
UNIVERSITE DE NICE-SOPHIA ANTIPOLIS
ECOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE LÍNFORMATION ET DE LA COMMUNICATION

T H E S E

pour l’obtention du grade de
Docteur en Sciences

de l’Université Nice Sophia Antipolis

Mention : Informatique

présentée et soutenue par
Ashwin RAO

Improving Transparency and End-User Control in Mobile Networks

Thése dirigée par Walid DABBOUS et Arnaud LEGOUT
et préparée au sein du laboratoire INRIA, équipe DIANA

soutenue le 19 Décembre 2013

Jury

M. Walid DABBOUS INRIA, Sophia Antipolis Directeur

M. Arnaud LEGOUT INRIA, Sophia Antipolis Co-Directeur

M. Serge FDIDA UPMC, Paris Rapporteur

M. Krishna GUMMADI MPI-SWS, Saarbruecken Rapporteur

M. Thomas KARAGIANNIS Microsoft Research, Cambridge Rapporteur

M. Ernst BIERSACK Eurecom, Sophia Antipolis Examinateur

M. Kave SALAMATIAN LISTIC, Savoie Examinateur

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

Mobile devices are increasingly becoming the primary device to access the Internet. De-

spite this thriving popularity, the current mobile ecosystem is largely opaque because of

the vested monetary interests of its key players: mobile OS providers, creators of mobile

applications, stores for mobile applications and media content, and ISPs. This problem

of opaqueness is further aggravated by the limited control end-users have over the infor-

mation exchanged by their mobile devices. To address this problem of opaqueness and

lack of control, we designed a user-centric platform, Meddle, that uses traffic indirection

to diagnose mobile devices. Compared to an on-device solution, Meddle uses two well-

known technologies, VPNs and middleboxes, and combines them to provide a solution that

is agnostic to OS, ISP, and access technology. We use Meddle for controlled experiments

and an IRB approved study, and observed that popular iOS and Android applications leak

personally identifiable information in the clear and also over SSL. We then use Meddle to

prevent further leaks using a DNS based packet filter. We also use our platform to detail

the network characteristics of video streaming services, the most popular Web-service in

the current Internet. We observe that the network traffic characteristics vary vastly with

the device (mobile or desktop), application (native applications and also between individ-

ual desktop browsers), and container (HTML5 and Flash). This observation is important

because the increased adoption of one application or streaming service, for example, an

increase in the usage of mobile devices to stream videos, could have a significant impact

on the network traffic.

i

Résumé

Les terminaux mobiles (smartphones et tablettes) sont devenus les terminaux les plus pop-

ulaires pour accéder à Internet. Cependant, l’écosystème incluant les terminaux mobiles

est maintenu opaque à cause des intérêts financiers des différents acteurs : les concep-

teurs des systèmes d’exploitation et des applications, les opérateurs des “stores”, et les

FAI. Cette opacité est renforcée par le peu de contrôle qu’ont les utilisateurs sur les infor-

mations échangées par leur terminal.

Pour résoudre ce problème d’opacité et de manque de contrôle, on a créé une plate-

forme, Meddle, qui utilise la redirection de trafic des terminaux mobiles pour analyser et

modifier ce trafic. Contrairement aux solutions qui nécessitent d’être implémentées sur le

terminal, Meddle combine les techniques de VPN et de “middlebox” pour offrir une solution

indépendante de l’OS, du FAI et de l’accès radio.

On a utilisé Meddle pour des expérimentations contrôlées et pour une étude utilisateurs

approvée par un IRB. On a observé que des applications populaires sous iOS et Android

exposaient des informations personnelles dans le traffic réseau en clair et chiffré. On a

ensuite exploité Meddle pour prévenir ces fuites d’informations privées.

On a également utilisé Meddle pour étudier les caractéristiques réseaux du trafic vidéo

sur Internet. On a trouvé que ce trafic dépend fortement du type de terminal, de l’application

utilisée pour regarder la vidéo (application native ou navigateur Web) et du contenant

(HTML5, Flash, Silverlight). Ce résultat montre qu’un changement dans le terminal,

l’application ou le contenant peut avoir un impact important sur le réseau.

ii

Contents

1 Introduction 1

1.1 The Mobile Ecosystem . 2

1.1.1 The Mobile Operating System . 2

1.1.2 The Mobile Applications (Apps) . 3

1.1.3 The Stores for Software and Media Content Distribution 4

1.1.4 The Internet Service Providers . 5

1.1.5 The Web of Interdependence . 5

1.2 The Problem: Lack of Transparency and Control 6

1.2.1 Our Definition for Transparency and Control 7

1.2.2 The Need for Transparency and Control 7

1.2.3 The Compromise We Are Compelled to Make 7

1.3 Discussion on Related Work . 9

1.3.1 Constrained to a Single Mobile OS . 9

1.3.2 Constrained to Apps . 10

1.3.3 Constrained by Access Technology . 10

1.3.4 Positioning of Our Contributions with Related Work 11

1.4 Summary of Contributions . 12

2 Meddle Architecture 14

2.1 Goal . 14

2.2 Architecture . 15

2.2.1 How ubiquitous is the VPN technology on mobile devices? 16

Meddle on iOS Devices . 16

Meddle on Android Devices . 17

2.2.2 How to monitor all the Internet traffic flowing through Meddle? 17

Outbound Path: Ability to Associate a Device with its Flows 19

Inbound Path: The Reverse Path Mapping Problem 19

Our Solution: Looping Through Tun Interface 20

2.2.3 How to modify traffic using Meddle? . 21

Analyze SSL flows . 21

Filter Personally Identifiable Information (PII) Leaks 22

2.2.4 Architecture Summary . 22

2.3 Discussion on Feasibility . 23

2.3.1 Limitations of VPN Based Traffic Redirection 23

2.3.2 System Overheads . 24

Establishment delay . 24

Increased Network Latency . 25

Power Consumption . 26

Data Consumption . 26

2.4 Legal Issues . 27

2.5 Discussion . 28

iii

3 Application Diagnosis 29

3.1 Methodology and Dataset Description . 29

3.1.1 The mobiExpt Dataset . 30

3.1.2 The mobiWest and mobiEast Datasets 31

3.2 Identifying Apps and Services . 32

3.2.1 Focus on the Most Popular Protocols: HTTP and SSL 32

3.2.2 HTTP Traffic Classification Methodology 34

Advantages and Disadvantages of the HTTP User-Agent 34

Advantages and Disadvantages of the HTTP Host 35

Our Technique: Combination of User-Agent and Host 35

3.2.3 Evaluation of HTTP Classification Methodology 36

Classification of HTTP Traffic in the mobiExpt dataset 36

Classification of HTTP Flows in the Wild (mobiWest and mobiEast) . . . 37

3.2.4 SSL Traffic Classification Methodology 40

Port Number Based Classification . 40

Advantages and Disadvantages of Certificates and Server Name Indication 41

DNS Classification . 41

Our Technique: Two Phase SSL Classification 42

3.2.5 Evaluation of SSL Traffic Classification Methodology 43

3.2.6 Discussion . 45

3.3 Diagnosing Privacy Invasive Apps . 46

3.3.1 PII leaks in mobiExpt . 46

3.3.2 PII leaks in the Wild (mobiWest and mobiEast) 48

3.3.3 Visualizing and Filtering PII leaks . 48

3.4 Discussion . 50

4 Characterize YouTube Traffic 52

4.1 Streaming Strategies . 52

4.1.1 Phases of Data Transfer in Streaming Sessions 52

4.1.2 The Crude and Intelligent Streaming Strategies 54

4.1.3 Discussion on Techniques to Throttle Data Transfer Rate 55

4.1.4 Metrics to Characterize Streaming Strategies 56

4.2 Dataset Description . 56

4.3 YouTube Streaming in the Wild . 57

4.3.1 Streaming to PCs . 59

Flash Videos to PC Browsers . 59

HTML5 Videos to Internet Explorer . 61

HTML5 Videos to Google Chrome . 63

Crude Streaming: HTML5 Videos to Firefox and HD videos to PCs . . . 64

Discussion on ACK-Clocks . 65

Summary . 66

4.3.2 Streaming to Mobile Devices . 66

Traffic Characteristics . 66

Comparison with PCs . 68

4.4 Discussion . 69

5 Conclusions 70

5.1 Key Implications . 70

5.2 Open Problems . 71

Appendix A Other Lessons from Meddle deployment 73

A.1 Diversity of ISPs and Access Technologies . 73

A.2 Monitoring Evolution of Apps: The Case of Google Search 73

A.3 Compressing Mobile Traffic: The Case of Counterproductive Compression . . 74

Appendix B Video Streaming Revisited 75

B.1 Characterize Netflix Traffic . 75

B.2 Model for Aggregate Video Traffic . 76

B.2.1 Video Download without Interruptions 76

B.2.2 Video Download with Interruptions . 78

Appendix C Other Work 80

1 Introduction

Freedom is Slavery; Ignorance is Strength. These two contradictions summarize our rights

over our mobile devices: devices which we increasingly use to manage our every day life;

devices that have gained seamless access to a wealth of our private information. These

two phrases are part of the famous slogan—War is Peace; Freedom is Slavery; Ignorance

is Strength—used to rule the Orwellian hell of Oceania [115]. Like Oceania, the rulers

of the ecosystem inhabited by our mobile devices not only offer us limited control over

our devices but also violate our privacy. And like Oceania, these rulers use security and

protection against external threats as the pretext for opaqueness and lack of control.

It is important to secure and protect the data we manage with our mobile devices. This

data is sensitive because mobile devices have evolved from the replacement of telephones

to the replacement of personal computers.1 This evolution has transformed our mobile

devices into the primary gateway to stay connected with the world we live in—friends,

family, and colleagues. As a consequence, a wealth of our private information such as

contacts, emails, and photographs, is now stored on our mobile devices and managed by

mobile applications. The importance of our data, and the desire to protect it, persuades us

to be easily subdued by the ones who offer to secure and protect this data. This offer is

currently made by the key players of the mobile ecosystem: the mobile operating system

(OS) providers, the app developers, the stores for software and media distribution, and the

Internet Service Providers (ISPs).

Freedom is Slavery. Mobile applications, henceforth referred to as apps, and the cloud

based services that serve these apps, facilitate an on-demand access to our data. However,

this flexibility comes at a cost of relinquishing control over this data to the key players

that offer these services. On the one hand, mobile OSes allows apps access to our private

information through coarse grained permissions, and on the other hand, these OSes im-

pose stringent restrictions on installing customized services to protect the devices and the

data from potential misbehaving apps and services. Furthermore, the warranty of mobile

devices turns void if users install customized services to audit and control the flow of data

in their mobile devices [82, 83, 96]. Similarly, we have limited control over the data apps

exchange with the cloud based services that serve these apps, and how these cloud based

services use our data. Thus, relinquishing control of our data to these players is slowly

enslaving us; we are being subdued to be ruled under the slogan Freedom is Slavery.

Ignorance is Strength. The key players of the mobile ecosystem do not work in isolation

and are connected by a web of interdependence. This interdependence exists primarily to

maximize the control that each player has over this ecosystem, control that comes with its

share of profits. For example, organizations responsible for mobile OSes also control the

software and media distribution platforms. These platforms influence the set of apps that

manage our data. Furthermore, to support apps that generate revenue from advertise-

ments, mobile OSes support libraries that allow apps to negotiate with advertisers. These

1Though a hazy line separates tablets from laptops, mobile devices in the context of this dissertation is
limited to smartphones and tablets.

1

1.1. THE MOBILE ECOSYSTEM 2

ad libraries typically negotiate with advertisers using services provided by the organiza-

tions responsible for mobile OSes. For example, Apple’s iOS supports iAd while Google’s

Android supports admob [60] and adsense [63]. Intuitively, the most appealing advertise-

ments are the ones that match our likes and dislikes. To maximize our engagement with

advertisements, apps leverage on our private data to send relevant advertisements. Each

byte of data we store on our mobile device comes with potential monetary value for the

players that rely on advertisements for generating revenue; our ignorance on the abuse of

private data is important to maximize revenue for these players. Similarly, an increase in

the traffic volume generated by apps can be used by ISPs to convince users to switch to

plans offering higher quotas; ISPs can profit from our ignorance on the traffic characteris-

tics of apps. Thus, our ignorance on how our data is managed and how apps interact with

other devices in the Internet allows us to be ruled under the slogan, Ignorance is Strength.

Mobile devices will continue to be an integral part of everyday life. We will not part

with our mobile devices, our gateway to stay connected to the Internet based services and

the world we live in. Furthermore, billions in developing countries are expected to make

a mobile device their first and only gateway to the Internet. This vision is supported in

the recent International Telecommunication Union (ITU) report: “in developing countries,

mobile-broadband services cost considerably less than fixed-broadband services” [128].

We cannot afford to revert to a disconnected life, and we do not wish to be ruled by the

slogans Freedom is Slavery; Ignorance is Strength. We must therefore try to improve the

transparency and regain control over how our data is managed by our devices. This is the

goal of this dissertation.

1.1 The Mobile Ecosystem

Mobile devices are in an ecosystem whose evolution is driven by a few key players: 1)

mobile OSes, 2) apps, 3) the stores for software and media content distribution, and 4)

Internet service providers (ISP). These players are tied by commercial agreements among

them and by their revenue models. This interdependence is the primary cause for the

opaqueness and lack of end-user control that prevails in the mobile ecosystem. We address

the problem of opaqueness and lack of end-user control in this dissertation.

In the following, we focus on the role of these players, their incentive to participate

in this ecosystem, and the differences between their counterparts in the ecosystem of

traditional personal computers.

1.1.1 The Mobile Operating System

The mobile OSes manage the various hardware resources on our mobile devices. Unlike

personal computers, the hardware resources on mobile devices are limited. For example,

the battery size on our mobile devices is significantly smaller that batteries that drive lap-

tops. Furthermore, the mobile OSes need to support a large number of sensors such as

accelerometers, GPS, and proximity sensors, that are not present with desktop devices.

Mobile OSes are therefore fine-tuned by their developers and device manufacturers to op-

timize the device performance, a key difference between mobile and desktop OSes. Three

mobile OSes—Android, iOS, and Window Mobile—currently dominate the current mobile

1.1. THE MOBILE ECOSYSTEM 3

ecosystem [61]; the other OSes include Blackberry, Nokia Asha, Bada and the new entrants

Firefox OS and Ubuntu.

The limited resources on mobile devices demands a close coordination between OS

providers and device manufacturers. This close coordination is essential to support device

specific sensors, and to optimize the performance according to the hardware chosen by the

manufacturers. A result of this close coordination is that OS services running on mobile

devices depend on the OS providers and device manufacturers. In this dissertation, we

focus on mobile OSes and use them to abstract the impact of device manufacturers on the

opaqueness and lack of control in the mobile ecosystem.

Mobile OSes provide APIs to expose the resources on mobile devices. The incentive for

mobile OSes to provide APIs is that they can rely on the talent of independent developers

to target a wider audience of customers. Indeed, app developers have over time used these

APIs to transform mobile devices from a replacement of telephones to a digital Swiss-Knife.

APIs thus open mobile OSes to support a wide range of apps.

Mobile OSes enforce strict policies on the API to restrict access to the limited resources

on mobile devices. Due to the critical nature of resources such as battery and sensors, the

apps running on the devices need to be isolated and monitored by OS services to prevent

misbehavior [6, 42]. For example, iOS limits the activities of background processes to

improve battery life and user’s experience with the foreground apps [6]. Furthermore, to

prevent users and app developers from modifying the OS, the warranty of mobile devices

becomes void if users modify the OS running on their devices.

In summary, mobile OSes are walled gardens built in close coordination between cre-

ators of mobile OSes and device manufacturers. The creators of mobile OSes provide APIs

to expose the wide range of sensors and resources on mobile devices to application devel-

opers. To limit misbehavior and ensure optimal resource usage, these OSes rely on strict

policies.

1.1.2 The Mobile Applications (Apps)

The mobile applications (apps) make the mobile ecosystem lively and dynamic. Along with

apps that are a portal to Web services, such as Facebook or Twitter, app developers have

used their creativity to come up with innovative uses of the wide array of sensors available

on our mobile devices.

Apps are inherently different from their counterparts running on traditional personal

computers because mobile OSes restrict their activity for reasons previously discussed.

Mobile devices are currently shipped with a wide array of sensors including cameras, ac-

celerometers, gyroscopes, proximity sensors, and GPS. These sensors, and the enhanced

user experiences offered by apps that use these sensors, make apps superior to their desk-

top counterparts in many ways. For example, apps use the motion sensors to determine

the best layout, portrait or landscape, while rendering content. Games also use motion

sensors as an input for user actions, interactions that were previously not possible. Simi-

larly, the proximity sensor is used to determine when the device is close to a user’s face,

for example, during a phone call. To limit the abuse of these sensors and other resources,

mobile OSes impose restrictions on their usage. These restrictions mandate that apps ex-

plicitly demand authorization from end-users to use these sensors. These OS restrictions

1.1. THE MOBILE ECOSYSTEM 4

and heavy dependence on sensors implies that the behavior of apps depends on the devices

on which they are running.

Many apps act as a gateway to cloud based services. Such apps are a portal to so-

cial networks such as Facebook, Twitter, and Google Plus, and navigation services such as

Google Maps, Apple Maps, and Bing Maps. Apps for social networks typically have access

to the data we use to socialize with other people, including our contacts, photos, music,

and videos. For example, users can automatically back-up pictures taken by their mobile

devices on social networking sites such as Google Plus, a service that is much more seam-

less and smooth than the photo back-up services offered for desktop computers. These

apps also run as background services to receive updates on the activities of our contacts

on these social networks. Such background services are not available for desktop-users

who rely on Web-browsers to access these services. Thus, apps have enhanced the overall

experience of network intensive services.

In summary, apps use sensors on mobile devices to enhance user experience with the

aim to increase user engagement. The innovative uses of the sensors makes these apps

superior to their desktop counterparts.

1.1.3 The Stores for Software and Media Content Distribution

Users can purchase apps and media content—movies, songs, and books—from online stores

customized for mobile devices. However, these stores influence the choice of apps and the

media content. Indeed, organizations that run the stores earn money by selling apps and

media content [20].

The App Store from Apple, the Google Play Store from Google, and the Windows Phone

Store from Microsoft, are the default stores for mobile devices running on Apple’s iOS,

Google’s Android, and Microsoft’s Windows Phone OS respectively. Furthermore, mobile

OSes are shipped with an app which is a portal to the default store for that OS. For example,

Android devices are shipped with a Google Play app while iOS devices are shipped with

an App Store app. This app is responsible for the purchase, installation, upgrade, and

uninstallation of other apps running on the mobile device. The mobile OS providers use

this app to influence the set of apps that run on mobile devices.

The stores also perform security and performance tests on apps before making them

publicly available. Such tests are performed to raise confidence on the quality of apps

and media content available for download. For example, Google Play claims to use a tool

called Bouncer that checks apps for malware before the apps are made available for pur-

chase [111]. Therefore, it might be argued that these stores work towards improving the

end-users experience.

However, stores restrict the availability of content on their stores based on country-

specific copyright laws and code licenses. For example, the Apple App Store does not sell

GPL licensed apps [132]. Furthermore, copyright laws restrict the availability of apps and

media content to specific regions. For example, the Netflix app is not available in the App

Store in France; similarly, songs available in France may not be available in the US due to

copyright restrictions.

In summary, mobile users can purchase apps and media content on stores managed by

OS providers, whose portal is installed by default on mobile devices. These stores influence

1.1. THE MOBILE ECOSYSTEM 5

the purchases made in order to maximize their profits.

1.1.4 The Internet Service Providers

The Internet service providers (ISP) enable the apps and OS services running on mobile

devices to exchange data with other devices in the Internet. The network-intensive nature

of mobile devices makes the ISPs a vital player in the mobile ecosystem.

Mobile devices exchange data using their wireless interfaces. Each mobile device typ-

ically come with two interfaces: one for the cellular connectivity, and one for wireless

LAN (Wi-Fi); tablets that do not offer cellular connectivity are an exception to this rule.

Along with these two primary communication interfaces, mobile devices may also support

wireless interfaces to communicate with devices in their vicinity. Bluetooth and Near field

Communication (NFC) are two such interfaces that have a limited communication range.

The ISPs only serve traffic coming from the Wi-Fi and cellular interfaces of mobile devices.

A mobile device can be served by multiple ISPs. The ISP serving Wi-Fi traffic depends

on device location and the Wi-Fi gateway used by the device, while the cellular interface

is typically served by one ISP. The role of cellular ISP is to offer the latest wireless tech-

nologies and maximize the geographic coverage to ensure that end-users have the best

Internet connectivity at all times. Unlike cellular ISPs, users are not restricted to a specific

ISP when using Wi-Fi. For example, the Wi-Fi gateway at home and the Wi-Fi gateway at

work can be served by different ISPs.

