Diagramme de phase d'un modèle de type CAOS en vue de l'extraction des arbres et des réseaux routiers

Aymen EL GHOUL

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Dirigé par : Ziad BELHADJ : URISA (SUP'COM) Josiane ZERUBIA et Ian JERMYN : ARIANA (CNRS, INRIA, UNSA)

2006-2007

Stabilité du modèle d'une barre longue Conclusion et perspectives

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Plan de la présentation

Motivations

- Modélisation d'une région
- Problématique

Stabilité du modèle de gaz de cercles

- Etude variationnelle
- Conditions de stabilité

Stabilité du modèle d'une barre longue

- Etude variationnelle
- Conditions de stabilité
- Résultats expérimentaux

Conclusion et perspectives

Stabilité du modèle d'une barre longue Conclusion et perspectives

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Plan de la présentation

Motivations

- Modélisation d'une région
- Problématique
- Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- 3 Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux
- Conclusion et perspectives

Modélisation d'une région

Approche probabiliste - approche variationnelle

Approche probabiliste basée sur la méthodologie bayesienne

- La région R est vue comme un champ aléatoire,
- Estimateur MAP : $\hat{R} = \arg \max_{R \in \mathcal{R}} P(R|I, K)$
- Théorème de Bayes : $\hat{R} = \arg \max_{R \in \mathcal{R}} \mathsf{P}(I|R, K)\mathsf{P}(R|K)$

Approche variationnelle basée sur la minimisation d'énergie

- La probabilité peut être réécrite comme une fonction exponentielle, exp (-E)
- Minimisation d'énergie :

 $\hat{R} = \operatorname{arg\,min}_{R \in \mathcal{R}} \{ E(I|R, K) + E(R|K) \}$

• Energie d'une région : $E(R) = E_{interne}(R) + E_{image}(R)$

Motivations	Stabilité du modèle de gaz de cercles
0000	

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Modélisation d'une région

Le modèle des CAOS, [Marie et al. 2005, 06]

$$E_{g}(\gamma) = \underbrace{\lambda_{C}L(\gamma) + \alpha_{C}A(\gamma)}_{A \subset A(\gamma)} - \frac{\beta_{C}}{2} \iint dt \, dt' \, \dot{\gamma}(t') \cdot \dot{\gamma}(t) \, \Phi(|\gamma(t) - \gamma(t')|)$$

Snakes [Kass et al. 1988]

où la fonction d'interaction Φ est donnée par :

$$\Phi(z) = \begin{cases} 1 & z < d - \epsilon ,\\ \frac{1}{2} \left(1 - \frac{z - d}{\epsilon} - \frac{1}{\pi} \sin \frac{\pi(z - d)}{\epsilon}\right) & d - \epsilon \le z < d + \epsilon ,\\ 0 & z \ge d + \epsilon . \end{cases}$$

Stabilité du modèle d'une barre longue Conclusion et perspectives

Problématique

Problématique

Problématique

Invariance d'échelle de l'énergie géométrique du contour

- Le modèle des CAOS possède 5 paramètres ⇒ Difficile d'analyser la stabilité de l'*E*_q,
- Invariance d'échelle:
 - Hypothèse : ϵ = d ⇒ La fonction d'interaction peut être réécrite en fonction de γ̂ = ^γ/_d,
 - Soient $\hat{\alpha} = \frac{\alpha_C d}{\lambda_C}$, $\hat{\beta} = \frac{\beta_C d}{\lambda_C}$ et $\hat{\Phi}(z) = \Phi(\frac{z}{d})$. Le modèle des CAOS devient donc ($\lambda_C > 0$) :

$$\hat{E}_{\mathsf{g}}(\hat{\gamma}) = L(\hat{\gamma}) + \hat{lpha} A(\hat{\gamma}) - rac{\hat{eta}}{2} \iint dt \, dt' \, \dot{\hat{\gamma}}(t') \cdot \dot{\hat{\gamma}}(t) \, \hat{\Phi}(|\hat{\gamma}(t) - \hat{\gamma}(t')|) \; ,$$

*Ê*g dépend des deux paramètres d'échelle *α̂* et *β̂*.
 Analyse de stabilité (développement en série de Taylor):

$$E_{g}(\gamma) = E_{g}(\gamma_{0} + \delta\gamma) = E_{g}(\gamma_{0}) + \langle \delta\gamma | \frac{\delta E_{g}}{\delta\gamma} \rangle_{\gamma_{0}} + \frac{1}{2} \langle \delta\gamma | \frac{\delta^{2} E_{g}}{\delta\gamma^{2}} | \delta\gamma \rangle_{\gamma_{0}}$$

