Diagramme de phase d'un modèle de type CAOS en vue de l'extraction des arbres et des réseaux routiers

Aymen EL GHOUL

Dirigé par :

Ziad BELHADJ : URISA (SUP'COM)

Josiane ZERUBIA et lan JERMYN : ARIANA (CNRS, INRIA, UNSA)

2006-2007

Plan de la présentation

- Motivations
 - Modélisation d'une région
 - Problématique
- Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- 3 Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux
- Conclusion et perspectives

Plan de la présentation

- Motivations
 - Modélisation d'une région
 - Problématique
- 2 Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux
- Conclusion et perspectives

Approche probabiliste - approche variationnelle

Approche probabiliste basée sur la méthodologie bayesienne

- La région R est vue comme un champ aléatoire,
- Estimateur MAP : $\hat{R} = \arg \max_{R \in \mathcal{R}} P(R|I,K)$
- Théorème de Bayes : $\hat{R} = \arg \max_{R \in \mathcal{R}} P(I|R,K)P(R|K)$

Approche variationnelle basée sur la minimisation d'énergie

- La probabilité peut être réécrite comme une fonction exponentielle, exp (-E)
- Minimisation d'énergie :
 R = arg min_{R∈R} {E(I|R, K) + E(R|K)}
- Energie d'une région : $E(R) = E_{interne}(R) + E_{image}(R)$

Motivations

Le modèle des CAOS, [Marie et al. 2005, 06]

$$E_{\rm g}(\gamma) = \underbrace{\lambda_{\rm C} L(\gamma) + \alpha_{\rm C} A(\gamma)}_{\rm Snakes \ [Kass \ et \ al. \ 1988]} - \frac{\beta_{\rm C}}{2} \iint dt \ dt' \ \dot{\gamma}(t') \cdot \dot{\gamma}(t) \ \Phi(|\gamma(t) - \gamma(t')|)$$

où la fonction d'interaction Φ est donnée par :

$$\Phi(\mathbf{Z}) = \begin{cases} 1 & \mathbf{Z} < \mathbf{d} - \epsilon ,\\ \frac{1}{2} \left(1 - \frac{\mathbf{Z} - \mathbf{d}}{\epsilon} - \frac{1}{\pi} \sin \frac{\pi(\mathbf{Z} - \mathbf{d})}{\epsilon} \right) & \mathbf{d} - \epsilon \le \mathbf{Z} < \mathbf{d} + \epsilon ,\\ 0 & \mathbf{Z} \ge \mathbf{d} + \epsilon . \end{cases}$$

Problématique

Problématique

Invariance d'échelle de l'énergie géométrique du contour

- Le modèle des CAOS possède 5 paramètres ⇒ Difficile d'analyser la stabilité de l'E_α,
- Invariance d'échelle:
 - Hypothèse : $\epsilon = d \Rightarrow$ La fonction d'interaction peut être réécrite en fonction de $\hat{\gamma} = \frac{\gamma}{d}$,
 - Soient $\hat{\alpha} = \frac{\alpha_C d}{\lambda_C}$, $\hat{\beta} = \frac{\beta_C d}{\lambda_C}$ et $\hat{\Phi}(z) = \Phi(\frac{z}{d})$. Le modèle des CAOS devient donc $(\lambda_C > 0)$:

$$\hat{\mathcal{E}}_{g}(\hat{\gamma}) = L(\hat{\gamma}) + \hat{\alpha} A(\hat{\gamma}) - \frac{\hat{\beta}}{2} \iint dt \ dt' \ \dot{\hat{\gamma}}(t') \cdot \dot{\hat{\gamma}}(t) \ \hat{\Phi}(|\hat{\gamma}(t) - \hat{\gamma}(t')|) \ ,$$