1.1.5 The Web of Interdependence

The mobile OS providers, the app developers, the stores for software and media content

distribution, and the ISPs are the key players of the mobile ecosystem. These players

depend on each other for their survival in this ecosystem, and their revenue models along

with the commercial agreements between them keeps them interdependent.

The key sources of revenue in this ecosystem are as follows.

1. Sale of mobile devices.

Mobile devices can be purchased from device manufacturers, and from ISPs that bun-

dle these devices with cellular data plans. The distribution of profits depends on who

sold the device. For example, when a device is sold by an ISP, the commercial agree-

ments between the mobile OS provider, the device manufacturer, and an ISP decide the

distribution of profits [107].

2. Sale of apps and media content (music, videos, books, and magazines).

Though the sale take place in the stores, the revenue is shared by app developers,

sellers of media content, and the organizations managing the stores. For example,

the Google Play store charges a transaction fee of 30% of the application price; the

developer receives the remaining 70% [20].

3. Subscription charges for network connectivity.

The ISPs charge end-users for Internet connectivity, however, this revenue might be

shared with device manufacturers if the device and network charges were bundled

during the sale of the device [107].

1.2. THE PROBLEM: LACK OF TRANSPARENCY AND CONTROL 6

4. User engagement with advertisements displayed on mobile devices.

The revenue from mobile ads is shared by the app developers and the ad broker re-

sponsible for the ads. For example, developers earn 70% of the net revenue generated

from iAd advertisements [21]. Some of the popular ad brokers are typically managed

by creators of mobile OSes. For example, iAd and admob are two popular ad brokers

managed by Apple and Google respectively.

These various sources of revenue make mobile devices a hen that lays golden eggs for

these players. Each mobile device is an entry point to the sale of other products purchased

using that device. Mobile devices are therefore shipped with a default set of apps and

services tailored to maximize the revenue for players behind the sale of that device. This

default set of apps includes the app for the store from which users can buy other apps and

media content. Thus, the players selling mobile devices leverage their influence on other

purchases made in the mobile ecosystem.

The stores influence the apps we choose to install on our mobile devices and the media

content we purchase. Indeed, these stores monitor our purchases to recommend new apps

and media content. The incentive to influence purchases is high for the app stores because

their revenue depends on purchases made on the app store; the sales-volume depends on

the recommendations made when responding to queries end-users make on these stores.

Access to our private data is therefore important for the success of these stores.

Private information is also important for mobile apps because they generate revenue

from targeted advertisements. The advertisement market is dominated by a few players

such as iAd [64], admob [60], and adsense [63]; each player in turn has a large market

share [73] that allows it to collect a lot of information on end-users for building fine grain

profiles. Therefore, private information become a product that generates a lot of revenue

for the app stores, the apps developers, and the ad brokers.

The key players are tightly bound in the mobile ecosystem by commercial agreements.

To run these agreements, the players keep control on the mobile devices at the expense

of end-users, resulting in opacity and lack of end-user control. We develop this problem of

opacity and lack of end-user control in the next section.

1.2 The Problem: Lack of Transparency and Control

The mobile ecosystem suffers from a lack of transparency and end-user control. While

end-users should be free to monitor and control their privacy leaks, the key players of

the mobile ecosystem foster opacity and lack of control, following the slogan: Freedom is

Slavery; Ignorance is Strength.

In this section, we first define what we mean by transparency and control. We then

motivate the need for transparency and control, and describe how the key players of the

mobile ecosystem compel us to compromise this demand. Finally, we have a look at the

shortcomings of existing solution with a focus on how constraints by the key players make

these solutions impractical.

1.2. THE PROBLEM: LACK OF TRANSPARENCY AND CONTROL 7

1.2.1 Our Definition for Transparency and Control

Transparency is the awareness on what our mobile devices do with our information, with

whom our mobile devices communicate, how our mobile devices interact with other devices

on the Internet, and the impact of these interactions. While transparency enables the

auditing, control empowers us to make our devices work according to our needs. In this

dissertation, we focus on mobile devices because they are the only entity that end-users

can monitor and control. We will now see how the closed nature of the mobile ecosystem

prevents transparency and end-user control.

1.2.2 The Need for Transparency and Control

Due to the large amount of private information on mobile devices, we argue that it is

fundamental to offer transparency and control on the privacy leakage to end-users. Our

mobile devices act as a gateway to Internet based services. Further, cloud based services

that help manage our private information periodically receive our private information such

as contact details, pictures, places visited, and current location. Apps can also use the

various sensors on mobile devices to monitor and manage everyday activities. For example,

the marketing slogan for the Google Now application is: Stay on top of what’s happening

in your life every day, including what you need to do, where you need to go, and how to

get around [19]. Sensitive apps like Google Now use coarse grained permissions to access

private information. The effectiveness of such coarse grained permissions is questionable

because a significant number of apps and libraries used by these apps are known to abuse

their privileges and leak information without user’s consent [68, 73, 82, 83, 96, 139].

The increasing usage of our mobile devices tests the limits to which the resources on

these devices can be used. The ever-increasing reliance on mobile devices to manage ev-

eryday activities has resulted in an increase in the network consumption and the amount of

computation performed on these devices [87, 124, 137]. The increase in network consump-

tion stretches cellular data consumption towards the limits offered by carriers. Similarly,

the increase in computation increases the power consumption which in turn decreases

the battery life. Battery life and network quotas affect the availability of mobile devices.

We expect mobile OS services and the apps to maximize the availability of the limited re-

sources on mobile devices. However, we have limited knowledge on how apps use these

resources [87, 137].

In summary, the importance of mobile devices and the private data managed by these

devices justifies the need to monitor and control our mobile devices.

1.2.3 The Compromise We Are Compelled to Make

The key players use the argument of security and data protection to justify the opaque-

ness and lack of end-user control, but this argument is only partially valid. Indeed, these

players have taken steps to secure and protect not only the sensitive data stored but also

the limited resources available on mobile devices. For example, mobile OSes rightfully

isolate apps and restrict the activities that apps can perform when running as background

processes [6, 42]. Such isolation is important to increase battery life and restrict access to

private data and sensors. Similarly, the stores perform security tests on apps before they

1.2. THE PROBLEM: LACK OF TRANSPARENCY AND CONTROL 8

Figure 1.1: Plight of end-users portrayed in the Abstruse Goose comic strip.
This image is protected under the following Creative Commons license: http://

creativecommons.org/licenses/by-nc/3.0/us/.

http://abstrusegoose.com/528
http://abstrusegoose.com
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

1.3. DISCUSSION ON RELATED WORK 9

are available for purchase [111]. However, the absence of public information on these tools

raises questions on their effectiveness.

We argue that though security is a valid reason to thwart misbehaving apps, it should

not be the reason to stop users from installing apps that audit the behavior of OS ser-

vices and apps. However, the current terms claim that such tools violate either the device

warranty, the service warranty, or both.

The opaqueness prevails in the mobile ecosystem because opaqueness gives the key

players a share of control over the mobile ecosystem. Increasing transparency decreases

the control of the player. For example, apps that rely on advertisements would not be in

favor of auditing the private information in their possession; opaqueness empowers them

to build user profiles that can be sold to advertisers. Similarly, opaqueness on resource

usage makes it difficult to compare not only the different devices but also the apps and

services running on these devices. For example, some Android devices use this opacity to

fake their performance for apps used in benchmarking tests [44].

In summary, we are compelled to blindly trust the mobile ecosystem and offer seamless

control of our devices to the key players of this ecosystem – a compromise we make to stay

connected with our friends, family, and colleagues.

1.3 Discussion on Related Work

Existing approaches, that tilt the balance of the transparency and control in favor of end-

users, are impractical because of the constraints imposed by the key players of the mobile

ecosystem. For this dissertation, we consider an approach to be practical when it can be

used by off-the shelf devices regardless of the ISPs that serve these devices. Specifically,

a practical approach must not violate the device warranty and should be agnostic to the

mobile OSes, the ISPs, and the stores that are used to purchase apps and media content.

A practical approach is desirable because it can scale to a large number of end-users, thus

making the research work coming out of this approach meaningful for end-users. Existing

solutions are focused on academic analysis and are not targeted for end-users. In spite

of being useful for researchers, these solutions are impractical for end-users because the

closed nature of the mobile ecosystem limit them to a single mobile OS, installed apps, or

ISP. We are the first to propose a solution for real users. We now summarize the existing

solutions based on their limitations.

1.3.1 Constrained to a Single Mobile OS

Instrumenting mobile OSes, and tracking the low level system calls, can be used to mon-

itor and control the flow of information in our mobile devices. The seminal work in this

area is Taintdroid [83], a realtime information monitoring system that sheds light on the

violation of end-user privacy by instrumenting Android. In their paper, Enck et al. [83]

report on 68 instances of potential misuse of users’ private information across 20 apps

and mention that 15 Android apps send users’ location information to remote advertise-

ment or analytics servers without the users’ consent. To regain control over such leaks,

the creators of AppFence [96] instrument Android to implement privacy controls. These

privacy controls not only substitute shadow data in place of private data but also block

1.3. DISCUSSION ON RELATED WORK 10

network transmissions of data that the user made available for on-device use only. Simi-

larly, Pathak et al. [116] instrument the Android and the Window Phone OS to build Eprof,

an energy profiler. With the help of Eprof, Pathak et al. show that the third-party adver-

tisement and analytics modules consume up to 75% of the energy consumed by free apps.

Such energy wastage severely affects the usability of the mobile devices.

However, Taintdroid, AppFence, and Eprof void the device warranty because of the

stringent control exercised by the key players of the mobile ecosystem. Furthermore,

instrumenting mobile OSes makes the solution specific to a given OS and cannot be applied

to other OSes suffering similar issues. Instrumenting OSes thus voids the device warranty

and has a scope that is limited to a subset of popular mobile OSes.

1.3.2 Constrained to Apps

App binaries can be instrumented for static and dynamic analysis to study the informa-

tion flow through apps. Egele et al. [82], instrumented the binaries of 1400 iPhone apps

and observed that more than half of these apps send the unique ID of the device to third-

party sites; the third-party sites can used this information to create detailed user profiles.

Similarly, AppInsight [124] instruments apps to perform dynamic analysis with the aim of

identifying critical paths when the apps are in use. Such analysis sheds lights on the inner

workings of apps, however, their scope is limited to the specific version of the instrumented

apps and the stores from which these instrumented apps are made available. Furthermore,

as in the case of OS instrumentation, the results are limited to OSes on which the instru-

mented apps run. For example, the different APIs available to developers on Android and

iOS makes the Facebook app running on iOS to behave differently from the Facebook app

on Android; this app is just one of the nearly million iOS and Android apps currently avail-

able [57, 73].

Static and dynamic analysis can also be performed without instrumenting apps. Indeed,

droidbox [134] uses a combination of static and dynamic analysis to identify malware.

Similarly, androguard [80] uses static analysis to identify malware and compare Android

applications. However, like Taintdroid [83] and AppFence [96], droidbox and androguard

cannot accurately trace native code (for example, code written in C) because its access is

limited to the java code executed by Android’s Dalvik virtual machine. This implies that

these techniques provide an incomplete picture on app behavior.

To summarize, while static and dynamic analysis by instrumenting apps cannot scale,

static and dynamic analysis without instrumenting apps cannot provide a complete picture

on the behavior of apps.

1.3.3 Constrained by Access Technology

Monitoring network traffic at the gateways used by mobile devices improves transparency.

However, the various access technologies—cellular and Wi-Fi—available on mobile devices

create a high barrier to entry because these access technologies can be served by different

ISPs. For example, though an end-user may have a cellular plan with one ISP, they are

free to use another service provider for home Wi-Fi, and to use Wi-Fi services in cafes and

other public places. As a consequence, measurement studies offer a limited perspective

1.3. DISCUSSION ON RELATED WORK 11

on the network usage of mobile devices when they are based on Wi-Fi traffic measured at

institution gateways [76] or traffic traces obtained by service providers [135].

1.3.4 Positioning of Our Contributions with Related Work

The constraints imposed by the key players limit the usefulness of existing solutions aimed

at improving the transparency and control in the mobile ecosystem. The approaches of

instrumenting the OS and application binaries, and analyzing traffic traces from service

providers cannot scale to a large user participation. Such approaches are also not suitable

for longitudinal studies because mobile OSes and apps can have fast release cycles [105].

Instrumenting the OS results in warranty voiding the devices, and instrumenting apps

cannot scale to the vast number of apps and obsoletes the effort when new versions of

the apps are released. Similarly, traffic traces from service providers do not provide a

comprehensive coverage of the network usage of mobile devices. The need for a practical

solution is important to ensure that users can reap the benefits of transparency and control

regardless of the mobile OS, installed apps, app store, ISP, and access technologies.

The capability to monitor and control the mobile Internet traffic has the potential to

improve the transparency and end-user control of the mobile ecosystem. Access to mobile

Internet traffic offers a perspective that is focused on the network activity of mobile de-

vices. Indeed, this network perspective has promising prospects because popular mobile

apps are network intensive [87, 113, 135], and misbehaving apps are known to use the

Internet to leak personal information [73, 82, 96, 83]. We use the network perspective on

the activity of mobile devices and test the limits to which it can improve the transparency

and end-user control in the mobile ecosystem.

Redirecting all the Internet traffic of a mobile device through software defined mid-

dleboxes offers the network perspective on the activity of mobile devices. A Middlebox

is defined as “any intermediary device performing functions other than the normal, stan-

dard functions of an IP router on the datagram path between a source host and destination

host” [75]. Software-defined Middleboxes come with a variety of software tools and pack-

ages to perform the desired Middlebox activities such as Firewalls, Proxies, Caches, and

Packet classifiers [131]. Such Software-defined Middleboxes can be tuned to regain control

over the mobile network traffic for performing activities such as monitoring the traffic and

manipulating privacy invasive traffic. Offloading traffic monitoring and manipulation ac-

tivities to Software-defined Middleboxes makes it possible to design and operate solutions

that are independent of the mobile OSes and ISPs.

Software-defined Middleboxes can access all mobile data traffic, however this traffic

can be encoded, obfuscated, or encrypted by the applications. Indeed, apps are free to

transform data before transmission. This transformation includes encoding data to for-

mats such as Base64 [101], or encrypting the data before sending it using HTTPS [126].

Therefore, the middleboxes processing data traffic are exposed to data whose encoding

details are available only with the mobile application and remote hosts with whom these

application communicate. For any meaningful analysis, our Software-defined Middlebox

should be able to decode such traffic.

In this dissertation, we posit that proxying to redirect mobile Internet traffic through

Software-defined Middleboxes can improve the transparency and end-user control in the

1.4. SUMMARY OF CONTRIBUTIONS 12

mobile ecosystem. Specifically, we rely on VPN based proxying to tunnel mobile Internet

traffic through our Software-defined Middleboxes that interpose on this traffic. Mobile de-

vices are shipped with VPN support primarily to satisfy their enterprise clients. The native

support for VPNs implies that traffic redirection does not require instrumenting the operat-

ing system and application binaries. Our approach therefore has the potential for practical

improvement of transparency and end-user control. We now present our hypothesis and

summarize our contributions based on this approach.

1.4 Summary of Contributions

The hypothesis of this dissertation is the following: “The mobile Internet traffic accessed by

traffic redirection can be leveraged to improve the transparency and control for end-users

in the mobile ecosystem.”

We validate this hypothesis by the following contributions.

• Platform to improve transparency and end-user control in mobile networks.

We first demonstrate that it is feasible to redirect mobile Internet traffic through soft-

ware defined middleboxes for the purpose of analysis and interposition, a solution we

call Meddle. The key advantages of Meddle is that it works out of the box for An-

droid and iOS, the two most popular mobile OSes. Meddle is also agnostic to ISP and

access technology (e.g., cellular or Wi-Fi), and users can enable and disable Meddle

according to their convenience. Furthermore, we show that Meddle can be used to

monitor and manipulate all Internet traffic, including SSL traffic, from real users. We

show empirically that the overheads in terms of latency, power, and data consumption

are reasonable for users to adopt Meddle. Thus, Meddle offers a unique vantage point

allowing real users to participate in research activities without voiding their device

and service warranty. We envision two scenarios in which Meddle can be deployed:

1) a single-user deployment on a user’s home-gateways or personal servers, or 2) a

multiple-user deployment on hosted servers such as Amazon EC2. Meddle is currently

deployed using the later in private beta version and is serving users in the US, France

and China. Users can sign-up for an IRB approved study through http://meddle.mobi,

and this private beta version has served more than a 100 users.

• Diagnosing Mobile Apps.

We then show that Meddle can be used to diagnose mobile applications and services.

First, we use Meddle to perform controlled experiments to obtain a ground truth in-

formation on network flows generated by apps and OS services. We then extract sig-

natures of apps and Web services from the protocol headers in the network flows, and

used these signatures to map network flows to the apps and services that generate

them. We also use our experiments to identify leaks of personally identifiable informa-

tion (PII). In particular, we use Meddle’s ability to monitor SSL traffic to observe that

misbehaving apps collude with ads and analytics libraries, and use HTTP and SSL to

leak PIIs. Second, we use our technique to identify apps and web services on traffic

traces that we collected in our IRB approved in-the-wild measurement study. Our study

involved traffic traces from 117 devices belonging to users spread across US, France,

http://meddle.mobi

1.4. SUMMARY OF CONTRIBUTIONS 13

and China. We use these traces to compare the device usage and improve the classifi-

cation technique we built. Finally, we use our results to build a tool that allows users

to visualize and block PII leaks. Meddle manipulates DNS responses for sites that leak

PIIs, which makes it effective even for SSL traffic because DNS requests occur out of

band from secure connections. To summarize, we use the research work coming from

Meddle to create incentives to recruit users to participate in future research activities.

• Characterizing YouTube Traffic.

We then characterize YouTube traffic, one of the most dominant sources of Internet

traffic by volume. We present the two different streaming strategies that we identified

during our measurements, synthesize the main characteristics of those strategies, and

discuss their advantages and disadvantages. We show that the traffic patterns observed

during streaming sessions are completely different from those observed during typical

file transfers. The difference in traffic patterns is because the client side applications

and the YouTube servers that stream videos explicitly control the data transfer rate.

Furthermore, we observe that the traffic patterns observed when streaming YouTube

videos depend on the client side application (desktop browser or mobile app) and con-

tainer (Flash or HTML5). With the help of the datasets which we collected in 2011

and 2013, we show that the traffic patterns observed in 2013 are completely differ-

ent from those observed in 2011. In particular, we observe that Internet Explorer is

more aggressive in 2013 compared to 2011 when streaming HTML5 videos This im-

plies that upgrading to Internet Explorer 10 can potentially waste a larger amount of

bytes and network resources when users interrupt playback of HTML5 videos. Fur-

thermore, we observe that streaming videos to mobile devices produce traffic patterns

that are completely different from those observed when using desktop browsers, and

that these traffic patterns change when mobile devices use Wi-Fi instead of cellular

networks. This observation implies that a large scale migration from one application to

another (browser to mobile app) or from Flash to HTML5 can completely change the

traffic patterns observed in the backbone links. Considering the very fast changes in

trends this is a real possibility, the most likely being a change from Flash over PCs to

HTML5 over mobile devices.

We detail these contributions in Chapter 2, Chapter 3, and Chapter 4 respectively. We

discuss the detailed related work for each of these contributions when presenting the con-

tribution. We finally conclude by discussing some open problems in Chapter 5.

2 Meddle Architecture

We now present Meddle, our platform that combines VPNs and middleboxes in unintended

ways to diagnose mobile devices using traffic indirection.

Meddle was built to improve the transparency and end-user control over mobile Inter-

net traffic. This problem is not new, previous works (see Section 1.3) have attempted to

address this problem for a limited set of devices or networks. We seek to avoid such limita-

tions because these works are not suitable for large-scale deployments serving real users,

and because real users cannot use existing solutions that require to either void the war-

ranty of devices [96, 83, 116, 122], or are limited to a specific set of applications [82, 124]

or ISPs [135, 123, 122, 137, 138].

In this chapter, we present Meddle, our user-centric approach to address this prob-

lem. First, in Section 2.1, we define our goal and detail the sub-goals that we plan to

achieve with Meddle. Then, we detail Meddle’s architecture and how we achieve each of

our sub-goals in Section 2.2. In Section 2.3, we present our results from controlled exper-

iments to demonstrate that Meddle is practical and has minimal impact on performance

and measurement fidelity. We then discuss some legal issues that need to be addressed in

practical deployments in Section 2.4. Finally, we summarize the salient features of Meddle

in Section 2.5.

2.1 Goal

The main goal of Meddle is to enable all mobile Internet users to monitor and control their

Internet traffic. We use the following sub-goals to scope out our goal.

1. Agnostic to OS, apps, ISP, and access technology. Meddle must work regardless

of the OS and apps installed on the mobile device. Furthermore, Meddle must monitor

and interpose on traffic without explicit support from ISPs, and should work regardless

of the access technology used by the device.