Stabilité du modèle d'une barre longue Conclusion et perspectives

Plan de la présentation

Motivations

- Modélisation d'une région
- Problématique

Stabilité du modèle de gaz de cercles

- Etude variationnelle
- Conditions de stabilité

3 Stabilité du modèle d'une barre longue

- Etude variationnelle
- Conditions de stabilité
- Résultats expérimentaux

Conclusion et perspectives

Stabilité du modèle d'une barre longue Conclusion et perspectives

Etude variationnelle

Paramétrisation

Paramétrisation d'un cercle

•
$$\gamma_0(t) = (r_0(t), \theta_0(t)) = (r_0, t)$$
 where $t \in [-\pi, \pi[$

•
$$\gamma(t) = \gamma_0(t) + \delta\gamma(t) = (r(t), \theta(t)) = (r_0 + \delta r(t), \theta_0(t) + \delta\theta(t))$$

 L'énergie E_g est invariante aux changements tangentiels donc δθ(t) = 0.

Définition des perturbations

- L'énergie E_g est invariante par translation donc l'opérateur $F = \frac{\delta^2 E_g}{\delta \gamma^2}$ est aussi invariant par translation,
- La base de la transformée de Fourier diagonalise F,
- ⇒ les perturbations seront définies en termes de coefficients de Fourier : δr(t) = ∑_k a_ke^{ir₀kt} avec k = m/r₀ et m ∈ Z.

Etude variationnelle

L'énergie géométrique d'un cercle, [Peter et al. 2006]

$$\begin{split} E_{g}(\gamma) &= \lambda_{C}L(\gamma) + \alpha_{C}A(\gamma) - \frac{\beta_{C}}{2} \iint dt \, dt' \, \dot{\gamma}(t') \cdot \dot{\gamma}(t) \, \Phi(|\gamma(t) - \gamma(t')|) \\ E_{g}(\gamma) &= E_{g}(\gamma_{0} + \delta\gamma) = E_{g}(\gamma_{0}) + \langle \delta\gamma | \frac{\delta E_{g}}{\delta\gamma} \rangle_{\gamma_{0}} + \frac{1}{2} \langle \delta\gamma | \frac{\delta^{2} E_{g}}{\delta\gamma^{2}} | \delta\gamma \rangle_{\gamma_{0}} \\ E_{g}(r) &= E_{g}(r_{0} + \delta r) = e_{0}(r_{0}) + a_{0}e_{1}(r_{0}) + \frac{1}{2} \sum_{k} |a_{k}|^{2}e_{2}(k, r_{0}) \, . \end{split}$$

Stabilité du modèle d'une barre longue Conclusion et perspectives

Etude variationnelle

Comportements de l'énergie d'un cercle

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Première condition de stabilité : le terme de premier ordre, *e*₁, est nul

$$\beta_{C}(\lambda_{C}, \alpha_{C}, r_{0}) = \frac{\lambda_{C} + \alpha_{C} r_{0}}{G_{10}(r_{0})} \iff \hat{\beta}(\hat{\alpha}, \hat{r_{0}}) = \frac{1 + \hat{\alpha} \hat{r_{0}}}{\hat{G}_{10}(\hat{r_{0}})}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivations

Stabilité du modèle de gaz de cercles

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Deuxième condition de stabilité : le terme de second ordre, *e*₂, est strictement positif

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● の Q ()

Conditions de stabilité

Deuxième condition de stabilité : le terme de second ordre, e_2 , est strictement positif

$$e_2(\alpha_C, k, r_0) > 0$$
, $\forall k \neq \frac{1}{r_0} \iff \alpha_C a(r_0, k) > f(r_0, k)$, $\forall k \neq \frac{1}{r_0}$.