- \hat{E}_{a} dépend des deux paramètres d'échelle $\hat{\alpha}$ et $\hat{\beta}$.
- Analyse de stabilité (développement en série de Taylor):

$$E_{g}(\gamma) = E_{g}(\gamma_{0} + \delta\gamma) = E_{g}(\gamma_{0}) + \langle \delta\gamma | \frac{\delta E_{g}}{\delta \gamma} \rangle_{\gamma_{0}} + \frac{1}{2} \langle \delta\gamma | \frac{\delta^{2} E_{g}}{\delta \gamma^{2}} | \delta\gamma \rangle_{\gamma_{0}}$$

Plan de la présentation

- Motivations
 - Modélisation d'une région
 - Problématique
- Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux
- Conclusion et perspectives

Etude variationnelle

Paramétrisation

Paramétrisation d'un cercle

- $\gamma_0(t) = (r_0(t), \theta_0(t)) = (r_0, t)$ where $t \in [-\pi, \pi[$
- $\gamma(t) = \gamma_0(t) + \delta \gamma(t) = (r(t), \theta(t)) = (r_0 + \delta r(t), \theta_0(t) + \delta \theta(t))$
- L'énergie Eq est invariante aux changements tangentiels donc $\delta\theta(t) = 0$.

Définition des perturbations

- L'énergie E_a est invariante par translation donc l'opérateur $F = \frac{\delta^2 E_g}{\delta \gamma^2}$ est aussi invariant par translation,
- La base de la transformée de Fourier diagonalise F,
- ⇒ les perturbations seront définies en termes de coefficients de Fourier : $\delta r(t) = \sum_{k} a_k e^{ir_0kt}$ avec $k = \frac{m}{r_0}$ et $m \in \mathbb{Z}$.

L'énergie géométrique d'un cercle, [Peter et al. 2006]

$$\begin{split} E_{\mathrm{g}}(\gamma) &= \lambda_{\mathrm{C}} L(\gamma) + \alpha_{\mathrm{C}} A(\gamma) - \frac{\beta_{\mathrm{C}}}{2} \iint dt \ dt' \ \dot{\gamma}(t') \cdot \dot{\gamma}(t) \ \Phi(|\gamma(t) - \gamma(t')|) \\ E_{\mathrm{g}}(\gamma) &= E_{\mathrm{g}}(\gamma_0 + \delta \gamma) = E_{\mathrm{g}}(\gamma_0) + \langle \delta \gamma | \frac{\delta E_{\mathrm{g}}}{\delta \gamma} \rangle_{\gamma_0} + \frac{1}{2} \langle \delta \gamma | \frac{\delta^2 E_{\mathrm{g}}}{\delta \gamma^2} |\delta \gamma \rangle_{\gamma_0} \\ E_{\mathrm{g}}(r) &= E_{\mathrm{g}}(r_0 + \delta r) = e_0(r_0) + a_0 e_1(r_0) + \frac{1}{2} \sum_{i} |a_k|^2 e_2(k, r_0) \ . \end{split}$$

Comportements de l'énergie d'un cercle

Conditions de stabilité

Première condition de stabilité : le terme de premier ordre, e_1 , est nul

$$\beta_{\mathbf{C}}(\lambda_{\mathbf{C}}, \alpha_{\mathbf{C}}, r_0) = \frac{\lambda_{\mathbf{C}} + \alpha_{\mathbf{C}} r_0}{G_{10}(r_0)} \iff \hat{\beta}(\hat{\alpha}, \hat{r_0}) = \frac{1 + \hat{\alpha} \hat{r_0}}{\hat{G}_{10}(\hat{r_0})}$$

Deuxième condition de stabilité : le terme de second ordre, e_2 , est strictement positif

Conditions de stabilité

Deuxième condition de stabilité : le terme de second ordre, e_2 , est strictement positif

$$e_2(\alpha_C, k, r_0) > 0$$
, $\forall k \neq \frac{1}{r_0} \iff \alpha_C a(r_0, k) > f(r_0, k)$, $\forall k \neq \frac{1}{r_0}$.