2. Deployable. Meddle must be easy to install, use, and configure, a feature important

to support a large user-base. This sub-goal rules out OS instrumentation and similar

warranty voiding techniques that are not easy to deploy.

3. On-demand. Once installed, users must be able to enable and disable Meddle on-the-

fly. This ensures easy opt-in and easy opt-out, a feature essential for ease-of-use.

4. Always-On. Once enabled by the user, Meddle must automatically support switching

between networks. In particular, it must not demand inputs from end-users on network

state changes when users are on-the-move.

5. Scalable. Meddle must be able to scale to support a large user-base, a feature essen-

tial to ensure statistical significance for the research work based on Meddle.

6. Traffic Agnostic Interposition. Meddle must be able to manipulate and control all

the Internet traffic to suit the needs of end-users, a feature required to ensure that Med-

14

2.2. ARCHITECTURE 15

dle is both a passive monitoring and an experimental platform. Meddle must achieve

this control for encrypted and plain-text traffic.

These sub-goals are to make Meddle user-friendly.

Indeed, there exists a trade-off between a user-friendly solution and a solution that of-

fers a fine-grained control over mobile devices and the traffic they generate. Existing solu-

tions that rely on instrumenting OSes and apps offer a fine grain control over mobile OSes

and apps. This fine grained control is useful for academic research, however, the costs

associated with this level of control includes warranty voiding the device or restricting to

a specific set of apps, a cost that is too high for end-users. Unlike existing approaches, we

take the path of building a user-friendly solution and test the limits of its usefulness. Specif-

ically, we relinquish OS-level controls to focus on the Internet traffic generated by mobile

devices and try to use this perspective to diagnose mobile applications, OS services, and

the ISPs that serve these devices. We now detail how each of the above sub-goals governed

Meddle’s architecture.

2.2 Architecture

To reach our goal, we observe that nearly all mobile devices support network traffic indi-

rection via virtual private networks (VPNs). Therefore, we can build a system redirecting a

device’s Internet traffic through a middlebox that can interpose on this traffic. Importantly,

we observe that this can be achieved without any additional support from OSes or ISPs.

The key idea behind Meddle is to combine software middleboxes with VPNs to monitor and

interpose on mobile Internet traffic.

We designed and implemented the architecture presented in Figure 2.1. We envision

two scenarios in which Meddle can be deployed: 1) a single user deployment on a users’

home-gateway or personal server, or 2) a multiple user deployment on hosted servers such

as Amazon EC2 (shown in Figure 2.1).

We describe in the following, Meddle’s architecture. The devices, configured to use

Meddle, tunnel all their Internet traffic through one of potentially many Meddle servers.

Meddle maintains a per-device profile to determine the set of services that interpose on the

tunneled network traffic. Users can enable and disable these services through a web-based

interface. These device-specific policies are stored in the Data Store. The Policy Manager

refers to these policies to manage the traffic that flows through its Meddle server. For

example, a user may wish to only monitor mobile Internet traffic. In this scenario, the

Policy Manager routes the traffic only through the Traffic Monitor but bypasses the Traffic

Manipulator.

Though intuitive, this architecture leads to challenges that must be overcome to achieve

our sub-goals. Specifically, the VPN infrastructure raises three important questions:

1. How ubiquitous is the VPN technology on mobile devices?

2. How to monitor all the Internet traffic flowing through Meddle?

3. How to modify traffic using Meddle?

Now, we present our answer to each of these questions.

2.2. ARCHITECTURE 16

Data
Store

VPN
Server

 Traffic
Monitor

Meddle Server (1) Rest
of
the

Internet

 Policy Manager

 Traffic
Manipulator

VPN
Server Traffic

Monitor

Meddle Server (n)

 Policy Manager

 Traffic
Manipulator

Figure 2.1: Meddle’s Architecture. Devices use VPN connections to tunnel all
traffic to one of the potentially many Meddle servers. Each Meddle server uses a
device-specific profile to determine the set of services that operate on the network
traffic.

2.2.1 How ubiquitous is the VPN technology on mobile devices?

Mobile OSes and ISPs support VPNs primarily to satisfy their enterprise clients. Native

support for VPNs is available on Android, BlackBerry, and iOS, three mobile OSes that rep-

resent more than 86% of the mobile devices [61]. In this dissertation, we focus on the two

most popular mobile OSes: iOS and Android. These two OSes support VPN connectivity for

Wi-Fi and cellular traffic—so long as the network supports IPv4. VPN tunnels on Android

and iOS are transparent to the applications because traffic redirection to the VPN server

is performed by the underlying OS. Thus, Meddle leverages on VPNs for being agnostic to

mobile OSes, ISPs, access technologies, and applications used by the mobile device.

We now describe how we build on existing features provided by iOS and Android to

provide a deployable system that is available on-demand and remains always-on when

enabled.

Meddle on iOS Devices

All iOS devices (version 3.0 and above) support a feature called VPN On-Demand, which

forces traffic for a specified set of domains to use VPN tunnels. This feature allows enter-

prises to ensure that employee’s devices always use VPN tunnels when contacting specific

domains, particularly those owned by the enterprise. VPN On-Demand uses suffix match-

ing to determine which domains require a VPN connection [48]. We use each alphanumeric

character (a-z, 0-9, one character per domain) as the set of domains that require a VPN

connection.1 This ensures that VPN tunnels are established before any network activity.

1We are currently working on a solution to support Internationalized domain names.

2.2. ARCHITECTURE 17

Configuring Meddle on iOS devices requires the user to install a single configuration

file. This file contains the configurations required to drive the key exchange algorithms to

establish VPN tunnels, and the patterns for the domains that require VPN tunnels. After

this configuration file is installed, the iOS device uses VPN tunnels for all the Internet

traffic. The user can disable Meddle by simply disabling the VPN On-Demand feature, an

option exposed by iOS in the device settings screen.

The VPN On-Demand feature of iOS is available only for VPN tunnels that use IPsec [104]

and the IKEv1 [94] key exchange protocol. This limits the options for VPN servers, for ex-

ample, Meddle cannot use OpenVPN [35].

Meddle on Android Devices

Android version 4.0 and above support VPNs, and Android version 4.2 and above support

an Always-On VPN connection that provides the same functionality as VPN On-Demand for

iOS. To provide the Always ON feature for devices running Android version 4.0 and 4.1,

we use the Android API that allows applications to manage VPN tunnels. We modified the

strongSwan implementation of a VPN client [40] to ensure that the VPN reconnects each

time the preferred network changes, e.g., when a device switches from cellular to Wi-Fi.

To configure a VPN on Android, a user needs to fill five fields. These fields are required

to setup the faster IKEv2 [103] based authentication. Disabling VPN tunnels requires the

users to turn off the automatic reconnect, a feature we provide in our extension to the

strongSwan mobile application; a similar feature exists for Always-On VPN tunnels estab-

lished on devices running Android 4.2 and above.

In summary, by building on the existing features provided by iOS and Android, we are

able to ensure that Meddle is deployable, available on-demand to its clients, and always-on

when enabled.

2.2.2 How to monitor all the Internet traffic flowing through Meddle?

We now show how to implement a VPN proxy that supports traffic monitoring, provides

an entry point to interpose on this traffic, and can be deployed on a single machine. This

criteria of running on a single machine allows users the flexibility of deploying Meddle on

their personal servers and home gateways.

At first glance, capturing all traffic traversing a VPN server should be as simple as

running a tap on the network interface, e.g., using tcpdump. While the high-level design

for capturing network traffic from mobile devices is straightforward, the implementation

is not. In particular, the interactions between IPsec and NAT complicate our ability to

map bidirectional flows to individual devices. The following paragraphs describe these

challenges and how we addressed them.

A VPN Proxy, apart from serving VPN tunnels, relies on NAT to proxy Internet traffic.

When a mobile device establishes a VPN tunnel, the VPN server assigns it a private IP

address. The mobile device therefore has two IP addresses, a private address assigned by

the VPN server, and a public IP address assigned by its ISP. The VPN server maintains the

mapping between the private IP address assigned to a device, its public IP address, and

the unique device identifier (VPN login) in the VPN address (VPNA) table. When the VPN

tunnels are established, the public IP address is used only to communicate with the VPN

2.2. ARCHITECTURE 18

Ethernet

NAT

Routing

IPsec

tcpdump

Webservice

(1)

(2)

(3)

v→w

d→m

v→w

m→w

m→w

(4)

(7)

(8)

(5)
(6)

IP Layer

(a): Packet from mobile device.
Tcpdump captures packets at step
(2) d → m, (4) v → w, and (7) m → w.

Ethernet

NAT

Routing

IPsec

tcpdump

Webservice

w→m

w→v

m→d (1)

(2)

(3)
(4)w→v(6) (5)

(7)

(8)

IP Layer

w→v

m→d

(b): Packet to mobile device. Tcpdump
captures packets at step (2) w → m and
(7) m → d, however it is cannot log the
packet w → v.

Ethernet

NAT

Routing

IPsec

Webservice

Tun Interface

v→w

d→m

v→w

m→w

m→w

v'→w

(1)

(2)

(3)(4)

(5)
(6)

(7)
(8)

(9)

(10)

IP Layer

tcpdump

(c): Packet from mobile device. Tcp-
dump captures packets at step (5) v→ w,
and (6) v’ → w.

Ethernet

NAT

Routing

IPsec

Webservice

Tun Interface

w→v

m→d w→m

w→v'

w→v

(10)

(9)

(7)

(5)
(6)

(3) (4)

(2)

(1)

IP Layer

tcpdump
m→d

(8)

w→v

(d): Packet to mobile device. Tcpdump
captures packets at step (5) w → v’, and
(6) w → v.

Symbol Description
d IP address of the mobile device assigned by its ISP.
m IP address of the Meddle server.
w IP address of the server providing the Web service.
(i) The i-th step of packet processing.

a→ b Packet with source IP a and destination IP b.
v IP address of the mobile device in the VPN tunnel.
v’ IP address of the mobile device for looping packets via the Tun interface.

Figure 2.2: Configuring Meddle’s VPN proxy to monitor IP traffic.

2.2. ARCHITECTURE 19

server while all other communication uses the private IP address. Therefore, all the traffic

that would have used the public IP address when the VPN tunnel was not present, now

uses the private IP address. The packets that use this private IP address are encapsulated

and encrypted using IPsec and sent to the VPN server. The VPN server first decapsulates

these packets and then forwards them. To forward these packets, the VPN server performs

address translation because these private IP addresses cannot be used in the Internet.

We now use Figure 2.2 to show that the interactions between IPsec and NAT complicate

traffic monitoring. We assume that a mobile device of public IP address d is trying to access

a remote service that is located at IP address w. The packets exchanged between d and

w flow through the Meddle server that has an IP address m. The Meddle server assigns

a private address v to the device when the device creates the VPN tunnel, and stores this

information in the VPN address (VPNA) table. This VPN address (VPNA) table maintains a

mapping between the private IP address v assigned to the device and its public IP address

m. In the following, we denote a packet from source s to destination d as s→ d.

Outbound Path: Ability to Associate a Device with its Flows

We begin with mapping flows in the forward direction (m → d). Figure 2.2(a) shows the

path that packets take through Meddle. At steps (1), (2), and (3), the encrypted datagram

(in gray, d → m) is passed to the IPsec module that decrypts and processes the encapsu-

lated IP datagram (v → w). After decapsulation, the kernel sees that the packet needs to

be forwarded because neither the source nor the destination of the packet is its IP address,

m. Forwarding decisions are taken at the IP layer, the kernel therefore sends the packet

back to the IP layer, step (4). Because Meddle assigns private addresses to its clients, it

must use NAT in step (5) to convert the private IP address v to the public IP address m.

After the NAT operation, step (6), the packet is forwarded to the Internet, step (7) and step

(8).

We now describe how running tcpdump and tracking the VPN address (VPNA) table is

sufficient to sift packets based on their devices for flows in the forward direction. As shown

in Figure 2.2(a), running tcpdump on the Ethernet interface captures packets at step (2),

(4), and (7). The packet (v → w) available at step (4), and the VPNA table (that contains the

mapping between v and the device), are sufficient to associate the packets in the forward

direction to the device from which these packets originate.

Inbound Path: The Reverse Path Mapping Problem

We now show that it is not possible to associate a mobile device with its packets in the

inbound path, i.e., for packets that flow to the mobile device. We refer to Figure 2.2(b),

where we continue to dump packets from the Ethernet device. At step (2), with the help

of tcpdump, we can capture the packet sent by the destination at address w to the Meddle

server. This packet undergoes a NAT operation, step (3) and step(4), followed by IPsec

encapsulation, step (5) and step (6). The packet is next seen by tcpdump at step (7), i.e.,

after encapsulation. The packets captured by tcpdump are thus w → m (step (2)), and

m → d (step (7)). If the Meddle server is serving more than one mobile device, then we

have no way to associate a packet with a device. We need to dump the packet at step (4),

but we have no access to it via the standard Linux networking stack.

2.2. ARCHITECTURE 20

To summarize, because of the complex interaction between IPsec and NAT, packets cap-

tured in the inbound path do not provide sufficient information to distinguish bidirectional

flows and map them to individual devices.

Our Solution: Looping Through Tun Interface

A straightforward solution to the reverse path mapping problem is to forward traffic to a

separate NAT device and dump traffic there, a solution that demands for additional hard-

ware/VMs. This approach significantly affects scalability and limits deployability. Further-

more, users shall not be able deploy Meddle on their home gateways. We address this

problem by virtualizing an additional network interface and routing traffic through it.

Namely, we use a Linux Tun interface and loop all packets through it. A Tun inter-

face is a software-only interface, and unlike other network interfaces, it does not have a

corresponding physical hardware component. Instead of sending traffic to the hardware

components, a packet arriving at a Tun interface is sent to a userspace program that is

responsible for that interface. This user-space program has complete access to the traffic

flowing through the tun interface. Thus, on each Meddle server, we loop packets through a

Tun interface for the purpose of monitoring and interposing on the network traffic flowing

through the Meddle server.

We perform a simple NAT operation to ensure that packets do not loop indefinitely

through this interface. For each mobile device, along with its private address v, Meddle

assigns it another address v′ that is internally used to loop the devices’ packets through the

Tun interface. For example, in the current deployment, the devices are assigned private

IP addresses v from the pool 10.11.0.0/16; the v′ addresses are assigned by replacing the

2nd octet in the address from 11 to 101, i.e, a device with a private address v of 10.11.11.3

shall be assigned the address 10.101.11.2 as v′, a trick that avoids the need to keep another

table in memory. We then use these four routing rules to enable packet forwarding through

the Tun interface.2

1. Packets with source v are forwarded to the Tun interface after IPsec decapsulation

(step(5) in Figure 2.2(c)).

2. Packets with source v′ undergo NAT and are then forwarded to the Ethernet interface

(step(6) to step (9) in Figure 2.2(c)).

3. Packets with destination v′ are forwarded to the Tun interface (step (5) in Figure 2.2(d)).

4. Packets with destination v are forwarded to the Ethernet interface after IPsec encap-

sulation (step (6) to step (9) in Figure 2.2(d)).

The first two rules take care of forwarding in the outbound path (v → w) while the last two

rules rules take care of forwarding in the inbound path (w → v).

When an inbound packet arrives at the Tun interface, our process that manages the

Tun interface changes the destination address from v′ to v and sends the packet to the

IP layer, step (6) in Figure 2.2(d). Similarly, when an outbound packet arrives at the Tun

interface, our process changes the source from v to v′. Performing tcpdump on the Tun

interface allows us to monitor the packets v → w and w → v, step (5) in Figure 2.2(c)

2Rather than IP addresses v and v′, the rules contains the pool of addresses from which v and v′ are chosen.

2.2. ARCHITECTURE 21

Meddle
Web

service

SSL using
original
certificate

SSL using
spoofed
certificate

Figure 2.3: Meddle intercepting SSL traffic. Meddle can be used to perform con-
trolled experiments that use man-in-the-middle attacks to analyze and interpose
on SSL flows. During these experiments, mobile applications use the certificates
issued by Meddle while Meddle uses the certificates issued by Web services.

and Figure 2.2(d). Thus, the packets captured at step (5) and the VPNA Table (mapping

between v and the device) enables us to distinguish bi-directional flows and map them to

individual devices.

In summary, the Tun interface provides us with an ideal vantage point to monitor and

interpose on the traffic being proxied by our VPN server. The Tun interface also makes it

possible to monitor and manipulate mobile Internet traffic from a single machine. In our

current implementation, the Policy Manager in Figure 2.1 is implemented in the process

managing the Tun interface. By using the Tun interface, Meddle can achieve its sub-goal

of deployability, scalability, and capability to interpose on the traffic.

2.2.3 How to modify traffic using Meddle?

One of the key advantages of Meddle is that it allows interposing on the traffic flowing

through its Meddle servers. As an example, we currently provide two kinds of traffic

manipulation with Meddle.

1. Analyze the contents of SSL flows generated by mobile devices.

2. Packet filtering to block privacy invasive traffic.

Analyze SSL flows

Existing approaches that rely on ISP traces, and traffic traces collected on gateways, do not

analyze the payloads of encrypted (SSL) traffic. As increasing amounts of Web traffic flows

over HTTPS, we lose the ability to understand how to optimize such traffic and evaluate

what private information is leaked over such encrypted tunnels. This has implications both

for performance (for example, page speed optimizations) and privacy (for example, leaks

of personally identifiable information (PII) over secure channels). We now describe how

Meddle allows us to perform controlled experiments to analyze the contents of SSL flows

generated by mobile devices.

First, we note that our VPN proxy, like all VPN proxies, uses a self-generated root certifi-

cate that is used to sign all subsequent certificates issued to participating mobile devices.

This allows us to perform SSL traffic decryption using the Squid proxy’s SSL bumping [38]

feature, which is essentially a man-in-the-middle operation on the secure connection.3 As

shown in Figure 2.3, when the mobile device connects to a service supporting SSL, the

proxy masquerades as the service using a forged certificate signed with the Meddle root

3Note that for privacy reasons we use this only for controlled experiments in the lab setting.

2.2. ARCHITECTURE 22

certificate. Then the proxy establishes an SSL connection with the intended target, im-

personating a mobile device. Using the traffic dumped by the tcpdump process and the

private key generated by the squid proxy to communicate with the mobile device, we can

decrypt all SSL traffic. The proxy simply forwards all non SSL traffic.

This approach fails for apps that do not trust certificates signed by unknown root au-

thorities, a technique called pinning [5, 10]. Surprisingly, this is rarely the case. In our

controlled experiments (presented in the next chapter), we observe that the Twitter and

Firefox apps prevent SSL bumping by validating root certificates, while Google Chrome,

Safari, Facebook, Google+, and the default mail clients and advertisement services, do not

check the validity of the root certificate. This enables our approach to provide visibility

into secure channels established by a wide range of popular mobile applications.

Filter Personally Identifiable Information (PII) Leaks

Meddle makes it easy to implement an efficient device-wide packet-filter. We would like to

point out that there exist a wide number of applications and browser plugins that offer sim-

ilar filters [17, 25, 28]. However, the scope of these filters is limited to specific applications

such as Web-browsers. The restrictive nature of mobile OSes require warranty voiding of

the device to install device-wide traffic filters [51, 96].

Meddle currently uses a DNS-based packet filter to prevent PII leaks. Our filter builds

on the past results that report on domains and services that leak PII information [96, 82,

135]. We update this list of domains based on our measurements and controlled experi-

ments which we discuss in the next chapter. A key feature of our solution is that it works

even for SSL traffic because DNS requests occur out of band from secure connections.

Further, our response for the DNS request is an IP address corresponding to localhost,

meaning that devices will generate no external network traffic when failing to resolve the

ad servers. Thus, our DNS based packet filter is capable of blocking device-wide PII leaks

before the information leaves the device.

Filtering misbehavior is an ongoing cat-and-mouse game, misbehaving applications and

libraries that leak PII information are likely to find ways to avoid packet filters. We do

not claim to have a silver-bullet to win this game, but we argue that we can follow the

footsteps of ad blocking services in the desktop environment, a service that has a wide

success [2, 17].

2.2.4 Architecture Summary

In this section, we showed how Meddle achieves the sub-goals defined in Section 2.1. To

tunnel all the Internet traffic, Meddle uses existing features of native VPN implementations

on Android and iOS to access the network perspective of mobile devices. Meddle servers

can be deployed on a single machine, thus users have two options to deploy it: a) deploy on

home-gateways, and have complete control and flexibility over personal devices, or b) use

Meddle deployments made by researchers who can offer custom network based services.

Meddle provides a new point of control over mobile network traffic. This enables re-

searchers to investigate what-if scenarios for the impact of new middleboxes as if they

were deployed in carrier networks. Importantly, researchers and users can take advantage

of these features without the support of ISPs or installing OS-specific applications.

2.3. DISCUSSION ON FEASIBILITY 23

In summary, Meddle provides an ideal vantage point to perform mobile traffic measure-

ments and deploy network based services.