• Si
$$a(\hat{r_0}, k) > 0$$
 alors $\hat{\alpha} > \hat{\alpha}_{min} = \max_{k \in K^+} \frac{t(\hat{r_0}, k)}{a(\hat{r_0}, k)}$
• avec $K^+ = \{k, a(\hat{r_0}, k) > 0 \text{ and } k \neq \frac{1}{r_0}\}.$

• Si $a(\hat{r_0}, k) < 0$ alors $\hat{\alpha} < \hat{\alpha}_{max} = \min_{k \in K^-} \frac{f(r_0, k)}{a(\hat{r_0}, k)}$ • avec $K^- = \{k, a(\hat{r_0}, k) < 0 \text{ and } k \neq \frac{1}{r_0}\}.$

・ロト・雪・・雪・・雪・・ 白・

Stabilité du modèle de gaz de cercles Motivations 00000000

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Les limites du paramètre $\hat{\alpha}$

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Diagramme de phase du modèle d'un cercle

(ロ) (型) (E) (E) (E) (O)()

Stabilité du modèle d'une barre longue Conclusion et perspectives

Plan de la présentation

Motivations

- Modélisation d'une région
- Problématique
- 2 Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux

Conclusion et perspectives

Stabilité du modèle d'une barre longue Conclusion et perspectives

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Etude variationnelle

Paramétrisation d'une barre longue

$$\gamma_{0,\mu}(t_{\mu}) = egin{cases} x_{0,\mu}(t_{\mu}) &= \pm_{\mu} I \, t_{\mu} \, , \, t_{\mu} \in [-0.5, 0.5] \ y_{0,\mu}(t_{\mu}) &= \pm_{\mu} rac{w_0}{2} \end{cases}$$

avec

$$\pm_{\mu} = egin{cases} +1 & \mbox{si } \mu = 1 \ -1 & \mbox{si } \mu = 2 \end{cases}$$

Stabilité du modèle d'une barre longue Conclusion et perspectives

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Etude variationnelle

Définition des perturbations

- $\delta \gamma_{\mu}(t_{\mu}) = (\delta x_{\mu}(t_{\mu}), \delta y_{\mu}(t_{\mu}))$. On s'intéresse aux perturbations verticales $\Rightarrow \delta x_{\mu}(t_{\mu}) = 0$,
- Les perturbations sont exprimées en termes des coefficients de Fourier (invariance par translation) : $\delta y_{\mu}(t_{\mu}) = \sum_{k_{\mu}} a_{\mu,k_{\mu}} e^{ik_{\mu}lt_{\mu}}$ avec $k_{\mu} = \frac{2\pi m_{\mu}}{l}, m_{\mu} \in \mathbb{Z}$,
- Expression du contour :

$$egin{aligned} &\gamma_{\mu}(t_{\mu})=\ \gamma_{0,\mu}(t_{\mu})+\delta\gamma_{\mu}(t_{\mu})\ &= egin{displaystyle} &\mathbf{x}_{\mu}(t_{\mu})\ &=\pm_{\mu}It_{\mu}\ &\mathbf{y}_{\mu}(t_{\mu})\ &=\pm_{\mu}rac{w_{0}}{2}+\sum_{\mathbf{k}_{\mu}}\mathbf{a}_{\mu,\mathbf{k}_{\mu}}\mathbf{e}^{i\mathbf{k}_{\mu}lt_{\mu}} \end{aligned}$$

Stabilité du modèle d'une barre longue Conclusion et perspectives

Etude variationnelle

L'énergie par unité de longueur de la barre

$$\begin{split} E_{g}(\gamma) &= \lambda_{C}L(\gamma) + \alpha_{C}A(\gamma) - \frac{\beta_{C}}{2} \sum_{\mu,\nu} \iint_{(\Box\gamma\mu,\Box\gamma\nu)} dt_{\mu} dt_{\nu}' G(t_{\mu},t_{\nu}') \\ \frac{E_{g}(\gamma)}{I} &= e_{0}(w_{0}) + \left[a_{1,0} - a_{2,0}\right] e_{1}(w_{0}) \\ &+ \frac{1}{2} \sum_{k} \left[|a_{1,k}|^{2} + |a_{2,k}|^{2} \right] e_{20} + (a_{1,k}a_{2,k} + a_{1,-k}a_{2,-k}) e_{21} \\ &= e_{0} + e_{1} \left(a_{1,0} - a_{2,0}\right) + \frac{1}{2} \sum_{k} a_{k}^{*} e_{2} a_{k}^{t} . \\ a_{k} &= \left(\begin{array}{c} a_{1,k}^{*} & a_{2,k} \end{array} \right) , e_{2} = \left(\begin{array}{c} e_{20} & e_{21} \\ e_{21} & e_{20} \end{array} \right) . \end{split}$$