• Si
$$a(\hat{r_0}, k) > 0$$
 alors $\hat{\alpha} > \hat{\alpha}_{min} = \max_{k \in K^+} \frac{f(\hat{r_0}, k)}{a(\hat{r_0}, k)}$

• avec
$$K^+ = \{k, a(\hat{r_0}, k) > 0 \text{ and } k \neq \frac{1}{r_0}\}.$$

• Si
$$a(\hat{r_0}, k) < 0$$
 alors $\hat{\alpha} < \hat{\alpha}_{max} = \min_{k \in K^-} \frac{f(\hat{r_0}, k)}{a(\hat{r_0}, k)}$

• avec
$$K^- = \{k, a(\hat{r_0}, k) < 0 \text{ and } k \neq \frac{1}{r_0}\}.$$

Les limites du paramètre â

Plan de la présentation

- Motivations
 - Modélisation d'une région
 - Problématique
- Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- 3 Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux
- Conclusion et perspectives

Paramétrisation d'une barre longue

$$\gamma_{0,\mu}(t_{\mu}) = egin{cases} x_{0,\mu}(t_{\mu}) &= \pm_{\mu} I t_{\mu} \text{ , } t_{\mu} \in [-0.5, 0.5] \\ y_{0,\mu}(t_{\mu}) &= \pm_{\mu} rac{w_{0}}{2} \end{cases}$$

avec

$$\pm_{\mu} = \begin{cases} +1 & \text{si } \mu = 1 \\ -1 & \text{si } \mu = 2 \end{cases}$$

Définition des perturbations

- $\delta \gamma_{\mu}(t_{\mu}) = (\delta x_{\mu}(t_{\mu}), \delta y_{\mu}(t_{\mu}))$. On s'intéresse aux perturbations verticales $\Rightarrow \delta x_{\mu}(t_{\mu}) = 0$,
- Les perturbations sont exprimées en termes des coefficients de Fourier (invariance par translation) : $\delta y_{\mu}(t_{\mu}) = \sum_{k_{\mu}} a_{\mu,k_{\mu}} e^{ik_{\mu}lt_{\mu}}$ avec $k_{\mu} = \frac{2\pi m_{\mu}}{l}$, $m_{\mu} \in \mathbb{Z}$,
- Expression du contour :

$$\begin{split} \gamma_{\mu}(t_{\mu}) &= \ \gamma_{0,\mu}(t_{\mu}) + \delta \gamma_{\mu}(t_{\mu}) \\ &= \begin{cases} x_{\mu}(t_{\mu}) &= \ \pm_{\mu} I t_{\mu} \\ y_{\mu}(t_{\mu}) &= \ \pm_{\mu} \frac{w_{0}}{2} + \sum_{k_{\mu}} a_{\mu,k_{\mu}} e^{ik_{\mu}It_{\mu}} \ . \end{cases} \end{split}$$

Motivations

L'énergie par unité de longueur de la barre

$$\begin{split} E_{g}(\gamma) &= \lambda_{C}L(\gamma) + \alpha_{C}A(\gamma) - \frac{\beta_{C}}{2} \sum_{\mu,\nu} \iint_{(\Box\gamma_{\mu},\Box\gamma_{\nu})} dt_{\mu} dt'_{\nu} G(t_{\mu}, t'_{\nu}) \\ \frac{E_{g}(\gamma)}{I} &= e_{0}(w_{0}) + \left[a_{1,0} - a_{2,0}\right] e_{1}(w_{0}) \\ &+ \frac{1}{2} \sum_{k} \left[|a_{1,k}|^{2} + |a_{2,k}|^{2} \right] e_{20} + (a_{1,k}a_{2,k} + a_{1,-k}a_{2,-k}) e_{21} \\ &= e_{0} + e_{1} \left(a_{1,0} - a_{2,0}\right) + \frac{1}{2} \sum_{k} a_{k}^{*} e_{2} a_{k}^{t} . \\ a_{k} &= \left(\begin{array}{cc} a_{1,k}^{*} & a_{2,k} \end{array} \right) , e_{2} = \left(\begin{array}{cc} e_{20} & e_{21} \\ e_{21} & e_{20} \end{array} \right) . \end{split}$$