2.3 Discussion on Feasibility

In this section, we discuss several issues that can impact the coverage and deployability

of Meddle. We would like to point out that these issues have a small impact on Meddle’s

ability to monitor and interpose on mobile Internet traffic.

2.3.1 Limitations of VPN Based Traffic Redirection

Meddle relies on VPNs to redirect all Internet traffic through software defined middle-

boxes. The heavy reliance on VPNs implies that the restrictions imposed on VPNs affect

the capabilities of Meddle.

1. One Tunnel. Currently, iOS and Android support exactly one VPN connection at a time.

This allows Meddle to measure traffic over either the WiFi interface or the cellular

interfaces, but not both at once. The vast majority of IP traffic uses only one of these

interfaces, and that interface uses the VPN. An exception to this behavior is Multipath

TCP (MPTCP) [70] traffic that uses more than one interface simultaneously. The iOS

version 7.0 reportedly uses MPTCP to communicate with Apple servers for its SIRI

service [72]. Due to the restrictions imposed by native VPN restrictions, Meddle cannot

diagnose such traffic.

2. Data over Voice Channels. Meddle may miss some data traffic for apps and services

that rely on circuit-switched channel. For example, we found evidence that iOS push

notifications were being received even when IP connectivity was disabled, suggesting

the use of circuit switched channel. We believe the volume of such traffic is small;

however, it remains to be seen how this holds generally and over time.

3. Proxy Location. When traffic traverses the Meddle proxy, destinations will see the

IP address of a Meddle server instead of the device’s IP address. This might impact

services that customize (or block access to) content according to an IP address (e.g.,

in case of localization). A local deployment of a Meddle server by an end-user will not

have this issue.

4. ISP Support. We note that the incentive to allow VPN traffic is to support enter-

prise clients. However, ISPs might block VPN traffic, which prevents access to our

current Meddle implementation. During our measurements, we came across only one

ISP (situated in France) that blocked VPN access for mobile devices. Many ISPs deploy

in-network middleboxes for traffic engineering purposes. For example, performance

enhancing proxies deployed by ISPs are known to interact with TCP flows [74]. Such

boxes lose the ability to implement policies of their ISP and could potentially cause

mobile devices to perform sub-optimally when Meddle is being used.

5. Limited ISP Characterization. Due to its use of encrypted channels, Meddle can-

not detect traffic differentiation or any other techniques that ISPs use to interpose on

network traffic using deep packet inspection (e.g., advertisement insertion [125]) or

2.3. DISCUSSION ON FEASIBILITY 24

Location Access Android iOS
Technology median (s) max. (s) median (s) max. (s)

Location 1 Wifi 0.628 0.766 1.603 2.005
Cellular (3G) 0.815 1.593 1.837 2.180

Location 2 Wifi 0.621 0.809 1.364 1.480
Cellular (3G) 0.792 1.551 1.657 1.871

Table 2.1: Time required to establish VPN tunnels. The median and maximum
values reported in this table are from performed experiments where the VPN tun-
nel was created 50 times from each location. The iOS devices require more time
to establish the tunnel because they rely on the slower IKEv1 protocol while the
Android devices use the faster IKEv2 protocol.

optimization (e.g., downsampling content [15]). We are working on extending meddle

to address this limitation, this extension is discussed in Section 5.2

6. IPv6. Currently, Meddle cannot be used on IPv6 networks, because mobile devices

do not fully support IPv6. Indeed, we observe that though iOS and Android devices

support IPv6, they currently do not support IPv6 traffic through VPN tunnels.

7. Encoded Traffic. Mobile apps and Web services are free to encode data before trans-

mission, for example applications can exchange data using Base64 [101] encoding.

Therefore, Meddle is exposed to data whose encoding details are available only with

the mobile apps and remote hosts with whom these apps communicate. Decoding such

traffic requires reverse engineering of these services. Though Meddle provides a van-

tage point to monitor and manipulate such flows, we do no automatically decode flows

that use custom encoding.

2.3.2 System Overheads

Meddle uses standard and freely available software to serve mobile devices, one of its key

advantages that makes it free. However, a key question is whether the system is sufficiently

efficient to minimize its impact on controlled and in-the-wild experiments, and at the same

time on the services offered to end-users.

We show empirically that the overheads in terms of latency, power, and data consump-

tion are reasonable for users to adopt our systems.

Establishment delay

Mobile devices need to be authenticated by the VPN server before their traffic flows

through the Meddle servers. This authentication is driven by the key exchange proto-

cols of IPsec. The iOS devices use IKEv1 to manage the VPN tunnels while Android devices

support both IKEv1 and IKEv2. To establish the VPN tunnel, IKEv1 requires up to 16 pack-

ets to be exchanged between the mobile device and the VPN server while IKEv2 requires 4

packets; the number of packets may vary with deployments because it depends on the en-

cryption suites supported by the devices and the VPN server. Meddle uses the faster IKEv2

for Android devices while it is forced to use the slower IKEv1 for iOS devices because iOS

does not support IKEv2.

To further quantify this delay, we performed controlled experiments using one Android

2.3. DISCUSSION ON FEASIBILITY 25

device (Galaxy Nexus running Android 4.2) and an iPhone 5 (running iOS 6.1). We per-

formed our experiments from two different locations based in the same city in which our

Meddle server was deployed. For these experiments, VPN tunnels were established for a

total of 50 times during a time interval of two weeks. We present the results of our exper-

iments in Table 2.1. The cellular experiments were performed when each device used the

3G services offered by its ISP; the same ISP served our Android device and iOS device. As

expected, the iOS device requires a longer time to establish the tunnels compared to the

Android device.

These results provide an insight on the delays that end-users might expect when using

Meddle. Though not comprehensive, it can be used to give an estimate on the lower bound

on the delay. The tunnel establishment delay can impact the performance of latency sensi-

tive applications, however we expect the amortized cost of connecting to be small because

each VPN session supports many flows.

Increased Network Latency

Redirecting the traffic through a Meddle server may require additional hops in the path

between the mobile device and the desired Web services. We performed a simple experi-

ment to quantify the increased latency when using a deployment such as PlanetLab. For

this experiment, we used data from 10 mobile phones located throughout the US and is-

sued traceroutes from the devices to targets in Google and Facebook’s networks. We then

used the first non-private IP address seen from the mobile device on the path to a server.

We assume that this corresponds to the first router adjacent to the mobile carrier’s public

Internet egress point. Note that we could not simply ping the device IP because mobile

carriers filter inbound ping requests. Using this set of egress adjacencies, we determined

the round-trip time from each PlanetLab site, then took the average of the nearest five sites

to represent the case where a host at the nearest site is unavailable due to load or other

issues. The average latency to each router was between 3 ms and 13 ms, with a median of

5 ms.

We also measured the latency in actual Meddle deployments, and observed a median

latency of less than 1 second between Meddle servers and the mobile devices. In Fig-

ure 2.4, we present the network latency observed in Meddle deployments in USA, France,

and China.4 As shown in Figure 2.4(a), the network latency is computed as the time be-

tween the SYN/ACK and the ACK packets observed in the TCP handshakes. In our two

datasets, mobiWest and mobiEast , we observe that the median latency between the Med-

dle servers and the mobile device is less than 1 second. Furthermore, we also observe

that the network latency in cellular networks is larger than the network latency observed

in Wi-Fi networks.5 The increase in latency observed in cellular networks has various rea-

sons which includes delays due to Radio Resource Controllers and middleboxes present in

cellular networks [97, 123, 133, 136]. Thus, the network latency presented in Figure 2.4(b)

and Figure 2.4(c) overestimates the redirection overhead.

In summary, when compared to RTTs of 10s or 100s of milliseconds that exist in mobile

networks [97, 133], we expect a small additional latency from traversing Meddle servers.

4The two datasets, mobiWest and mobiEast , are detailed in Section 3.1.
5We estimate the access technology using the AS information of the prefixes. The details of our technique

to estimate access technology is presented in Appendix Section A.1

2.3. DISCUSSION ON FEASIBILITY 26

t
1

Mobile
Device

Meddle
Server

Remote
Server

SYN
SYN

SYN/ACK
SYN/ACK

ACK

ACK

Latency = t
2
- t

1

time time time

t
2

(a): Network latency computation.

●
●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●
●●

●
●●●●

●●
●
●
●
●●●●

●●●●●●●
●
●
●●●●●

●●
●●●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●

●●

Prefix ID (ordered by median latency and technology)

L
a

te
n

c
y
 (

m
s
)

1

10

100

1000

0 20 40 60 80 100 120 140

Cellular Wi−Fi

●

95th Percentile
Median Latency

(b): mobiWest latency.

●
●

●
●●

●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●

Prefix ID (ordered by median latency and technology)

L
a

te
n

c
y
 (

m
s
)

1

10

100

1000

0 10 20 30 40 50

Cellular Wi−Fi

●

95th Percentile
Median

(c): mobiEast latency.

Figure 2.4: Network latency to Meddle servers. The network latency between
Meddle servers and the devices is measured as the time between the SYN/ACK and
ACK packet of a TCP three way handshake. We observe a median latency of less
than 1 second across majority of prefixes through which devices tunneled their
traffic.

Power Consumption

Mobile devices expend additional power to establish, maintain and encrypt data for a VPN

tunnel. To evaluate the impact on battery, we used a power meter to measure the draw from

a Galaxy Nexus running Android 4.2. We run 10-minute experiments with and without the

VPN enabled. For each experiment, we used an activity script that included Web and map

searches, Facebook interaction, e-mail and video streaming. We observed an average of

10% overhead during these 10-minute experiments. For iOS devices, where we cannot

attach a power meter directly to the battery, we conducted an experiment using video

streaming to drain a fully charged battery with and without the VPN enabled. We again

found approximately 10% power overhead.

These experiments cannot capture the worst case overheads one might observe, how-

ever they do give an insight on the expected power overheads. To put the overhead in

context, the iPhone 5 advertises 10 hours of browsing per charge; enabling the VPN would

reduce this time to 9 hours. We use these tests to show that deploying Meddle does not

have a significant effect on time between successive recharges.

Data Consumption

Meddle uses IPsec for datagram encryption, resulting in an encapsulation overhead for

each tunneled packet. To evaluate this overhead, we use 30 days of data from 26 devices

2.4. LEGAL ISSUES 27

to compare encapsulated and raw packet sizes.6 We observe a maximum encapsulation

overhead of 12.8% (average approximately 10%). These overheads are negligible if Meddle

is used to perform traffic monitoring experiments. However, in case of experiments with

devices served over a limited cellular data plan, this overhead must be taken into account.

To summarize, the latency, power, and data consumption overheads are low enough to

avoid significant interference with user activity. We acknowledge that the results presented

in this section do not cover all possible scenarios. It is possible that end-users may face

issues that we have not covered in this section. However, we believe that our results give

sufficient insights on the feasibility of Meddle and the issues end-users might face when

using it.

2.4 Legal Issues

Meddle is intended to be used by real users and it allows more than one user to share

the available infrastructure. Public deployments of Meddle must therefore protect the

people involved with Meddle, including the end-users. We now provide an overview on the

legal issues that arise with any indirection-based deployment such as Meddle and how we

address these issues.

Meddle is a VPN proxy for mobile devices that can be deployed on hosting services,

or on home gateways. The users who deploy on their home gateway have full control

over their traffic and are responsible for the Meddle deployment. However, when Meddle

is deployed on a hosting service such as Amazon EC2, and the same server is shared

by multiple users, the privacy of the users whose mobile devices use Meddle must be

protected. Similarly, the ones responsible from the Meddle deployment in the hosting

service must be protected by any misbehaving activity performed by the mobile users.

We took the following steps to address these issues.

1. Privacy and Trust. Meddle provides a tap on network traffic that can see all the Inter-

net traffic generated by the mobile devices, a serious risk for violating user’s privacy.

Users may rightfully feel uncomfortable with sending all their traffic through Meddle,

be it in a hosting center, in the cloud, or even in their own home-gateway. To increase

confidence, we are making all of our code open source so that users can inspect, mod-

ify, and extend it to suit their needs; users will have the option to run their own instance

of Meddle (with their own root of trust) if they so desire.

As discussed in the next chapter, our current deployments are part of an IRB-

approved study. The IRB mandates the following steps to protect the user privacy. All

the traffic captured is encrypted using Public-key cryptography before it is stored. The

private key used to protect the data is not stored on the server where data is recorded.

Any PII sent in the clear by applications is stripped from our datasets as soon as we

identify it. Furthermore, our experiments on analyzing SSL traffic are performed on

Meddle servers that do not serve real users.

2. Acceptable use. Like any proxy service, Meddle needs an acceptable use policy (AUP)

to ensure that we are not liable for user misbehavior. We model our AUP after the one

provided by EC2, one of our hosting providers. Users are informed of this AUP at

6These devices are part of mobiWest dataset, the details of which are presented in Section 3.1.

2.5. DISCUSSION 28

the time of installation. If we are notified of an AUP violation by our ISP or hosting

provider, we can block the device because each device is given a unique certificate-

based credential. This makes it easy to remove offending users without disrupting

compliant users.

To summarize, the users of our Meddle deployment are protected by an IRB, and an ac-

ceptable use policy protects us from misbehaving users.

2.5 Discussion

In this chapter, we posit that we can build a user-friendly platform to improve the trans-

parency and end-user control in mobile networks, a solution which we call Meddle. The

key idea behind Meddle is to take two well-known technologies, VPNs and middleboxes,

and combine them in unintended ways for the mobile environment.

Meddle opens the mobile Internet and makes it available for measurement studies and

experimentation. We showed that Meddle is easy to deploy on mobile devices, the over-

heads for Meddle are low, and that Meddle can scale to support a large user-base. Meddle

thus offers a unique vantage point where researchers can offer solutions which in turn

can act like incentives to recruit end-users. We now list two research directions that can

benefit from our approach.

• Peer-to-Peer (P2P) Offloading. New web technologies such as WebRTC [67] allow

client web browsers to become part of content distribution networks [143, 77]. For

example, by relying on P2P technologies, Maygh [143] enable websites to distribute

the cost of serving content across its visitors. These solutions and popular P2P services

such as BitTorrent [7] demand multiple connections and bandwidth contributions from

participating hosts, both of which are costly on mobile devices. Meddle can ease these

costs by offloading the maintenance of P2P connections and the uploads on a Meddle

server.

• Privacy Preserving Middlebox. Meddle has access to all the traffic from the de-

vice and can therefore be used to implement privacy preserving solutions such as Pri-

vad [92]. Furthermore, offloading the computation for preserving the privacy poten-

tially comes with its benefits of reduced power consumption on the mobile devices.

Meddle thus enables end-users to participate in such research activities and try new mobile

features without warranty voiding their devices or breaking any service agreements.

Meddle is currently in private beta with deployments in the US, France and China.

User’s can sign-up for an IRB approved study through http://meddle.mobi. In the next

chapter, we discuss the results from these deployments that have served more than a 100

users.

http://meddle.mobi

3 Application Diagnosis

We now show that Meddle can be used to diagnose mobile applications and services. In

particular, we show that Meddle can be used to not only identify apps and services that

leak personally identifiable information (PII), but also block PII leaks.

We use Meddle to collect two classes of mobile Internet traffic: traffic from controlled

experiments, and traffic from an IRB approved in-the-wild measurement. Our controlled

experiments were focused on providing a ground truth information on network flows gen-

erated by apps and OS services, whereas our in-the-wild measurements help us understand

the network behavior of mobile devices with real users over longer time periods. We use

the traffic traces from our controlled experiments to extract signatures of apps and Web

services from the protocol headers in the network flows, and we use these signatures to

map network flows to the apps and services that generate them. Along with identification

of apps, we use these traffic traces to identify leaks of personally identifiable information

(PII). We then apply our signature based classification technique on traffic traces we col-

lected in our in-the-wild measurement study. Finally, we use our results to build a tool that

allow users to visualize and block PII leaks, an incentive for users to participate in future

research activities based on Meddle.

The roadmap for this chapter is as follows. We first discuss our methodology and detail

the datasets used for our analysis in Section 3.1 In our datasets, we observe HTTP and SSL

to be dominant sources of Internet traffic. In Section 3.2, we focus on identifying the apps

and Web services responsible for HTTP and SSL flows and present the effectiveness of our

classification techniques. We then use our classification technique to identify PII leaks, and

the apps and Web services responsible for these leaks in Section 3.3. In Section 3.3, we

also present our tool that enables users to visualize and block PII leaks. We conclude by

discussing the key takeaways from this chapter in Section 3.4.

3.1 Methodology and Dataset Description

We diagnose apps by performing offline analysis of traffic traces we collected using Med-

dle. In particular, we use tcpdump [41] to capture entire packets that traverse our Meddle

servers. We then parse the captured traces using bro [117] and ssldump [39], and analyze

these parsed traces using tools such as R [43] and MATLAB [29].

In this chapter, we use the following three datasets collected using Meddle.

1. mobiExpt . The mobiExpt dataset contains the network traffic captured when manually

testing the 100 most popular iOS and Android apps in isolation. We created this dataset

to map network flows to the app that generate them, and to identify PIIs in these

network flows.

2. mobiWest . The mobiWest dataset consists of traffic traces from devices in USA and

France whose users are volunteers for an ongoing IRB approved study. We gathered

this dataset to understand the network behavior of devices with real users over longer

time periods.

29

3.1. METHODOLOGY 30

3. mobiEast . The mobiEast dataset consists of traffic traces from devices in China whose

users are volunteers for an IRB approved study. We gathered this dataset to understand

the differences between the mobile usage in China and the West.

Each of the three datasets contains the entire packets, i.e., the protocol headers with

their payloads. To protect the privacy of the volunteers, we used SSL-bumping (see Sec-

tion 2.2.3) for the mobiExpt dataset only. We now detail these three datasets.

3.1.1 The mobiExpt Dataset

The mobiExpt dataset contains the traffic traces collected during controlled experiments

with mobile apps. These experiments were performed to meet the following goals:

1. obtain the ground truth information on network flows generated by apps and OS ser-

vices;

2. characterize the network activity for a large variety of popular apps in a lab setting;

3. detect PII leaks in the network flows and identify the popular trackers that benefit from

these leaks.

The mobiExpt dataset contains traffic traces captured when we manually interacted

with the 100 most popular iOS and Android apps in isolation. For these experiments, we

use a Meddle server deployed in our lab to tunnel traffic from an iPhone 3Gs, running iOS

6.1.3, and a Google Nexus phone running Android 4.0.4. On this Meddle server, we use

tcpdump to capture entire packets that flow through it. We also perform SSL-bumping (see

Section 2.2.3) on this server to characterize the SSL traffic.

For each device, we begin our experiment by performing a factory reset on that device.

This step ensures that previously installed apps do not impact the network traffic generated

by the device. We then configure the mobile device with the help of dummy credentials.

This unique and distinguishable set of user credentials helps us identify and extract the

corresponding PII from subsequent network flows (if they are not obfuscated). We then

perform the following steps.

1. We download the app from the default store (Google Play for Android and Apple App

Store for iOS) and install the app. This step ensures that we are testing the latest

version of the apps available at the time of conducting this experiment.

2. We then start the app and enter the required user credentials. This step is mandatory

for apps that authenticate users.

3. We interact with the app for at least 10 minutes. This step allows us to characterize

real user interactions with popular apps in a perfectly controlled environment.

4. Finally, we uninstall the app. This step ensures that the traffic generated by the app

does not interfere with the subsequent apps being tested.

The mobiExpt dataset thus provide the ground-truth information for apps running in a

controlled setting for a short period of time. We use the results from these experiments to

analyze the traffic traces in the mobiWest and mobiEast datasets.

3.1. METHODOLOGY 31

Parameter mobiWest mobiEast
Duration of measurement Start Date 15-Oct-2012 01-Jun-2013
study End Date 01-Sep-2013 01-Jul-2013
Number of devices Total 26 91

Android 11 54
iOS 15 37

Device Activity minimum 5 1
(How many days did median 33 8
the devices use Meddle?) maximum 315 17

minimum 141.5 MB 5 MB
Traffic Volume that devices median 3.43 GB 96 MB
tunneled through Meddle maximum 38.08 GB 3.2 GB

total 150.66 GB 27.8 GB

Table 3.1: Dataset Description. Because Meddle is OS agnostic, we can study
a variety of devices in-the-wild. A total of 117 (26+91) devices used Meddle of
which 65 (54+11) were Android and 52 (15+37) were iOS devices.

3.1.2 The mobiWest and mobiEast Datasets

We collected the mobiWest and mobiEast datasets to understand the network behavior of

devices with real users in the wild over longer time periods. We gather these datasets

using four Meddle servers, two in the USA, one in France, and one in China. We use

tcpdump on each server to capture the entire packets tunneled through it. The traffic

collected on the Meddle servers in USA and France constitutes the mobiWest dataset,

while the mobiEast dataset contains the traffic collected on the Meddle server deployed in

China. For privacy reasons, SSL-bumping was disabled for all the traffic in the mobiWest

and mobiEast datasets.