Stabilité du modèle d'une barre longue Conclusion et perspectives

Etude variationnelle

Comportements de l'énergie d'une portion d'une barre longue

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Première condition de stabilité : le terme de premier ordre, *e*₁, est nul

$$\beta_{C}(\lambda_{C}, \alpha_{C}, w_{0}) = \frac{\alpha_{C}}{G_{10}(w_{0})} \iff \hat{\beta}(\hat{\alpha}, \hat{w}_{0}) = \frac{\hat{\alpha}}{\hat{G}_{10}(\hat{w}_{0})}$$

Conditions de stabilité

Deuxième condition de stabilité : la matrice Hessienne, *e*₂, est définie positive

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Conditions de stabilité

Deuxième condition de stabilité : la matrice Hessienne, *e*₂, est définie positive

e₂ est définie positive ssi les valeurs propres de e₂, λ₁ et λ₂, sont strictement positives.

•
$$\lambda_1 = e_{20} + e_{21}$$
 et $\lambda_2 = e_{20} - e_{21}$,

•
$$\lambda_{\pm}(\lambda_{C}, \alpha_{C}, \beta_{C}, d, \epsilon, w_{0}, k) = \lambda_{C}k^{2} + \beta_{C}(\alpha_{C}, w_{0})G_{\pm}(d, \epsilon, w_{0}, k),$$

- Propriété d'invariance d'échelle $\Rightarrow \hat{\lambda}_{\pm}(\hat{\alpha}, \hat{w}_0, k) = k^2 + \frac{\hat{\alpha}}{\hat{G}_{10}(\hat{w}_0)} \hat{G}_{\pm}(\hat{w}_0, k)$
- Condition de stabilité de second ordre :

$$\hat{\lambda}_{\pm}(\hat{lpha},\hat{w_0},k)>0, orall k \Leftrightarrow \hat{lpha} \ \hat{G}_{\pm}(\hat{w_0},k)>-k^2 \hat{G}_{10}(\hat{w_0}), orall k \;.$$

Motivations

Stabilité du modèle de gaz de cercles Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Deuxième condition de stabilité : la matrice Hessienne, e₂, est définie positive

Figure: Les régions colorées en blanc, rouge, bleu et noir correspondent respectivement à $\hat{G}_+(\hat{w}_0, k) > 0$ et $\hat{G}_-(\hat{w}_0, k) > 0$, $\hat{G}_+(\hat{w_0},k) > 0$ et $\hat{G}_-(\hat{w_0},k) < 0$, $\hat{G}_+(\hat{w_0},k) < 0$ et $\hat{G}_-(\hat{w_0},k) > 0$, et $\hat{G}_{+}(\hat{w}_{0}, k) < 0$ et $\hat{G}_{-}(\hat{w}_{0}, k) < 0$.

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conditions de stabilité

Diagramme de phase du modèle d'une barre longue

Les limites du paramètre $\hat{\alpha}$

 $0.88 < \hat{w_0} < 1.3$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Stabilité du modèle d'une barre longue Conclusion et perspectives

Résultats expérimentaux

Diagramme de phase du modèle des CAOS

Modèle de la barre

◆ロ〉 ◆御 ▶ ◆臣 ▶ ◆臣 > ○日 ○ のへで

Résultats expérimentaux

Evolution du contour par descente de gradient en utilisant le terme géométrique

▲□▶▲□▶▲□▶▲□▶ □ のへで

Résultats expérimentaux

Evolution du contour par descente de gradient en utilisant le terme géométrique

Stabilité du modèle d'une barre longue Conclusion et perspectives

Plan de la présentation

Motivations

- Modélisation d'une région
- Problématique
- Stabilité du modèle de gaz de cercles
 - Etude variationnelle
 - Conditions de stabilité
- 3 Stabilité du modèle d'une barre longue
 - Etude variationnelle
 - Conditions de stabilité
 - Résultats expérimentaux

Conclusion et perspectives

Stabilité du modèle d'une barre longue Conclusion et perspectives

Conclusion et perspectives

Conclusion

- Diagramme de phase du modèle d'un cercle en vue de l'extraction des arbres,
- Diagramme de phase du modèle d'une barre longue en vue de l'extraction des réseaux routiers.

Perspectives

- Analyse de la région critique du diagramme de phase du modèle des CAOS permettant d'avoir un cercle stable et une portion stable d'une barre,
- Analyse de la stabilité d'une barre en tenant compte de l'effet des bords.

Motivations

Stabilité du modèle de gaz de cercles Stabilité du modèle d'une barre longue Conclusion et perspectives

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Merci pour votre attention! **Questions?**