Comportements de l'énergie d'une portion d'une barre longue

Conditions de stabilité

Première condition de stabilité : le terme de premier ordre, e_1 , est nul

$$\beta_{\mathbf{C}}(\lambda_{\mathbf{C}}, \alpha_{\mathbf{C}}, \mathbf{w}_{0}) = \frac{\alpha_{\mathbf{C}}}{\mathbf{G}_{10}(\mathbf{w}_{0})} \iff \hat{\beta}(\hat{\alpha}, \hat{\mathbf{w}}_{0}) = \frac{\hat{\alpha}}{\hat{\mathbf{G}}_{10}(\hat{\mathbf{w}}_{0})}$$

Deuxième condition de stabilité : la matrice Hessienne, e_2 , est définie positive

$$\alpha_{\rm C} = 1, \, \beta_{\rm C} = 0.66, \ w_{\rm O}^* = 1.2$$

$$\lambda_1(\alpha_C, k, w_0^*) > 0,$$

 $\lambda_2(\alpha_C, k, w_0^*) > 0$

Deuxième condition de stabilité : la matrice Hessienne, e_2 , est définie positive

- e₂ est définie positive ssi les valeurs propres de e₂, λ₁ et λ₂, sont strictement positives.
- $\lambda_1 = e_{20} + e_{21}$ et $\lambda_2 = e_{20} e_{21}$,
- $\lambda_{\pm}(\lambda_C, \alpha_C, \beta_C, d, \epsilon, w_0, k) = \lambda_C k^2 + \beta_C(\alpha_C, w_0) G_{\pm}(d, \epsilon, w_0, k),$
- Propriété d'invariance d'échelle $\Rightarrow \hat{\lambda}_{\pm}(\hat{\alpha}, \hat{w_0}, k) = k^2 + \frac{\hat{\alpha}}{\hat{G}_{10}(\hat{w_0})} \hat{G}_{\pm}(\hat{w_0}, k)$
- Condition de stabilité de second ordre :

$$\hat{\lambda}_{\pm}(\hat{\alpha}, \hat{w_0}, k) > 0, \forall k \Leftrightarrow \hat{\alpha} \; \hat{G}_{\pm}(\hat{w_0}, k) > -k^2 \hat{G}_{10}(\hat{w_0}), \forall k \; .$$

Conditions de stabilité

Deuxième condition de stabilité : la matrice Hessienne, e_2 , est définie positive

Figure: Les régions colorées en blanc, rouge, bleu et noir correspondent respectivement à $\hat{G}_+(\hat{w}_0, k) > 0$ et $\hat{G}_-(\hat{w}_0, k) > 0$, $\hat{G}_+(\hat{w}_0, k) > 0$ et $\hat{G}_-(\hat{w}_0, k) < 0$, $\hat{G}_+(\hat{w}_0, k) < 0$ et $\hat{G}_-(\hat{w}_0, k) < 0$, et $\hat{G}_+(\hat{w}_0, k) < 0$ et $\hat{G}_-(\hat{w}_0, k) < 0$.

Diagramme de phase du modèle d'une barre longue

Les limites du paramètre $\hat{\alpha}$

 $0.88 < \hat{w_0} < 1.3$

Diagramme de phase du modèle des CAOS

Modèle de la barre

$$0.88 < \hat{w_0} < 1.3$$

Résultats expérimentaux

Evolution du contour par descente de gradient en utilisant le terme géométrique

Résultats expérimentaux

Evolution du contour par descente de gradient en utilisant le terme géométrique

Plan de la présentation

- Motivations
 - Modélisation d'une région
 - Problématique
- Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux
- Conclusion et perspectives

Conclusion et perspectives

Conclusion

- Diagramme de phase du modèle d'un cercle en vue de l'extraction des arbres,
- Diagramme de phase du modèle d'une barre longue en vue de l'extraction des réseaux routiers.

Perspectives

- Analyse de la région critique du diagramme de phase du modèle des CAOS permettant d'avoir un cercle stable et une portion stable d'une barre,
- Analyse de la stabilité d'une barre en tenant compte de l'effet des bords.

Merci pour votre attention! Questions?