In Table 3.1, we summarize the mobiWest and mobiEast datasets. For the mobiWest

dataset, we incrementally deployed two Meddle servers at the University of Washington,

followed by one Meddle server at INRIA. These three servers were used to tunnel traffic

from 26 devices: 11 Android devices and 15 iOS devices. The 15 iOS devices consisted of 4

iPads, 1 iPodTouch, 1 iPhone 3GS, 4 iPhone 5, and 5 iPhone 4S, while the Android devices

in this dataset include the Nexus, Sony, Samsung, and Gsmart brands. For the mobiEast

dataset, we deployed one Meddle server on the Aliyun [4] cloud. This server tunneled

traffic from 91 devices: 54 Android devices and 37 iOS devices. Unlike the mobiWest

dataset, the mobiEast dataset consists of traffic traces from Android devices manufactured

by Xiaomi [53], MIUI [32], and other manufacturers that are popular among Chinese users.

Meddle can monitor traffic even when the users are asleep because Meddle remains

always-on after it has been enabled by that user. For 22 of the 26 devices in the mobiWest

dataset, Meddle captured at least one packet every clock hour in at least one 24 hour cycle.

On the other hand, only 23 devices of 91 devices in the mobiEast match this criteria. One

reason for this behavior is the limited cellular data plans in China; only 4 of the 91 devices

claim to have a cellular data quota of more than 300 MB per month while 64 devices have

a data quota of at most 150 MB per month. All the devices in the mobiWest dataset have a

data quota of more than 1 GB per month.

We would like to point out that the mobiExpt , mobiEast , and mobiWest datasets have

limited statistical significance. First, for the mobiExpt dataset, we tested only a small

3.1. IDENTIFY APPS 32

fraction of the apps and this test was not repeated for newer version of the apps. This

limitation is important because Xu et al. [137] observe a heavy tail on the number of users

that use a mobile app. Though our experiments covers popular apps that serve a majority

of users, it cannot be used to make conclusions on the apps present in the heavy tail.

Second, all the devices belonged either to students or researchers at INRIA, University

of Washington, Microsoft Research Asia, or at the Peking University. Last, the current

deployments served a limited number of users, most of whom used Meddle for a short time

period. These datasets therefore have a bias towards people in Computer Science, and

we cannot draw strong and generalizable conclusions based on these datasets. In spite

of these limitations, we can use these datasets to gather insights on identifying apps from

network traces, identifying PII leaks, and to demonstrate Meddle’s potential; we discuss

each of these uses in the following.

3.2 Identifying Apps and Services

An important question for mobile traffic characterization is which app is responsible for

the network flows. In the following, we first use the mobiExpt , mobiWest , and mobiEast

datasets to show that apps, OS services and libraries often rely on HTTP and SSL to ex-

change data. This intuitive observation is not new and is supported by previous stud-

ies [86, 87, 113, 137]. We therefore focus on using the HTTP and SSL headers to identify

the apps, OS services, and other services responsible for the HTTP and SSL flows. For

our analysis, we use ground-truth data from the mobiExpt dataset to show that the previ-

ous approach for classification fails for most popular apps; we then develop techniques to

improve this mapping and apply it to our mobiWest and mobiEast datasets.

3.2.1 Focus on the Most Popular Protocols: HTTP and SSL

We use Bro [117] to identify the popular protocols used by mobile devices. Bro classifies

flows using the protocol field in the IP header. We use this classification to label flows as

either TCP, UDP, or other. Bro further classifies TCP and UDP flows using port numbers.

For example, flows that use TCP port 80 are labeled HTTP while flows that use UDP port 53

are labeled DNS. We use this classification to label TCP flows as either HTTP, SSL, or other.

The SSL flows include HTTPS, IMAP, and other services such as instant messaging [142]

that use SSL. Similarly, we use Bro to label UDP flows as either DNS or other; the other

UDP flows includes traffic from services such as Skype. This high level classification lays

the foundation for identifying apps responsible for these flows.

In Figure 3.1, we summarize the results of this classification for the mobiExpt , mobi-

West , and mobiEast datasets. There are four key take-aways from this figure.

First, HTTP and SSL dominate the traffic that flows through our Meddle servers. This

observation is important and motivates us to focus on classification of HTTP and SSL traffic.

Second, the median and aggregate values for HTTP and SSL traffic for iOS are similar

across the mobiWest and mobiEast dataset; however, the SSL traffic share for Android

devices is higher in the mobiWest dataset in comparison to the mobiEast dataset. In

Section 3.2.5 we show that this difference is due to the default apps in custom Android

ROMs [53, 32] used by devices in the mobiEast dataset.

3.2. IDENTIFY APPS 33

Device
TCP UDP

Other
HTTP SSL Other DNS Other

Android 88.11 11.46 0.12 0.30 <0.01 <0.01
iOS 94.17 5.73 0.04 0.05 <0.01 <0.01

(a): mobiExpt . Traffic volume (percentage) when testing 100
popular iOS and Android apps.

●

●

● ●

●

●0

20

40

60

80

100

T
ra

ff
ic

 S
h

a
re

 (
%

)

TCP

HTTP

TCP

SSL

TCP

Other

UDP

DNS

UDP

Other Other

Protocol and Service

● Aggregate

Median

(b): mobiWest iOS. TCP other is domi-
nated by Spotify which uses port 4070 to
exchange data while UDP other is domi-
nated by flows due to Skype.

●

●

●

● ● ●0

20

40

60

80

100

T
ra

ff
ic

 S
h

a
re

 (
%

)

TCP

HTTP

TCP

SSL

TCP

Other

UDP

DNS

UDP

Other Other

Protocol and Service

● Aggregate

Median

(c): mobiWest Android. TCP other is
dominated by Spotify which uses port
4070 to exchange data.

●

●
●

●

●

●0

20

40

60

80

100

T
ra

ff
ic

 S
h

a
re

 (
%

)

TCP

HTTP

TCP

SSL

TCP

Other

UDP

DNS

UDP

Other Other

Protocol and Service

● Aggregate

Median

(d): mobiEast iOS. A large variance in
HTTP and SSL traffic is because some
devices are primarily used to access
emails.

●

●
●

● ● ●0

20

40

60

80

100

T
ra

ff
ic

 S
h

a
re

 (
%

)

TCP

HTTP

TCP

SSL

TCP

Other

UDP

DNS

UDP

Other Other

Protocol and Service

● Aggregate

Median

(e): mobiEast Android. A higher share
for HTTP traffic over SSL is because the
custom ROMs such as Xiaomi and MIUI
rely on HTTP to provide services such
as searching for apps on their default
stores.

Figure 3.1: Traffic volume (in percentage) of popular protocols and services on
Android and iOS devices. The error bars in figures (b)-(e) represent the 5th and
95th percentiles observed across all devices for the given protocol. Similarly, the
median represents the median value for the protocol across all devices. The aggre-
gate value for a protocol is the traffic volume that used this protocol as a fraction
of the total traffic summed across all devices. We observe that TCP flows are re-
sponsible for more than 85% of aggregate traffic volume flowing through Meddle
servers. HTTP and SSL are the dominant services used by Android and iOS devices
in the mobiExpt, mobiWest, and mobiEast datasets.

Third, for Android devices in the mobiWest dataset, we observe a higher share of TCP

traffic labeled other compared to the Android devices in the mobiEast dataset. These

flows are largely (more than 80%) due to Spotify which uses TCP Port 4070 to exchange

data [22].

Finally, we observe a large variance in share of the protocols in each figure. This

variance is because of the difference in device usage by the users. For example, some users

3.2. IDENTIFY APPS 34

User-Agent field in HTTP header App Signature
WhatsApp/2.9.3847 Android/4.1.1 Device/unknown-Full_Android_on_Crespo WhatsApp
AppleCoreMedia/1.0.10A523 (iPad;U; CPU OS 6_0_1 like Mac OS X; en_us) AppleCoreMedia
Dalvik/1.6.0 (Linux; U; Android 4.2.2; Nexus 4 Build/JDQ39) NA

Table 3.2: Sample User-Agent strings. The first string contains the app identifier
(WhatsApp), the second hides the app and describes the OS service/library used
(AppleCoreMedia), while the third does not contain any useful signature.

use their device primarily to access emails. For such users, the share of SSL traffic will

be significantly larger compared to the users that use the mobile devices to stream media

content over HTTP. Similarly, users that use their devices to stream music and videos will

have a larger share of HTTP traffic compared to SSL traffic. These four take-aways justify

the need for a platform like Meddle that covers multiple OSes and can be used by real

end-users.

To summarize, Figure 3.1 validates our intuition to focus on classifying HTTP and SSL

flows, and identifying the apps responsible for these flows. The figure also validates the

need for a platform like Meddle which is agnostic to the OS and apps installed on the mobile

devices. We now demonstrate that previous approaches are insufficient for mapping the

majority of apps to their HTTP and SSL flows, and describe several techniques to improve

this mapping.

3.2.2 HTTP Traffic Classification Methodology

In this section, we describe our approach to classify HTTP traffic using the User-Agent and

Host fields present in the HTTP headers, the two HTTP header fields which we show to be

the most promising to identify the apps and Web-services. Previous works have used these

fields in combination with other HTTP header fields to classify and analyze HTTP flows.

However, their focus was to detect misbehaving sources of HTTP traffic such as bots or

viruses [133, 119, 140], or to identify the category of the apps—gaming, photography,etc.—

generating the HTTP flows [113, 137, 86, 87]. Rather that limiting ourselves to the cate-

gory of apps, we now show that the HTTP headers can be used to identify the apps and

Web services responsible for the HTTP flows.

To the best of our knowledge, we are the first to attempt to use ground-truth information

to evaluate the effectiveness of app classification using only HTTP header data.

Advantages and Disadvantages of the HTTP User-Agent

The User-Agent field in HTTP requests typically contains signatures of the app or the li-

brary responsible for originating the request. Our motivation to use the User-Agent field

is based on this statement in RFC for HTTP [88]: the User-Agent header field contains

information about the user agent originating the request, which is often used by servers

to help identify the scope of reported interoperability problems, to work around or tailor

responses to avoid particular user agent limitations, and for analytics regarding browser

or operating system. Indeed, Web-services use the User-Agent string to customize con-

tent depending on the apps and the app versions [8]. For example, Web-services use the

User-Agent string to recommend their native app when users access their services using

3.2. IDENTIFY APPS 35

Host field in HTTP header Possible Application
netflix348.a.nflximg.com.edgesuite.net Netflix
r20—sn-nx57ynel.c.youtube.com YouTube
t1-1.p-cdn.com Pandora
itstreaming.apple.com iTunes
cp158186-i.akamaihd.net Not identified

Table 3.3: Sample Host strings observed for AppleCoreMedia and StageFright me-
dia libraries in the mobiExpt dataset. The Host field provides hints on the possible
apps behind these flows. For example, netflix348.a.nflximg.com.edgesuite.net im-
plies a flow from Netflix, while t1-1.p-cdn.com implies a flow from Pandora. How-
ever, cp158186-i.akamaihd.net does not provide signatures of the service.

mobile Web browsers. However, relying on the User-Agent is not sufficient to identify the

app making the HTTP requests.

Indeed, the first User-Agent in Table 3.2 contains the information of the app, WhatsApp,

while the second User-Agent hides the app and specifies the AppleCoreMedia service of

iOS, and the third does not provide any useful information. Clearly, only the first User-

Agent can be used independently to identify the apps, while the other two can only give

insights on the underlying OS libraries used by the app. This limitation is the primary

reason why previous works classified HTTP traffic to the granularity of the app category

such as media, gaming, location services, and photography [85, 137, 113].

Advantages and Disadvantages of the HTTP Host

The Host field specifies the Internet host of the resource being requested. For example,

the Host field would be www.google.com for a HTTP GET request made with the URL

http://www.google.fr/search?q=HTTP. We therefore expect to find signatures of the ser-

vice, and possibly the native apps, in the Host field. In Table 3.3 we present some of the

Host fields we observed in the mobiExpt dataset for flows that contained signatures of Ap-

pleCoreMedia and StageFright streaming libraries in the User-Agent field. For these flows,

we observe that Host field can provide hints on the apps and services used by the mobile

devices.

In spite of its potential usefulness, the Host field cannot be used in isolation to identify

apps. For example, consider the following scenario. When using the Host field in the HTTP

header, a flow with static.ak.fbcdn.net in the Host field implies that it contacted one of the

Facebook servers. However, the Host field does not tell us whether Facebook is accessed

via a Web browser or through the native Facebook app. Thus, the User-Agent and Host

fields have serious limitations when used in isolation.

Our Technique: Combination of User-Agent and Host

We rely on a combination of User-Agent and Host fields to identify apps. In particular, we

give preference to the User-Agent field and we use the Host field only when the User-Agent

cannot identify the app in isolation. Furthermore, the Host field may be unreliable because

an app may be used to contact various Web-services. For example, the free version of

TuneIn Radio app [45] communicates with radio stations selected by the user. These radio

3.2. IDENTIFY APPS 36

stations stream music from servers that are not managed by Tune-In Radio. We now show

how we used the User-Agent and Host fields to identify apps.

We first group flows with the same User-Agent. For flows with the same User-Agent,

we extract the app signatures using a set of regular expressions to filter out the auxiliary

information in the User-Agent field. For example, the characters other than WhatsApp

in the first User-Agent in Table 3.2 are not useful to identify the app. We then group

flows according to their app signatures. We currently do not perform any clustering of

app signatures, but we are exploring the effectiveness of the edit distance to group app

signatures. As shown in Table 3.2, the app signatures extracted from User-Agent field

may either contain 1) an app signature, 2) an OS service or library signature, or 3) no

signatures. We manually group the extracted signatures in these three groups. We then

use the Host field to identify Web services for flows that do not contain an app signature.

In particular, we use the Host field to identify media services. The iOS and Android

devices fetch media content using the AppleCoreMedia and StageFright libraries respec-

tively [12, 30]. We use results from our controlled experiments to extract signatures from

the hostnames of servers used to stream popular media content. In particular, we used

signatures for iTunes, YouTube, Netflix, Pandora, Spotify, Dailymotion, Tudou, Youkou, and

Vimeo and label their flows as Popular media flows. The rest of the media flows are labeled

as Other media flows.

For the rest of the HTTP flows, we search the Host field in the package names of An-

droid apps used in the mobiExpt dataset. Android apps are written in Java and these apps

typically use their reversed Internet domain name for their package names [34]. For ex-

ample, the native Android app for Facebook has the package name com.facebook.katana

while YouTube uses the package name com.google.android.youtube. The package name

may contain some auxiliary information along with app signatures; we use a set of regular

expressions to remove auxiliary information in the Host field. We acknowledge that Web

services such as Facebook can be accessed through the mobile Web browsers. However,

we believe that popular Web services are likely to be accessed through their native apps

that provide a better user experience. We now discuss the effectiveness of our approach in

identifying apps and Web services.

3.2.3 Evaluation of HTTP Classification Methodology

We begin our evaluation by applying our classification on the mobiExpt dataset. This

dataset contains the ground truth information which provides valuable insights on the ef-

fectiveness of our classification methodology. We then apply our classification on mobiWest

and mobiEast datasets.

Classification of HTTP Traffic in the mobiExpt dataset

We use Table 3.4 to discuss the effectiveness of using the User-Agent and Host in isolation,

and the added benefits of using them together to identify apps and Web services used by

iOS and Android devices.

iOS Devices. First, we note that 83 of the 100 iOS apps we manually tested generated

HTTP traffic.1 Of the 83 apps, 79 apps contained signatures of the app in the User-Agent

1The apps that do not generate HTTP traffic includes standalone apps such as Adobe Reader.

3.2. IDENTIFY APPS 37

OS #Apps
Generates

User-Agent
Host

Combination
HTTP Package Organization

iOS 100 83 79 (95.1%) 27 (32.5%) 40 (48.19%) 81 (97.5%)
And. 100 92 21 (22.8%) 27 (29.3%) 44 (47.8%) 49 (53.2%)

Table 3.4: Classification of apps based on Host and User-Agent. A large majority of
iOS apps use dedicated User-Agent strings to fetch data over HTTP. A combination
of User-Agent and Host can be used to identify the majority of Android and iOS
apps.

field. However, 55 of these 79 apps used more than one User-Agent field for their HTTP

traffic because they use libraries such as Google Analytics and AppleCoreMedia to fetch

content over HTTP. We also observe that the Host field uniquely identified the correspond-

ing app for the 27 iOS apps we tested (column 5). The Host field can also identify the or-

ganization that released an app. For example, Zynga offers multiple games with dedicated

apps that contact Zynga servers. When classifying apps according to their organization,

we observe in Table 3.4 (column 6) that our classification success using only the Host in-

creases to 40 iOS apps. On combining the User-Agent and the Host field, we were able to

identify 81 of the 83 apps that generate HTTP traffic. However, we also observed that 79

of the 83 apps contacted other sites such as CDNs and ad sites. These hostnames of these

sites did not contain any signatures of the app.

Android Devices. In Table 3.4, we observe different results for flows from Android apps

released through Google Play, the default app store for Android devices. Though 92 of the

100 apps generate HTTP traffic, only 21 of the 92 apps use an app specific User-Agent. This

number is significantly smaller than what we observed when testing iOS apps. However,

on using a combination of the User-Agent field and the Host field, we were able to identify

49 apps; 89 of the 92 apps contacted other sites such as CDNs and ad sites which do

not contain signatures of the app. While we can use the Host field to identify these 3rd-

party sites contacted by an app, we cannot determine which app generated the traffic. In

Section 3.3, we show that this information is useful to identify and isolate Web sites that

leak PII information.

To summarize, User-Agent is more effective for classifying iOS apps and Host is more

effective for Android apps; however, neither is a complete solution when used in isolation.

A topic of future work is to explore packet contents using deep packet inspection and using

other HTTP header fields such as URI and Referrer. We have observed a few instances of

apps identifying themselves to CDNs and ad/analytics servers in these fields and in the

payload; we are working towards improving our results based on these observations. In

Table 3.4, we do not present the fraction of traffic volume exchanged between the devices

and remote servers because we tested each app only for 10 minutes. Instead, we discuss

the effectiveness our technique for the traffic in the mobiEast and mobiExpt datasets.

Classification of HTTP Flows in the Wild (mobiWest and mobiEast)

We now discuss the effectiveness of our classification technique on the mobiWest and mo-

biEast datasets.

In Figure 3.2, we present the word cloud of User-Agent signatures extracted from HTTP

flows in the mobiWest and mobiEast datasets; the size of each signature in this figure is

3.2. IDENTIFY APPS 38

(a): mobiWest iOS. (b): mobiWest Android.

(c): mobiEast iOS. (d): mobiEast Android.

Figure 3.2: Word cloud of signatures in User-Agent field. The size of each signature
is proportional to the number of devices for which the signature was found. OS
services and libraries, such as GeoServices, gamed, stagefright, and GoogleAna-
lytics, are some of the dominant signatures.

Technique Category
% of iOS Traffic % of Android Traffic
Bytes Flows Bytes Flows

User-Agent
Apps 43.21 85.73 15.01 75.17
OS Services 0.19 3.82 17.42 0.81

User-Agent + Media (Identified) 51.36 7.12 61.98 3.56
Host Media (Other) 4.90 0.85 0.68 0.12
Host Other Apps/Web-

services
<0.01 0.49 1.53 12.98

Total Classified 99.6 98.01 96.62 92.64

a: Classification of HTTP Traffic in the mobiWest dataset.

Technique Category
% of iOS Traffic % of Android Traffic
Bytes Flows Bytes Flows

User-Agent
Apps 91.30 86.41 40.50 21.18
OS Services 0.15 1.19 12.86 7.62

User-Agent + Media (Identified) 2.11 0.84 6.87 1.16
Host Media (Other) 1.81 0.49 0.31 0.01
Host Other Apps/Web-

services
0.53 2.40 28.71 42.25

Total Classified 95.90 91.33 89.25 72.22

b: Classification of HTTP Traffic in the mobiEast dataset.

Table 3.5: Classification of HTTP traffic in the mobiWest and mobiEast datasets.
The strict coding guidelines enforced by Apple make the User-Agent field more
useful in identifying iOS apps compared to Android apps in each dataset. Media
traffic dominates the mobiWest dataset, however, the low volume of media traffic
is an artifact of the small duration of the measurements. As a consequence, the
iOS and Android traffic in the mobiEast dataset is dominated by the apps.

3.2. IDENTIFY APPS 39

proportional to the number of devices for which the signature was found. The key take-

away from this figure is the wide variety of apps used by devices in each dataset, and also

between the iOS and Android devices within the same dataset. The figure validates the

need for a platform like Meddle which is OS agnostic and does not require explicit support

from the OS and apps running on the mobile device.

In Figure 3.2(a), along with signatures of apps such as Facebook and YouTube, we

observe signatures of OS libraries uch as Apple Core Media which is responsible for down-

loading media content. We observe that OS services such as AppleCoreMedia, Android-

DownloadManager, and Stagefright are the most common signatures observed in the two

datasets.

