.

With respect to the usual approach for the same problem [?], the two-level
approach gives a significant improvement in terms of size of the proof object
and in terms of time. Figure ?? illustrates this on some examples (P150 is a
random prime number with 150 digits and the millennium prime is a prime
number with 2000 digits discovered by John B. Cosgrave). However, due to
the limitations of the linear representation of numbers in Coq, even with the
two-level approach, we were not capable of certifying large prime numbers (>
1000 digits) as illustrated by the millennium prime. The same occurred when
applying the Lucas-Lehmer test for proving the primality of Mersenne numbers,
i.e. numbers that can be written as 2p − 1.

Theorem 2. Let (Sn) be recursively defined by S0 = 4 and Sn+1 = S2
n − 2. For

p > 2, 2p − 1 is prime if and only if (2p − 1)|Sp−2.

The largest Mersenne number we could certify was 24423−1 that has 1332 digits.
The idea is then to use our new library based on a tree-like representa-

tion of numbers. The complete library with the corresponding contribution for
prime numbers is available at http://gforge.inria.fr/projects/coqprime/.
It consists of 9000 lines of hand-written definitions and proofs. The automat-
ically generated word8 arithmetic is much bigger, 95 Mb: 41 Mb are used to
define functions and 54 Mb for the proofs. This is the largest ever contribution
that has been verified by Coq. With this new library, we have been capable of
proving that the Mersenne number 244497 − 1 was prime using Coq with the
Lucas-Lehmer test. As far as we know, it is the largest prime number that has
been certified by a theorem prover.

The certification with our library is faster even for small numbers. This is
illustrated in Figure ?? and the fifth and sixth columns of Figure ??. There is
a maximum speed-up of 70. These benchmarks have been run on a Pentium 4
with 1 Gigabyte of RAM.

Comparing word8 with the 31-bit Ocaml integer w31 shows all the benefit
we could get from having machine words in Coq. There is a maximum speed-up
of 95 with respect to word8. This means a speed-up of 6650 with respect to the
standard Coq library.

The 64-bit Ocaml integer w64 is a simulated arithmetic (our processor
has only 32 bits). This is why there is not such a gap between w31 and w64.
Big int [?] is the standard exact library for Ocaml. It has a purely functional
interface but is written in C. The comparison is not bad. For the last Mersenne,
w64 is only 4.6 times slower than Big int. It is also very interesting that this
gap is getting smaller as numbers get larger. On individual functions, random
tests on addition give a ratio of 4 and on multiplication a ratio of 10.

We are still far away from getting the performance of the gmp [?] library.
This library is written in C and uses in-place computation instead. This min-
imises considerably the number of memory allocations. Unfortunately, in-place
computation is not compatible with the logic of Coq.

size time

prime digits standard two-level standard two-level

1234567891 10 94K 0.453K 3.98s 0.50s
74747474747474747 17 145K 0.502K 9.87s 0.56s
1111111111111111111 19 223K 0.664K 17.41s 0.66s
(2148 + 1)/17 44 1.2M 0.798K 350.63s 2.77s
P150 150 1.902K 75.62s
millennium prime 2000

Fig. 1. Some verifications of certificates with the standard and two-level approaches

digits positive word8

1234567891 10 0.50s 0.10s
74747474747474747 17 0.56s 0.12s
1111111111111111111 19 0.66s 0.20s
(2148 + 1)/17 44 2.77s 0.36s
P150 150 75.62s 8.44s
millennium prime 2000 5320.05s

Fig. 2. Some verifications of certificates with the standard and our Coq arithmetics

n digits year positive word8 w31 w64 Big int

12 127 39 1876 0.73s 0.04s 0.01s 0.s 0.s
13 521 157 1952 53.00s 1.85s 0.02s 0.02s 0.s
14 607 183 1952 84.00s 2.78s 0.03s 0.03s 0.s
15 1279 386 1952 827.00s 20.21s 0.25s 0.16s 0.02s
16 2203 664 1952 4421.00s 89.1s 1.1s 0.8s 0.08s
17 2281 687 1952 4964.00s 97.59s 1.21s 0.82s 0.09s
18 3217 969 1957 14680.00s 237.65s 2.85s 2.14s 0.22s
19 4253 1281 1961 35198.00s 494.09s 6.4s 4.58s 0.6s
20 4423 1332 1961 39766.00s 563.27s 6.99s 4.99s 0.67s
21 9689 2917 1963 5304.08s 56.1s 39.98s 5.89s
22 9941 2993 1963 5650.63s 60.5s 42.53s 6.32s
23 11213 3376 1963 7607.00s 80.56s 57.47s 11.25s
24 19937 6002 1971 34653.12s 377.24s 268.09s 45.75s
25 21701 6533 1978 43746.21s 463.02s 338.04s 58.56s
26 23209 6987 1979 51210.56s 538.33s 403.48s 88.43s
27 44497 13395 1979 282784.09s 3282.23s 2208.45s 476.75s

Fig. 3. Times to verify Mersenne numbers

6 Conclusions

The main contribution of our work is to present a certified library for performing
modular arithmetic. Individual arithmetic functions have already been proved
correct, see for example [?]. To our knowledge, it is the first time verification
has been applied successfully to a complete library with non-trivial algorithms.
Our motivation was to improve integer arithmetic inside Coq. The figures given
in Section ?? show that this goal has been reached: we are now capable of
manipulating numbers with more than 13000 digits. These tests also show all
the benefit we could get from a native base arithmetic. We hope this will motivate
researchers to integrate machine word arithmetic inside Coq.

Expressing the arithmetic in the logic has a price: no side effect is possible,
also numbers are allocated progressively, not in one block. A natural continuation
of our work would be to prove the correctness of a library with side effects. This
would require a much more intensive verification work since in-place computing
is known to be much harder to verify. Note that directly integrating an existing
library inside the prover with no verification would go against the philosophy of
Coq to keep its trusted computing base as small as possible.

From the methodological point of view, the most interesting aspect of this
work has been the use of the meta-proving technique to generate our base arith-
metic. This has proved to be a very powerful technique. Files for the base arith-
metic are generated in an ad-hoc manner by concatenating strings. Developing a
more adequate support for meta-proving inside the prover seems a very promis-
ing future work. Note that meta-proving could also be a solution to get more
flexibility in the proof system. Slightly changing our representation, for example
adding not only WO but also W1 and W-1 to the w2 type, would break most of
our definitions and proofs. Meta-proving could be a solution for having a formal
development for a family of data structures rather than just a single one.

Finally, on December 2005, a new prime Mersenne number has been discov-
ered: 230402457−1. It took five days to perform its Lucas-Lehmer test on a super
computer. The program uses a very intriguing algorithm for multiplication [?].
Proving the correctness of such an algorithm seems a very challenging task.

Acknowledgments

We would like to thank the anonymous referees for their careful reading of the
paper and specially the referee who suggested a simplification to our implemen-
tation of Karatsuba multiplication.