In each sub-figure, we observe a large number of signatures with a small font. These

signatures imply that the app was used by a small number of devices in the dataset.

This observation concurs with Xu et al. who observe that a large number of apps have

a small user-base, i.e., a heavy tail on the number of users that use a mobile app [137].

Xu et al. [137] also observe a large number of apps to be geographically dependent. The

difference between the signatures in the mobiWest and mobiEast dataset concurs with this

observation. We also observe that ads and analytics libraries such as Google Analytics [18]

and AdSense for Mobile Applications (signature afma) [63] are popular in both datasets

(see Figure 3.2(a) and Figure 3.2(c)). Similarly, the signature Mozilla, the prevalent sig-

nature in each sub-figure implies that the app fetched data using the default User-Agent

that does not contain any app signatures. For such flows, we rely on the signatures in the

Host field. We now discuss the effectiveness of our technique of using a combination of

User-Agent and Host fields.

In Table 3.5, we observe that with our technique we were able to classify more than

91% of the iOS traffic in terms of flows and bytes, and more than 89% of the Android traf-

fic in terms of bytes. We also observe that the User-Agent is more effective in identifying

iOS apps compared to Android apps. We speculate that one reason for this behavior is the

enforcement of stringent coding guidelines for iOS apps [11]. For the iOS devices, with

the help of the User-Agent field, we were able to associate 85% of the HTTP flows in the

mobiWest and 86% of HTTP flows in the mobiEast dataset. In comparison, only 21% of

the HTTP flows from Android devices in the mobiEast dataset contained any app signa-

tures in the User-Agent field. This observation is in line with the results of our controlled

experiments.

We use the signatures of media libraries such as AppleCoreMedia and Stagefright to

identify media flows, and use the Host field of these flows to identify the media services.

Indeed, for flows with signatures of media libraries, we were able to extract signatures

for popular media services such as Netflix, YouTube, Vimeo, and Pandora. By focusing on

media flows, we were able to identify that more than 50% of HTTP traffic by volume in the

mobiWest dataset using a combination of User-Agent and Host. In comparison, we do not

observe a lot of media traffic for devices in the mobiEast dataset. We are investigating the

causes for this behavior.

We use the Host field only for flows where the User-Agent field does not provide any

signatures of libraries and the apps. We observe that technique is useful only for the

Android devices in the mobiEast dataset. In contrast, we use this technique only for a small

number of HTTP flows from iOS devices in the mobiEast dataset. As discussed previously,

3.2. IDENTIFY APPS 40

Port
mobiWest mobiEast

iOS (%) And. (%) iOS (%) And. (%)
Bytes Flows Bytes Flows Bytes Flows Bytes Flows

HTTPS 92.11 79.23 96.74 90.34 89.51 78.74 87.89 65.79
Mail 4.53 7.75 0.67 0.33 9.53 16.35 6.79 8.46

Notification 2.96 10.88 2.03 6.58 0.91 4.79 2.98 19.74
Other 0.40 2.13 0.56 2.75 0.05 0.12 2.34 6.01
Total 100 100 100 100 100 100 100 100

Table 3.6: Classification of SSL Traffic based on port number. HTTPS is the most
popular service that uses SSL, followed by Mail and Notification services.

this is due to the enforcement of coding guidelines by Apple [11].

To summarize, the User-Agent field is more effective to identify HTTP flows from iOS

device compared to Android devices. A combination User-Agent and Host is effective to

identify media flows in iOS and Android devices. We are currently exploring the use of

other HTTP header fields such as URI and Referrer and deep packet inspection to improve

these results. We now present our technique to classify SSL traffic, the second largest

source of Internet traffic in our datasets.

3.2.4 SSL Traffic Classification Methodology

Unlike HTTP flows, SSL flows provide limited information in plaintext that can be used to

identify the apps. For the traces captured during our controlled experiments, we were able

to observe HTTP requests and responses after decrypting HTTPS flows with SSL bumping.

We can classify such flows using the techniques described in the previous section. However,

we did not perform SSL bumping for the devices in the mobiWest and mobiEast dataset,

so we now describe how to classify SSL flows without decryption.

We use the TCP Port number, the SSL certificates, Server Name Identification in SSL

handshakes, and DNS messages to classify SSL traffic. In particular, we use the DNS

messages and subsequent SSL handshakes to determine the hostnames of the remote hosts

contacted by mobile devices. We then map these hostnames to Web services using our

technique for HTTP traffic classification (see Section 3.2.2). To the best of our knowledge,

we are the first to study the effectiveness of these fields in classifying SSL flows from

mobile devices.

Port Number Based Classification

Mobile devices use SSL for various services including mail, notifications, instant messag-

ing, and Web browsing. Services such as mail, instant messaging, and notifications are

documented to use dedicated port numbers of their traffic [27, 142, 16, 126]. As shown in

Table 3.6, by inspecting the port numbers in SSL flows, we observe that HTTPS is the most

dominant source of SSL traffic. The rest of the flows were due to email, instant messag-

ing, and OS notification services. We therefore focus our attention on identifying the Web

services responsible for the HTTPS flows. In particular, we are interested in identifying

the remote hosts contacted by the mobile clients, and using their hostnames to identify the

Web service. We now show how certificates, the Server Name Indication in handshakes,

and DNS messages can be used to identify the hostnames of SSL sessions.

3.2. IDENTIFY APPS 41

Time FQDN Remote IP
address

Response
Index

1354557225.65 android.clients.google.com 173.194.33.4 4
1354557225.65 android.clients.google.com 173.194.33.5 5
1353279235.43 mobilemaps.clients.google.com 173.194.33.4 1
1353279235.43 mobilemaps.clients.google.com 173.194.33.5 2

Table 3.7: Sample entries in the DNS lookup table for a device in the mobi-
West dataset. The IP address of 173.194.33.4 is used by two hostnames, an-
droid.clients.google.com and mobilemaps.clients.google.com. The response index
contains the index of the IP address in the list of IP addresses present in the DNS
response. We map the remote IP address of an SSL flow to the hostname in the
most recent entry with a response index of 1.

Advantages and Disadvantages of Certificates and Server Name Indication

An HTTPS session begins with a TLS handshake during which the server presents an X.509

digital certificate to the client [126]. This certificate contains the identity of the server

(e.g., website domain) which is digitally signed by a trusted third party. SSL certificates

thus enable clients to identify and authenticate remote servers whose domain name is

present in the Common Name (CN) field of the certificate. The CN field may either contain

a fully qualified domain name (FQDN) such as play.google.com or regular expressions such

as *.google.com. A CN field with a regular expression, such as *.google.com, hides Web

services when the same domain provides multiple Web services.

The client can also specify the hostname in the Server Name Indication (SNI) extension

for TLS [126]. SNI enables a server to use a single IP address to host multiple HTTPS

sites. Such servers use the SNI to identify the hostname to which the client is connecting.

However, the SNI cannot be used in isolation to identify the hostname because it is not

widely used [81, 95].

Furthermore, SSL sessions can begin without the exchange of the hostname or do-

main name in the handshake. Such sessions, where the client resumes past SSL sessions

using session IDs, are common because they avoid the expensive TLS handshake. SSL

certificates are not exchanged during such sessions. This creates a problem when using

Meddle to monitor traffic. In particular, the original session—where the session ID was

negotiated—may not necessarily be monitored by Meddle. This is because users are free

to enable and disable Meddle according to their convenience. Therefore, we have to rely

on other techniques to identify the hostname for such sessions. We now discuss how we

use DNS messages to overcome this issue.

DNS Classification

We identify the fully qualified domain name (FQDN) of the remote host of an SSL flow

using the DNS messages between the mobile device and its DNS server. We can monitor

DNS messages because Meddle tunnels all the Internet traffic from mobile devices. A DNS

exchange consists of a DNS request, containing the FQDN to which the device wants to

communicate, followed by a DNS response which contains a list of IP addresses for the

requested FQDN [114]. As shown in Table 3.7, we use these DNS messages to maintain

an association of the IP addresses and the FQDN. The response index contains the index of

3.2. IDENTIFY APPS 42

iOS Android
imap.gmail.com picasaweb.google.com
www.google.com www.googleapis.com

sphotos-a.xx.fbcdn.net android.clients.google.com
itunes.apple.com clients4.google.com

m.google.com fbcdn-photos-a.akamaihd.net

Table 3.8: Popular hostnames for SSL flows in mobiExpt dataset. While hostnames
such as imap.gmail.com, and picasaweb.google.com give clear indication of the
Web services, hostnames such as www.googleapis.com hide the underlying app
and Web service.

the IP address in the list of IP addresses present in the DNS response. We use this table

to map the remote IP address of an SSL flow to the FQDN in the most recent entry with a

response index of 1. We use a response index of 1 because in our controlled experiments

we observe Android and iOS devices use the first entry in DNS response to resolve a FQDN.

This approach is similar to DN-Hunter [71]. DN-Hunter relies on the most recent FQDN

that corresponds to the IP address, while we use the FQDN where the remote IP address

was the first entry in the list of IP addresses. Indeed, for more than 90% of SSL flows in the

mobiWest and mobiEast dataset, the latest DNS response before the TCP SYN contained

the IP address as the first entry in the list of IP address. In spite of the potential usefulness

of DNS messages, we give a high priority to the server-name and the certificates because

DNS responses can be cached by apps, and also the DNS requests could have been made

before Meddle was enabled.

To summarize, we use the fully qualified domain name (FQDN) of the remote servers to

identify the Web service. We identify the FQDN using the CN field in the SSL certificates,

Server Name Identification in SSL handshakes, and DNS messages. In particular, we rely

on the CN field of the certificates to identify the FQDN in SSL connections. If the fully

qualified domain name is not found in the certificates, we use the Server Name Indication

(SNI). We use the DNS messages only when we are not able to identify the FQDN using

certificates and SNI.

Our Technique: Two Phase SSL Classification

Once we identify the hostnames, we classify the traffic in two phases. In the first phase,

we use the port number and hostname to identify the service and group the traffic based

on service. The five most popular groups that we found in our dataset are social network,

mail, media, instant messages, and notification. For example, flows to facebook.com, twit-

ter.com, plus.google.com are grouped as social networks. Traffic to well known email ports

such as TCP port 993, and traffic to hosts such as mail.google.com are classified as mail

traffic. Similarly, we use the documentation for notification services to identify the ports

and hostnames used by notification services and instant messages [27, 16, 142].

In the second phase, we group hostnames that do not contain details of Web services.

For example, in Table 3.8, we present some of the popular hostnames observed during our

controlled experiments. While the hostname fbcdn-photos-a.akamaihd.net is a strong in-

dication that the traffic is due to Facebook (due to fbcdn), www.googleapis.com hides the

underlying app and Web services. We group hostnames that hide the app and Web service

3.2. IDENTIFY APPS 43

Method
mobiWest mobiEast

iOS (%) And. (%) iOS (%) And. (%)
Bytes Flows Bytes Flows Bytes Flows Bytes Flows

Certificate
FQDN

4.19 6.41 18.94 17.89 6.86 9.11 15.53 16.43

Certificate
Regex

1.83 1.14 38.93 19.01 5.19 2.26 31.44 16.78

Server Name In-
dication (SNI)

4.58 4.36 14.79 9.61 13.33 11.69 6.13 3.46

DNS 92.32 88.22 93.71 90.25 90.43 79.11 91.01 93.14
Combination 95.39 90.92 98.03 92.74 96.06 92.49 95.92 94.16

Table 3.9: Fraction of SSL traffic for which the Fully Qualified Domain Name
(FQDN) (or domain name for regular expressions) of the remote host was found
using the Certificate, Server Name Indication (SNI), and DNS messages. The SSL
Certificate is useful to identify less than 20% of SSL flows. Less than 20% of the
SSL flows can be identified using SNI. Meddle’s ability to monitor DNS messages
fills the gap of identifying hostnames of the remote hosts in SSL flows.

based on the parent organization. During manual examination of the traces, we observe

three main groups: Google Services, Apple Services, and ROM services. Google Services

includes flows whose remote hosts are served by Google, for example, www.googleapis.com.

Similarly, while Apple Services includes flows to servers managed by Apple, for example,

*.phobos.apple.com. The ROM services are flows to servers managed by organizations that

provide custom Android ROMs. In the mobiEast dataset, 21 Android devices use custom

Android ROMs such as Xiaomi and MIUI. These devices used services managed by their

parent organizations (Xiaomi for Xiaomi devices) instead of Google Services. We group

flows to such services as ROM services. To summarize, in the second phase we label flows

that do not contain details of Web services as either Google Services, Apple Services, and

ROM services.

Though this classification is crude, it gives insights on the key sources of SSL traffic.

We now discuss the effectiveness of our approach, and the insights obtained from this

classification.

3.2.5 Evaluation of SSL Traffic Classification Methodology

We now evaluate our classification technique on the traffic traces in the mobiWest and

mobiEast dataset.

We begin by discussing the effectiveness of the certificate, SNI, and DNS messages

in isolation to identify the Fully Qualified Domain Name (FQDN) of the remote host. In

Table 3.9, we observe that Certificates can be used to identify the remote hostname for

less than 20% of SSL flows. This detection rate does not improve with regular expressions;

Bermudez et al. [71] make similar observations when testing DN-Hunter. Similarly, while

SNI is used in less than 20% of SSL flows, DNS messages are useful in identifying more

than 80% of the SSL flows in each dataset. One reason why DNS messages cannot identify

the FQDN for all SSL flows is because devices can cache the DNS responses made before

Meddle was enabled. These observations support the need to rely on a combination of DNS

responses, certificates, and SNI to identify remote hostnames. In Table 3.9, we observe that

3.2. IDENTIFY APPS 44

Phase Category
% of iOS Traffic % of Android Traffic
Bytes Flows Bytes Flows

Phase 1

Social Networks 12.81 7.74 35.39 19.28
Mail 6.11 9.26 6.46 11.02
Media 0.94 0.25 3.66 3.62
Instant Messages 3.70 14.09 0.21 0.48
Notifications 4.69 17.45 2.02 6.57
Total (A) 28.25 48.79 47.74 40.97

Phase 2
Google Services 36.32 17.56 47.31 48.27
Apple Services 25.26 28.26 <0.01 <0.01
Total (B) 61.58 45.82 47.31 48.27

Total (A + B) 89.83 94.61 96.10 89.24

Table 3.10: Classification of SSL traffic in the mobiWest dataset. The iOS and
Android SSL traffic in the mobiWest dataset is dominated by Google and Apple
Services. The share of Social Network traffic is higher for Android devices because
the default photo backup services on Android devices uses the Google Plus (and
Picasa) Social Network.

by using our technique we were able to identify the hostnames for more than 90% of SSL

traffic by flows and bytes. We now discuss how effective the hostnames are in identifying

apps and Web services responsible for these SSL flows.

As discussed previously, we first group hostnames depending on the type of app and

Web service. We then group flows with ambiguous hostnames according to organizations

such as Google and Apple.

In Table 3.10, we observe that 61.5% of iOS and 47.3% of Android traffic (by bytes) is

respectively to Google and Apple servers where the hostname does not contain signatures

of the App and Web service. This share does not include the traffic to Google and Apple

servers that we classified as Social Network, Instant Messaging, Mail, and Media. For

example, the share of Social Network traffic is higher for Android devices compared to iOS

devices because the default photo backup services on Android devices uses the Google Plus

(and Picasa) Social Network. Google services and Apple services are therefore the largest

sources of SSL traffic in our mobiWest dataset.

Similarly, in Table 3.11, we observe Google and Apple to be the dominant source of

SSL traffic in the mobiEast dataset. However, the Android devices in the mobiEast dataset

generate significantly less SSL traffic compared to their counterparts in the mobiWest

dataset (see Figure 3.1). This implies that Google serves fewer bytes per device over

SSL for Android devices in mobiEast dataset. One reason for this behavior is because

21 Android devices in the mobiEast dataset use custom ROMs such as Xiaomi and MIUI.

The default apps installed on these devices access services operated by Xiaomi and MIUI

instead of Google services. Furthermore, we also observe that these services use HTTP

instead of HTTPS, thus resulting in a smaller volume of SSL traffic seen in Figure 3.1.

In summary, using the certificates, SNI, and DNS messages, we were able to identify

the hostname of the remote hosts for more than 90% of the SSL flows. These hostnames

contain signatures of the Web services and Apps responsible for these SSL flows. We

observe that Google and Apple are the dominant sources of SSL traffic in both datasets.

Though Apple serves approximately the same number of bytes per device over SSL, custom

3.2. IDENTIFY APPS 45

Phase Category
% of iOS Traffic % of Android Traffic
Bytes Flows Bytes Flows

Phase 1

Social Networks 1.31 3.41 8.93 10.68
Mail 10.71 16.99 7.07 8.76
Media 0.94 0.25 3.23 5.24
Instant Messages 1.73 24.75 1.07 1.51
Notifications 1.95 10.03 4.12 23.02
Total (A) 16.64 55.43 24.42 49.21

Phase 2
Google Services 1.57 4.70 58.26 29.92
Apple Services 62.16 34.88 <0.01 <0.01
ROM Services 0 0 2.12 3.58
Total (B) 63.73 39.58 60.38 33.50

Total (A + B) 80.37 95.01 84.80 82.71

Table 3.11: Classification of SSL traffic in the mobiEast dataset. The SSL traffic
from iOS devices is dominated by Apple Services. Though Google has a large share
of SSL traffic, Android devices in the mobiEast dataset generated significantly
lower SSL traffic compared to the Android devices in the mobiWest dataset.

ROMs such as MIUI and Xiaomi reduce the number of bytes per Android devices that

Google serves over SSL.

3.2.6 Discussion

Our goal was to identify the apps and Web services responsible for the network traffic

flowing through Meddle servers. To meet this goal, we used results from our controlled

experiments to obtain the ground truth information on network flows generated by apps

and OS services. We then use the a combination of User-Agent and Host field to identify

apps and Web services responsible for HTTP flows. Similarly, we use certificates, SNI, and

DNS messages to classify SSL flows.

We observe that the User-Agent field is more effective to identify HTTP flows from iOS

devices compared to Android devices. One reason is the coding practices mandated by

Apple for iOS apps [11]. We also observe signatures of OS libraries in HTTP flows used to

exchange media content. Previous works that used the User-Agent were therefore limited

to the granularity of app category [85, 137, 113].

For flows that contain signatures of media libraries, we use the Host field to identify the

Web services. Though User-Agent and Host are useful to identify the apps and Web services

for a majority of HTTP flows, this classification is not complete. For flows that we could

not classify, we observed few apps identifying themselves in the URI and Referrer fields of

HTTP headers and also in the payload of HTTP POST messages. We are working on using

these fields with the help of techniques used to identify bots and viruses [133, 119, 140].

For the SSL flows, we observe that Google and Apple are the dominant sources of SSL

traffic in both datasets. We identify these sources using the certificates, SNI, and DNS

messages exchanged before the SSL flows begin. To the best of our knowledge, we are the

first to study the effectiveness of these fields in classifying SSL flows. One key observation

is the reduced number of bytes per device to Google services over SSL in the mobiEast

dataset. This observation is important because it highlights the impact of custom ROMs

such as MIUI and Xiaomi which are popular in China.

3.3. DIAGNOSING PRIVACY INVASIVE APPS 46

OS # Email Location Name Password Device Contacts IMEI
Apps ID

iOS 100 8 9 4 3 4 0 0
Android 100 3 10 2 1 21 0 13

Table 3.12: Summary of personally identifiable information (PII) leaked in plain-
text (HTTP) by Android and iPhone apps. The popular iOS apps tend to leak the
location information in the clear while Android apps leak the IMEI number and
Android ID in the clear.

The results presented in this section cannot be used to draw general conclusions be-

cause of limited statistical significance. In particular, though our techniques can be used

to identify apps and Web services, we cannot provide strong conclusions on the network

traffic characteristics of these apps and services. Instead we now focus on privacy invasive

apps we encountered in each dataset.

3.3 Diagnosing Privacy Invasive Apps

Privacy has rapidly become a critical issue for networked services. In particular, the extent

of tracking of users activities by ads and analytics with the help of personally identifiable

information (PII) has been highlighted by previous works [127, 108, 135]. In this section,

we use Meddle to not only identify but also filter PII leaks. Our key contributions are as

follows.

1. We conduct controlled experiments to identify how apps leak PII. We also use SSL

bumping to understand how this information is leaked over secure channels (in addition

to those revealed in the clear).

2. We use our results to detect PII leaks in the wild and identify trackers that use PIIs to

track users.

3. We provide a tool conVis that allows users to monitor their devices’ tracking, and the

apps that facilitate this tracking. The users can also use this tool to block PII leaks on

their traffic that flows through Meddle servers.

For our analysis, we focus on what PII is sent, and to whom is the PII sent.

3.3.1 PII leaks in mobiExpt

For our experiments, we create fake user accounts with fake contact information, and fake

Twitter and Facebook accounts. Our goal is to detect if any PII—email address, phone

number, IMEI number—stored on the device is leaked across the network over HTTP or

HTTPS (using the SSL bumping plugin). Indeed, some of this information is required for

normal app operation; however, such information must never travel across the network in

plaintext (HTTP)

In Table 3.12, we present the different PIIs leaked by both Android and iPhone apps.

We observe that the IMEI, a unique identifier tied to a phone, is the most commonly leaked

PII by Android apps. The IMEI number can be used to track and correlate a user’s behavior

across Web services. Similarly, we observe that Android apps leak the Android ID, a unique

identifier tied to an Android device. In Table 3.12, we also observe that other information

3.3. DIAGNOSING PRIVACY INVASIVE APPS 47

Host IMEI Device ID Ads & Analytics
chartboost.com X X X
tapjoyads.com X - X
getjar.com X X -
pocketchange.com X X -
iheart.com X X -
aarki.net X - X
zynga.com X - -
droidsecurity.appspot.com X - -
google.com - X -
flurry.com - X X
groupon.com - X -

Table 3.13: Top 10 hosts that receive the IMEI or Device ID over HTTPS. Hosts
are ordered by the number of flows that send the IMEI number, followed by the
number of flows that send the device ID over HTTPS. Four of the top 10 hosts that
receive this information are ads and analytics sites.

like contacts, emails, and passwords are leaked in the clear. The email address, the address

used to sign up for the services, was leaked in the clear by 8 iOS and 3 Android apps from

our set of popular apps.

Whereas only one Android app (belonging to the Photography category) leaked a pass-

word in the clear, we were surprised to find that three of the most popular iOS apps send

user credentials in the clear, including the password. Particularly disconcerting is our ob-

servation that an app in the Medicine category—which the provider claims has “1 million

active members of which 50% are US physicians”—sends the user’s first name, last name,

email, password, and zip code in the clear. Given US physician access to highly sensitive

data like medical records, we believe it is particularly important for this app to protect

user credentials (which are often used for multiple services). This is particularly problem-

atic if we assume a passive eavesdropper that can sniff traffic over open Wi-Fi networks.

The VPN tunnels of Meddle can protect this data from passive eavesdroppers in Wi-Fi net-

works, however, Meddle cannot protect from sniffers deployed between the Meddle server

and the remote server contacted by these apps.

During our experiments, we observed that PII is also sent over HTTPS. We observed

user credentials (login and password) being exchanged only with the authorized sites. For

example, we observe the Facebook login and password being exchanged only with the

Facebook servers. In the following, we focus on device identifiers such as the IMEI and

the Android device ID. In Table 3.13, we present the top 10 sites ordered by the number of

flows that sent the IMEI over HTTPS. We observe that four of the top 10 sites that receive

this information are ads and analytics (A&A) sites.2

Our observations highlight the limitations of current mobile OSes with respect to con-

trolling access to PII via app permissions. In particular, it is unlikely that users are made

aware that they are granting access to PII for A&A sites when embedded in an app that

serves a different purpose. This problem is pervasive: of the 77 sites that received either

the IMEI or Device ID in the clear or over HTTPS, 35 sites were third party ads and an-

alytics sites. We note that our observations are a conservative estimate of PII leakage.

2We rely on ad blockers and related work to identify ads and analytics flows [1, 2, 17, 96, 135, 127]

3.3. DIAGNOSING PRIVACY INVASIVE APPS 48

Specifically, we cannot detect PII leakage if the data is obfuscated, for example, via hash-

ing or encoding. Regardless, our study showed that a significant amount of PII leaks not

only in the clear but also in encrypted channels.

To summarize, previous studies identified PII leaks by either instrumenting OSes [83,

96], static or dynamic analysis of app binaries [82, 73, 84], or analyzing ISP traces [135].

We show that Meddle can be used to study PII leaks without warranty voiding the devices,

and specific support from ISPs. Furthermore, SSL bumping also allows us to look at the

PII leaks over SSL. We use the results from our experiments to develop signatures (regu-

lar expressions) to identify PII leaks. We now use these signatures in the mobiWest and

mobiEast datasets.

3.3.2 PII leaks in the Wild (mobiWest and mobiEast)

We now use the mobiWest and mobiEast datasets to show that PII leaks are not limited to

controlled experiments and take place in the wild. We then discuss how we use Meddle to

mitigate this problem.

In the two datasets, we observe that the app that manages the iOS homescreen (Spring-

Board) was responsible for more than 65% of the flows that sent the location information

in the clear when fetching weather information from Yahoo servers. Though location in-

formation is obvious for passive sniffers in the local Wi-Fi network of the target, it is a

serious issue if the malicious entity is present within the ISP. Weather apps such as TWC

and Weather are the next largest sources of location leaks in both datasets.

In addition, we observe leaks of the device ID and IMEI number in the mobiWest and

mobiEast datasets. We observe that the ads and analytics sites were the most dominant

recipients of these leaks. Though the social networking sites used by volunteers for the

mobiWest dataset did not receive the IMEI and device ID in the clear, we observe that

QQ and Weibo, two popular social networking services used by volunteers in the mobiEast

dataset, leak this information along with the device Wi-Fi MAC address in the clear.

Furthermore, we observe that RenRen, another popular social network, receives the

list of apps installed on the device in the clear. This is a serious problem because this

information can be exploited to attack the device with targeted exploits. The low data

quotas in China imply that users are more likely to access social networks over Wi-Fi which

may be unencrypted, making them vulnerable to such targeted exploits.

In summary, we use the results from our controlled experiments to develop signatures

to identify PII leaks. We use these signatures on the mobiWest and mobiEast dataset

to identify the popular trackers that use PII leaks to track users. Rather than reporting

these PII leaks, we use our results on PII leaks to create filters to identify and prevent such

leaks. We now discuss how we allow users, who contributed to the mobiWest and mobiEast

datasets, visualize and block their PII leaks.

3.3.3 Visualizing and Filtering PII leaks

We developed a tool, conVis that allows Meddle’s users to visualize their devices’ tracking,

and the apps that facilitate this tracking. conVis was motivated by the extensive nature of

tracking and PII leaks that we observed in the mobiWest and mobiEast dataset.

3.3. DIAGNOSING PRIVACY INVASIVE APPS 49

Figure 3.3: Visualizing tracking using conVis. Each circle with a shadow is an app.
All other nodes are Web sites. Lines indicate the sites contacted by the app. The
Red circles are Web sites such as Google Analytics that are known to track users.
The size of each app is proportional to the number of flows from the app, while
the size of each Web site is proportional to the number of flows to the Web site.
This graph represent the flows from the default Browser app for one Android user
in the mobiWest dataset. Some sites leaking information are shown without icons
because conVis was unable to find their respective favicon.ico file, however we show
the name of site when the circle is selected.

The visualization of conVis, presented in Figure 3.3, is inspired from Mozilla Collu-

sion [25]. Each node (circle) in the graph is either an app or a Web site contacted by the

app. We use the red colored circle to represent Web sites that potentially leak PII. The

figure represent the Web sites contacted by the default Browser app, identified using the

User-Agent, for one Android user in the mobiWest dataset during a 30 day period. We

observe that the user was tracked by a large number of trackers. The size of each Web

site represents the number of flows between the app and the Web site. This also shows

3.4. DISCUSSION 50

that some trackers, such as Google Analytics, are contacted more frequently than other

trackers; Roesner et al. [127] made similar observations during their study on trackers.

Meddle also allows the user to block tracking. We use our results on PII leaks to create

a list of domains that track users by leaking PIIs. Meddle allows users to block these

sites using Meddle’s DNS based filter which responds to DNS requests for hosts that leak

PIIs with the IP address of localhost (127.0.0.1). As discussed in Section 2.2.3, our filter

is effective even from SSL traffic because DNS requests occur out of band from secure

connections. However, a shortcoming of this approach is that we cannot block hostnames

that are used to exchange data required for proper functioning of apps. For example, we

cannot block m.baidu.com which offers search results and also tracks the devices’ PII in

the clear.

In summary, we used the results from our classification technique to allow users visu-

alize their traffic, and also offer them the control to block tracking by filtering PII leaks.

Previous works have tried to block PII leaks, however, these solutions involve instrument-

ing the OS to either obfuscate data or filter the access to private information [96, 118, 130].

Instead, Meddle allows users to participate in improving the transparency in mobile net-

works by offering them control over their traffic.

3.4 Discussion

The objective of building Meddle was to improve the transparency and end-user control

over mobile devices by enabling users to monitor and interpose on the mobile Internet

traffic. Interposing on network traffic requires knowledge on which app is responsible for

the observed network flows, and with whom (which Web services) these apps communicate.

In this chapter, we show that it is possible to identify apps and Web services using

the HTTP and SSL headers, and the DNS messages. In particular, we observe that the

User-Agent field in the HTTP header is more useful in identifying iOS apps compared to

Android apps. This observation highlights the impact of mobile OSes on the techniques

used to classify mobile Internet traffic. We also compare the effectiveness of relying only

on the SSL headers and show how DNS messages are useful to classify SSL flows. Our

traffic classification results shows a smaller share of SSL traffic for Android devices that

use custom Android ROMs, such as Xiaomi and MIUI. These ROMs are popular in China,

and the Android devices that use these ROMs use fewer Google services compared to the

Android devices that use the default Android ROM provided by Google. This highlights the

need for a platform like Meddle that is independent of OSes.

We then focus on the PII leaks from popular Android and iOS apps, and use the traffic

traces from our controlled experiments to built signatures for identifying PII leaks. We

then used these signatures to identify PII leaks in the wild. We observe that trackers

rely on HTTP and HTTPS to track users. This implies that using HTTP proxies to analyze

trackers [33] will provide an incomplete picture on the tracking behavior of mobile apps.

Furthermore, we observe that popular social networks in China leak PII in the clear. This

makes users vulnerable to passive eavesdropping in Wi-Fi networks, a problem that can be

mitigated by using Meddle’s VPN proxy.

Based on our results on traffic classification and identification of PII leaks, we developed

a tool for end-users to visualize their Internet traffic and identify the trackers exploiting

3.4. DISCUSSION 51

the PIIs leaked from their mobile devices. The users can also use Meddle to block these

PII leaks. We believe this is an incentive to use Meddle.

The key take-away from this chapter is that we have used the research work coming

from Meddle to create incentives to recruit users to participate in research activities. The

user participation can be used to gather more insights on the behavior of mobile devices

which in turn can be used to create more incentives for users. This work is part of an

ongoing effort that will be continued.

4 Characterize YouTube Traffic

We now characterize YouTube traffic, one of the most dominant sources of traffic that

flowed through our Meddle servers. Indeed, during the last decade, streaming services

such as YouTube have become one of the most dominant sources of Internet traffic by

volume [62, 106, 112, 37]. In spite of this popularity, the underlying strategies used by

these streaming services to stream videos is largely unknown. This lack of publicly avail-

able knowledge on one of the largest sources of Internet traffic motivated us to detail the

network characteristics of video streaming traffic with a focus on YouTube.

In this chapter, we show that the client side applications and the YouTube servers that

stream videos control the data transfer rate during streaming sessions. This makes the traf-

fic patterns observed during streaming sessions completely different from those observed

during typical file transfers. With the help of datasets we collected in 2011 and 2013,

we show that the traffic patterns observed in 2013 are completely different from those

observed in 2011. Furthermore, we observe that streaming videos to mobile devices pro-

duce traffic patterns that are completely different from those observed when using desktop

browsers, and that these traffic patterns change when mobile devices use Wi-Fi instead of

cellular networks. We now present a generic streaming strategy that we identified during

our measurements.

4.1 Streaming Strategies

In this section, we present the two different streaming strategies that we identified dur-

ing our measurements. Our goal here is to synthesize the main characteristics of those

strategies and present some of their advantages and disadvantages. We begin by giving an

overview of a typical video streaming session. We then present the two streaming strate-

gies and the metrics we use to characterize these strategies.

4.1.1 Phases of Data Transfer in Streaming Sessions

YouTube allows users to view videos either on personal computers (PCs), using a Web

browser, or on mobile devices, using a Web browser or a native mobile app. YouTube

currently supports two containers to stream videos: HTML5 [54, 93] and Adobe Flash [3].

Adobe Flash, henceforth referred to as Flash, is the default container when YouTube videos

are streamed to PCs [54]. To view flash videos, PC users must install a proprietary plugin

on their Web browsers. Adobe provides this plugin for PCs, however no such plugin exists

for mobile devices. Because iOS and Android devices cannot stream Flash videos [59, 100],

HTML5 is the default container to stream YouTube videos to mobile devices.

YouTube streams Flash and HTML5 videos over HTTP because most firewalls do not

block HTTP traffic. A typical YouTube streaming session begins when a user opens a

Web-page containing the video content. Along with the video content, this Web-page also

contains some auxiliary information, such as the list of related videos, video ratings, and

comments. During our measurements, we observed that the video content is transferred

52

4.1. STREAMING STRATEGIES 53

D
ow

nl
oa

d
A

m
ou

nt

Time

Cycle
Duration

Block Size

O
n

Off

Average rate

during Steady State

B
U

FF
ER

IN
G

STEADY STATE

B
uf

fe
rin

g
A

m
ou

nt

Figure 4.1: The two phases of video download. Video streaming begins with a
buffering phase followed by a steady state phase. Cycles of ON-OFF periods in the
steady state phase are used to throttle the data transfer rate.

over HTTP while the auxiliary content is transferred over HTTP or HTTPS. We also ob-

served that the TCP connections used to transfer the video content are different from the

ones used to transfer the auxiliary content. In this chapter, we focus on the TCP connec-

tions used to transfer video content because these connections contribute to the bulk of

the video streaming traffic.

In Figure 4.1, we present the time evolution of the total amount of data transferred over

these TCP connections. We observe two phases: a buffering phase followed by a steady

state phase.

During the buffering phase, the video content is downloaded at the end-to-end available

bandwidth. The objective of the buffering phase is to ensure that the player has a sufficient

amount of data to compensate for the variance in the end-to-end available bandwidth dur-

ing video playback. During our measurements, we observed that the video playback may

begin before the buffering phase ends.

During the steady state phase, the average download rate is maintained at a value that

is slightly larger than the video encoding rate. This reduced transfer rate in the steady

state phase ensures that the amount of video content does not overwhelm the video player

while keeping a sufficient amount of data in the players buffers to compensate for variance

in the end-to-end available bandwidth. The reduced rate during the steady state phase

reduces the load on the streaming infrastructure, an optimization that can increase the

number of videos streamed in parallel.

The steady state phase also reduces the amount of unused bytes when users’ interrupt

video streaming sessions due to lack of interest. Users can interrupt streaming sessions for

various reasons such as poor playback quality or lack of interest in the given video. Such

user interruptions are common. Gill et al. [91] observe that 80% of the video interruptions

in a campus network are due to lack of user interest, and Finamore et al. [89] observe

that 60% of the YouTube videos are watched for less than 20% of their duration. When

a user interrupts a streaming session, the data downloaded but not used by the player is

wasted. Each byte wasted implies a wastage of the network resources used to transfer that

4.1. STREAMING STRATEGIES 54

byte from the server to the users’ player. Furthermore, the amount of unused bytes is also

important for mobile users who rely on data plans with limited quotas.

We call the ratio of the average download rate during the steady state phase and the

video encoding rate the accumulation ratio. An accumulation ratio close to one is desirable

to prevent video playback from stopping due to empty buffers. An accumulation ratio

larger than one implies that the amount of video content present in the player’s buffer

increases during the steady state phase, which improves the resilience to transient network

congestion.

As shown in Figure 4.1, the desired accumulation ratio is achieved by periodically trans-

ferring one block of video content. These periodic transfers produce ON-OFF cycles. Dur-

ing each ON period, a block of data is transferred at the end-to-end available bandwidth

that can be used by TCP; the TCP connection is idle during the OFF periods. The slope

of the download amount during the ON periods in Figure 4.1 represents the end-to-end

available bandwidth. Note that, the steady state phase will be seen only when the end-to-

end available bandwidth is larger than the desired data transfer rate. A streaming session

will contain only a buffering phase when the desired data transfer rate is larger than the

end-to-end available bandwidth.

To summarize, video streaming applications transfer content in two phases, the buffer-

ing phase followed by the steady state phase. During the buffering phase, the video content

is transferred at the end-to-end available bandwidth, while during the steady state phase,

the data transfer rate is throttled to a value less than the end-to-end available bandwidth.

We now use these phases to identify the two streaming strategies used to stream YouTube

videos.

4.1.2 The Crude and Intelligent Streaming Strategies

The existence of a steady state phase implies that either the remote server or the client is

explicitly limiting the rate of data transfer. Based on the presence or absence of a steady

state phase, we identify two streaming strategies.

1. Crude Streaming. For this streaming strategy, the entire video content is transferred

during the buffering phase. As a consequence, there is no steady state phase. The

advantage of this strategy is that it requires no complex engineering at the server and

the client because the video streaming session can be considered as a simple file trans-

fer. The disadvantage is that it can overwhelm the player and cause a large amount of

unused bytes when users interrupt the video playback.

2. Intelligent Streaming. The goal of this strategy is to ensure that the client is not over-

whelmed by the amount of data sent by the server and to minimize the amount of

unused bytes. The OFF periods in Figure 4.1 are observed only when the average data

transfer rate is smaller than the end-to-end available bandwidth; ON-OFF cycles do not

exist when the end-to-end available bandwidth is less than or equal to the average data

transfer rate.

We now discuss some of the techniques that can be used to explicitly throttle the data

transfer rate on TCP connections.

4.1. STREAMING STRATEGIES 55

4.1.3 Discussion on Techniques to Throttle Data Transfer Rate

The Intelligent streaming strategy requires to limit the data transfer rate to less than the

end-to-end available bandwidth. TCP inherently does not perform any form of rate control

because it is designed to transfer data as fast as possible [121]. To achieve a goodput that

is less that the TCP goodput, applications must explicitly throttle their data transfer rate.

This explicit restriction of the data transfer rate by applications using TCP is commonly

known as application pacing [90], and it can be performed either at the sender or at the

receiver.

Streaming servers that stream videos can pace the data transfer by periodically sending

blocks of video content. These periodic bursts can be controlled with the help of algorithms

such as leaky bucket or token bucket. Furthermore, Ghobadi et al. [90] propose to pace

TCP flows by explicitly limiting the maximum possible TCP congestion window size to a

value CWmax =
RTT ∗ Er

MSS
, where, CWmax is the maximum congestion window size in

segments, RTT is the measured round trip time, Er is the desired rate of data transfer,

and MSS is the maximum segment size.

Similarly, receivers can use the TCP receive window to pace the data transfers. For

example, the applications receiving video content can periodically pull data from the TCP

layer. If the application pulls data at a rate lower than the end-to-end available bandwidth,

the TCP receive window will eventually become full. The event of a full window causes the

TCP stack at the receiver to inform the TCP stack at the sender that the receive window

is full, thus preventing the sender from sending more bytes. The receiver will continue to

advertise a window size of 0 (full receive window) till the application at the receiver pulls

data from its TCP stack. A pull by the application creates space in the receive window,

thus enabling the TCP stack at the receiver to advertise a non-zero TCP window size to

the sender. Thus, the applications that receive video content can throttle the data transfer

rate by periodically pulling data from the TCP stack. Furthermore, the pacing technique

proposed by Ghobadi et al. [90] can also be applied on TCP receivers by explicitly limiting

the receive window to a value Rwin = Er ∗RTT .

Another technique to pace data is to use adaptive streaming techniques like HTTP live

streaming (HLS) [46] or Dynamic Adaptive Streaming (DASH) [36]. HLS and DASH enable

the clients to request multiple copies of the video content, each of which is encoded with

a different encoding rate. These copies are downloaded in chunks and each chunk is re-

quested by a separate HTTP GET request. The time between successive GET requests is

determined by the video player while the server responds to each GET request by send-

ing the data at the end-to-end available bandwidth. An advantage of this technique is

that it allows the player to automatically switch between the encoding rates depending on

the available end-to-end bandwidth. During our measurements, we observed that Google

Chrome, Android, and iOS used adaptive streaming techniques.

To summarize, Intelligent streaming strategy relies on application pacing which can be

performed at the sender and at the receivers. This implies that the techniques used to

control the data transfer rate during the steady state phase can produce a wide range of

traffic patterns. We now discuss the metrics we have used to analyze these patterns and

completely characterize the streaming strategies.

4.2. DATASET DESCRIPTION 56

4.1.4 Metrics to Characterize Streaming Strategies

The streaming sessions when using the Crude streaming strategy contain only the buffering

phase, while the Intelligent streaming strategy results in sessions that contain the buffer-

ing phase and the steady state phase. We now present the metrics we used to completely

characterize the streaming strategies used for YouTube videos.

1. Buffering Amount. The buffering amount is the amount of data downloaded in the

buffering phase. It is measured as the total amount of data downloaded from the start of

the streaming to the start of the first OFF period. The buffering amount is an important

metric because a large buffering amount can not only overwhelm the player but also

cause a large amount of unused bytes. Furthermore, the buffering amount is the size

of the video when videos are streamed using the Crude streaming strategy.

2. Block Size. The block size is the amount of data transferred between consecutive OFF

periods in the steady state phase. A small block size is desirable because it offers a fine

grain control over the desired rate of data transfer.

3. Accumulation ratio. The accumulation ratio is the ratio of the average download rate

during the steady state phase and the video encoding rate. An accumulation ratio that

is slightly larger than one is desirable to ensure smooth playback without interruptions.

To summarize, in this section, we presented the generic streaming strategies and the met-

rics to detail these strategies. We now present datasets on which we used these metrics to

detail the strategies used to stream YouTube videos.

4.2 Dataset Description

We used two datasets for our analysis: you11 and you13, that respectively contain the

traffic traces of YouTube streaming sessions from 01-Feb-2011 to 30-May-2011, and 01-

Sep-2013 to 01-Oct-2013. We use these two datasets to compare the streaming strategies

to PCs and mobile devices, and the changes in the streaming strategies from 2011 to 2013.

The you11 dataset consists of 5000 Flash videos, 3000 HTML5 videos, and 2000 HD

videos that were streamed to PCs, and 50 HTML5 videos that were streamed to mobile

devices. The Flash videos and HD videos have encoding rates from 0.2 Mbps to 1.5 Mbps,

and 0.2 Mbps to 4.8 Mbps, respectively. We extract the encoding rates of Flash videos from

the header of the video file being streamed. During our measurements, we were unable

to determine the exact encoding rate of the HTML5 videos. This is because the publicly

available tools to parse the webm files [47]—the default format used by YouTube to stream

HTML5 videos [54]—found an invalid entry for the frame rate [26]. We therefore estimate

the encoding rate of HTML5 videos by dividing the Content-Length present in the HTTP

response by the duration of the video. The encoding rate of the 3000 HTML5 videos was

in the range of 0.2 Mbps to 2.5 Mbps.

The you13 dataset consists of 300 Flash videos, 300 HTML5 videos, and 100 HD videos

that were streamed to PCs, and 50 HTML5 videos that were streamed to mobile devices.

The videos in the you13 dataset are a subset of the videos in the you11 dataset, therefore

the range of encoding rates for the videos in the you13 dataset are similar to those in the

you11 dataset. We use this dataset to see how the streaming strategies evolved from 2011

4.3. YOUTUBE STREAMING IN THE WILD 57

to 2013.

We performed our measurements from the following locations.

1. A 100 Mbps wired connection connected to the Internet through a 500 Mbps link.

The wired link was used by PCs, while the the mobile devices used a 54 Mbps Wi-Fi

connection and a cellular connection to connect to a Meddle server that was deployed

in this network.

2. A 54 Mbps Wi-fi connection behind an ADSL router with a typical download rate of

7.7 Mbps and an upload rate of 1.2 Mbps. We performed measurements from this

network to ensure that the results are not specific to the largely provisioned network

we previously mentioned.

For the you11 dataset, we used Internet Explorer 9 [14], Firefox 4.0 [24], and Google

Chrome 10.0 [23] (henceforth referred to as Chrome) for streaming videos on PCs. These

three browsers have a combined usage share of more than 80% [52]. For Flash videos, we

installed the Flash plugin 10.2 in each of these browsers. For HTML5 videos, we installed

the webM codec in Internet Explorer as YouTube uses webM [49] as the default container

for HTML5 videos; Firefox and Chrome have a built-in support from webM. To study the

streaming strategies used for mobile devices, we used an Android smart-phone (version

2.2) and an iPad (iOS version 4.2.1).

For the you13 dataset, we used Internet Explorer 10 [13], Firefox 22.0, and Google

Chrome 29.0 on our PCs and we used an Android smart-phone (version 4.0.4) and an iPhone

(iOS version 6.1.3). For Flash videos, we installed the Flash plugin 11.7 in each of these

browsers.

In each dataset, the mobile measurements were performed using a native YouTube app

developed by YouTube for these mobile devices.

We capture the packets exchanged during video streaming in the following manner.

When a PC is used to stream videos, we serially iterate through the list of videos in each

dataset and perform the following steps for each video. We first start tcpdump, or windump

depending on the operating system, to capture the packets exchanged. We then start a web

browser with one URL of the dataset on the same machine to start the video streaming

session. We stop the streaming session and the packet capture after 300 seconds. For

mobile devices we performed the following steps for the you11 dataset. We start the packet

capture on a machine that can access the packets exchanged between the mobile device

and the streaming server. We then start the video streaming. We stop the packet capture

and streaming after 300 seconds. For the you13 dataset, we used the Meddle server to

capture the packets exchanged when mobile devices were used to stream videos.

4.3 YouTube Streaming in the Wild

The goal of this section is to present an in depth analysis of YouTube traffic and to show that

the video streaming traffic generated by YouTube can be classified by the two strategies

discussed in Section 4.1.2. We also use the you11 and you13 datasets to detail the changes

in the traffic patterns in 2013 compared to 2011. We begin by presenting possible reasons

for the different implementations of streaming strategies.

Mobile devices are constrained by battery consumption, while such restrictions do not

4.3. YOUTUBE STREAMING IN THE WILD 58

Device Application
you11 you13

Flash HTML5 HD Flash HTML5 HD

Mobile
iOS NA X NA NA X NA

Android NA X NA NA X NA

PC
Internet Explorer X X X X combination X
Google Chrome X X X X X X

Firefox X X X X X X

Table 4.1: YouTube Streaming Strategies. X represents Intelligent streaming strat-
egy while X represents the Crude streaming strategy. Streaming strategies vary
with the container and the application used to stream videos. Internet Explorer
changed its streaming strategy from Intelligent to Crude for some HTML5 videos.

exist for PCs. This is the main reason why Flash, the default container to stream YouTube

videos to PCs [54], is not supported by mobile OSes [59, 100]. Similarly, while HTML5

is the default container to stream videos to mobile devices, users must explicitly opt-in to

stream HTML5 videos to PCs [54]. This observation is important and is the main reason

for the different traffic patterns we discuss in this section.

In Section 3.2.2, we observe that the native YouTube app for iOS and Android respec-

tively use the AppleCoreMedia [12] and StageFright [30] streaming libraries. To optimize

the power consumption, these streaming libraries would like control over the amount of

time the radio is kept ON during the streaming session. This implies that these libraries

would prefer to control the ON-OFF cycles of the steady state phase, and thus implement

the streaming strategy. To satisfy mobile users, streaming services such as YouTube would

prefer that the streaming strategies for HTML5 videos be implemented by these libraries.

We therefore expect different implementations of the streaming strategies by iOS and An-

droid.

For PCs, we would expect either the YouTube servers or the browsers to implement

the streaming strategies. Google Chrome and YouTube belong to Google, therefore devel-

opers of Google Chrome have an inherent incentive to optimize the load on the YouTube

servers. However, no such incentive exists for Firefox developers and developers of Inter-

net Explorer. Furthermore, because Flash is the default container for PCs, and Flash is

not supported by mobile devices, we would expect YouTube to implement the streaming

strategy for Flash videos on their YouTube servers. We therefore expect different imple-

mentations of the streaming strategies when YouTube videos are streamed to PCs.

Indeed, Table 4.1 validates our intuition, and we observe that the streaming strategy

depends on the container and the application used to stream videos. We also observe

that the streaming strategies have changed with time. When streaming Flash videos, we

observe the same streaming strategy across all browsers. As we shall later see, this is

because the YouTube servers explicitly throttle the data transfer rate while browsers act

like regular TCP receivers. In contrast, for HTML5 videos, we observe that the streaming

strategies depend on the application used. We observe different strategies because the

YouTube servers do not explicitly throttle the data transfer rate, and the applications use

their own techniques to throttle the data transfer rate.

We now use the metrics presented in Section 4.1.4 to detail these strategies for each

application.

4.3. YOUTUBE STREAMING IN THE WILD 59

Time (seconds)

D
o
w

n
lo

a
d

 A
m

o
u

n
t

(M
B

)

0

2

4

6

8

0 10 20 30 40 50 60

you11

you13

(a): Download Amount during a sample
streaming session.

Time (seconds)

R
e

c
e

iv
e

 W
in

d
o
w

 (
M

B
)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

you11

you13

(b): Receive Window during a sample
streaming session.

Figure 4.2: Representative trace for a streaming session of a Flash video. We
observe larger blocks when streaming Flash videos in 2013 compared to 2011.
We also observe that the download rate during consecutive cycles is fixed in 2011
while it changes with time in 2013.

4.3.1 Streaming to PCs

We now characterize the network traffic observed when streaming YouTube videos to PCs.

In particular, we present the traffic patterns when Flash and HTML5 videos are streamed to

the three most popular desktop browsers: Internet Explorer, Google Chrome, and Firefox.

Flash Videos to PC Browsers

During our measurements, we observe that the traffic patterns when streaming Flash

videos do not depend on the Web browsers. We now use a representative trace for one

Flash video to show that the YouTube servers throttle the data transfer rate, and that the

throttling technique used in 2013 is different from the one used in 2011.

In Figure 4.2(a), we see that the data is downloaded in two phases: the buffering phase

followed by the steady state phase. However, during the steady state phase, we observe

different step sizes for you11 and you13. The step sizes represent the blocks sizes used

to throttle the data transfer rate. This implies that the block sizes used to throttle data

transfer rate are different in 2013 compared to 2011.

We use Figure 4.2(b), the time evolution of the advertised receive window, to show

that the YouTube servers throttle the data transfer rate. In this figure, we observe that

the advertised receive window does not drop to zero. A non-zero receive window implies

that the application receiving data (the browser) is waiting for the data to arrive from the

YouTube server, which in turn implies that the YouTube servers throttle the data transfer

rate.

We now detail the traffic patterns observed when streaming Flash videos and compare

the differences between video streaming sessions in 2011 and 2013.

In our traces, we observe that more data is downloaded during the buffering phases

in 2013 compared to 2011. In Figure 4.3(a), we observe that for 68% of the videos in the

you11 dataset, YouTube sends approximately 40 seconds worth of playback data during

the buffering phase. We compute this playback time by dividing the buffering amount by

the video encoding rate. We observe that the steep slope for the curve representing the

you11 dataset is not present for the you13 dataset. This implies that the buffering amount

4.3. YOUTUBE STREAMING IN THE WILD 60

Buffering Amount (seconds of playback)

C
D

F

0 40 80 120 160 200 240

0

0.2

0.4

0.6

0.8

1

you11

you13

(a): Distribution of the Buffering
Amount measured in units of playback
time.

Buffering Amount (seconds of playback)

C
D

F

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

you11

you13

(b): Distribution of the Buffering
Amount.

Block size (kB)

C
D

F

8 16 32 64 128 256 512 1024

0

0.2

0.4

0.6

0.8

1

you11

you13

(c): Distribution of the Block Size.

Accumulation Ratio
C

D
F

0 1 2 3

0

0.2

0.4

0.6

0.8

1

you11

you13

(d): Distribution of the Accumulation
Ratio.

Figure 4.3: Streaming Flash videos to PCs. More data is buffered in 2013 com-
pared to 2011. Block sizes used when throttling the data transfer rate are larger
in 2013 compared to 2011.

is independent of the video encoding rate for streaming sessions in the you13 dataset. In

Figure 4.3(b), we observe that this buffering amount is not fixed and that it varies with

the videos. We were unable to find any correlation of the buffering amount with the video

popularity (the number of video views). We therefore speculate that this amount may

be determined by the amount of time a video is seen before being interrupted by users.

Regardless of these speculations, the difference in the buffering amount clearly indicates

a change in the technique used to stream Flash videos in 2013 compared to 2011.

We now discuss how the steady state phase has changed in 2013 compared to 2011.

In particular, in Figure 4.3(c), we observe that the block sizes used to throttle the data

transfer rate are larger in 2013 compared to 2011. We observe that YouTube servers used

blocks of 64 kB to throttle the data transfer rate in 2011 (labeled you11), while we observe

that close to 40 % of the streaming sessions in 2013 use block sizes of 256 kB (labeled

you13). These large blocks produce the large cycles which we observe in Figure 4.2(a). We

now show how the YouTube servers use these blocks to reduce the amount of unused bytes

and attain the desired accumulation ratio.

We compute the accumulation ratio as the slope of the line obtained by performing

linear regression with time as the exploratory variable and the total amount of data down-

loaded as the dependent variable for samples in the steady state phase. As shown in Fig-

ure 4.3(d), for the you11 dataset, we observe that the 64 kB blocks were used to attain an

accumulation ratio of 1.25, a value that has also been reported by Ghobadi et al. [90]. In

contrast, we observe an accumulation ratio of less than 1 for 80% of the streaming sessions

in the you13 dataset.

4.3. YOUTUBE STREAMING IN THE WILD 61

Time (seconds)

D
o
w

n
lo

a
d

 A
m

o
u

n
t

(M
B

)

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

you11

you13 − crude

you13 − intelligent

(a): Download Amount during a sample
streaming session.

Time (seconds)

R
e

c
e

iv
e

 W
in

d
o
w

 (
k
B

)

0

64

128

192

256

0 10 20 30 40

you11

(b): Receive Win-
dow (IE-9).

Time (seconds)

R
e

c
e

iv
e

 W
in

d
o
w

 (
k
B

)

0

64

128

192

256

0 10 20 30 40

you13 − intelligent

(c): Receive Win-
dow (IE-10).

Figure 4.4: Representative trace for a streaming session of a HTML5 video with
Internet Explorer (IE). Smaller block sizes are used in 2013 compared to 2011. We
observe a combination of Intelligent and Crude streaming in 2013.

An accumulation ratio less than 1 and a larger buffering amount implies that the amount

of data present in the players buffer decreases as the streaming session progresses. For

example, in Figure 4.2(a), we observe successive cycles have a larger duration for the video

in the you13 dataset. In spite of these large cycles, we did not observe a playback freeze

during our measurements.

This implies that in 2013, YouTube begins by buffering a large amount of data followed

by decreasing the amount of unused bytes in the players buffer as the playback progresses.

This technique is completely different from the one we observed in 2011: downloading

40 seconds of video content followed by steadily accumulating the video content at 1.25

times the video encoding rate.

To summarize, YouTube servers throttle the data transfer rate for Flash videos. Though

the streaming strategy of Intelligent streaming is used, the traffic patterns have completely

changed in 2013 compared to 2011. In particular, we observe that in 2013, the amount of

unused bytes decreases as playback progresses, which is completely different from what

we observed in 2011. A decrease in the amount of unused bytes, and thus a potential

decrease in the wastage of network resources is important because YouTube is responsi-

ble for up to 24% of the downstream Internet traffic in Europe [62]. We now show that

this change in traffic patterns is not limited to Flash videos, and that similar changes are

observed when streaming HTML5 videos.

HTML5 Videos to Internet Explorer

When streaming HTML5 videos, we observe that the YouTube servers do not explicitly

throttle the data transfer rate. The traffic patterns when streaming HTML5 videos there-

fore depend on the application used. We now detail the traffic patterns observed when

streaming HTML5 videos to Internet Explorer (IE).

In Figure 4.4, we present a representative trace to show that IE-10 (you13) can use ei-

ther the Crude streaming strategy, or the Intelligent streaming strategy, while IE-9 (you11)

used only the Intelligent streaming strategy. We speculate that one reason for this behavior

may be the bugs associated to integrating webM with Internet Explorer [50]. Furthermore,

because the videos in the you13 dataset are a subset of the videos in the you11 dataset,

IE-10 can use the Crude streaming strategy for videos that would have been streamed us-

4.3. YOUTUBE STREAMING IN THE WILD 62

Buffering Amount (seconds of playback)

C
D

F

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

you11

you13

(a): Distribution of the Buffering
Amount measured in units of playback
time.

Buffering Amount (MB)

C
D

F

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

you11

you13

(b): Distribution of the Buffering
Amount.

Block size (kB)

C
D

F

1 4 16 64 256 1024 4096

0

0.2

0.4

0.6

0.8

1

you11

you13

(c): Distribution of the Block Size.

Accumulation Ratio
C

D
F

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

you11

you13

(d): Distribution of the Accumulation
Ratio.

Figure 4.5: Streaming HTML5 videos to Internet Explorer (IE). 12% of the sessions
on the you13 dataset do not have a steady state phase. The remaining 88% of
sessions use a block size of 50 kB which is smaller than the 256 kB block sizes
used in 2011.

ing the Intelligent streaming strategy by IE-9. During our measurements, we observe that

IE-10 uses the Crude streaming strategy for 12% of the videos in the you13 dataset. This

is a step in the wrong direction because the Crude streaming strategy can result in a large

amount of unused bytes when users interrupt playback.

With the help of Figure 4.4(b) and Figure 4.4(c), we show that IE-9 and IE-10 uses

the TCP receive window to throttle the data transfer rate in the steady state phase. The

time evolution of the advertised receive window shows that the advertised receive window

periodically drops to zero during the streaming session. A receive window of size zero

implies that the TCP sender must wait till the receiving application has pulled the sent

data from the TCP stack. This shows that Internet Explorer and not the YouTube servers

is throttling the data transfer rate. In Figure 4.4(b), we observe that IE-9 periodically

advertises a receive window of 256 kB. This implies that IE-9 periodically pulls 256 kB

of video content from the TCP stack, thus throttling the data transfer rate using blocks

of 256 kB. In contrast, in Figure 4.4(b), we observe that IE-10 periodically advertises a

receive window of 50 kB. Furthermore, in Figure 4.4(a), we observe a smaller buffering

amount when the Intelligent streaming strategy is used in 2013 compared to 2011.

Indeed, in Figure 4.5(a) and Figure 4.5(b), we observe a significantly smaller amount of

data buffered during the buffering phase in 2013 compared to 2011.1 We also observe that

this buffering amount is not fixed and depends on the video. Furthermore, we observed a

1In Figure 4.5, we do not consider 12% of the videos in the you13 dataset for which IE-10 used the Crude
streaming strategy.

4.3. YOUTUBE STREAMING IN THE WILD 63

very weak correlation between the buffering amount and the video popularity.

In Figure 4.5(c), we observe a block size of 50 kB to be the most common block size in

the you13 dataset compared to a block size of 256 kB that was the most commonly-used

block size in the you11 dataset. A smaller block size implies that the technique used by

Internet Explorer to throttle the data transfer rate operates at smaller time scales in 2013

compared to 2011.

However, we observe that these small blocks are not used to reduce the amount of un-

used bytes. In Figure 4.5(d), we observe that the data transfer rate is throttled to attain an

accumulation ratio of 5, which is much larger than the desired value of 1. An accumulation

ratio of 5 implies that Internet Explorer 10 is downloading the video content at 5 times the

video encoding rate; for example, a video of duration 300 seconds shall be downloaded in

the first 60 seconds of streaming. In contrast, we observed an accumulation ratio close

to 1 for streaming sessions in the you11 dataset. This implies that when users interrupt

videos, Internet Explorer 9 in 2011 potentially wasted a smaller amount of bytes compared

to Internet Explorer 10 in 2013.

To summarize, we observe that Internet Explorer 10 operates at smaller time scales

compared to Internet Explorer 9. In spite of this, Internet Explorer 10 is more aggres-

sive in accumulating video content compared to Internet Explorer 9. This implies that the

migrating from Internet Explorer 9 to Internet Explorer 10 can potentially increase the

amount of unused bytes when interrupting HTML5 video streaming sessions. This obser-

vation is important because a sudden migration from Flash to HTML5 by users of Internet

Explorer can increase the YouTube traffic flowing through the backbone links.

HTML5 Videos to Google Chrome

We now show that when streaming HTML5 videos in 2013, Google Chrome keeps a smaller

amount of unused bytes in its buffer compared to Internet Explorer. Furthermore, the

traffic patterns observed when streaming HTML5 videos to Google Chrome in 2013 are

completely different from the traffic patterns observed in 2011. In particular, we observe

that the technique used to throttle the data transfer rate operates at smaller time scales in

2013 compared to 2011.

In Figure 4.6, we present a representative trace to illustrate the changes between 2013

and 2011. First, we observe two different patterns for you13 in Figure 4.6(a). This is

because in 2013, Google Chrome throttles the data transfer rate by using either HTTP

Live Streaming (HLS), or the TCP receive window. However, for the streaming sessions in

the you11 dataset, we observe that Google Chrome used only the TCP receive window to

throttle the data transfer rate. Second, we observe larger steps for you11 in Figure 4.6(a)

compared to the steps observed for you13. The difference in step sizes implies that the

block size used in 2013 are smaller than those used in 2011. This implies that the technique

used to throttle the data transfer rate operates at smaller time scales in 2013 compared

to 2011. Finally, when using HLS, we observe that the TCP receive window is not used to

throttle the data transfer rate.

In Figure 4.7(a) and Figure 4.7(b), we observe that Google Chrome buffers smaller

amount of data in 2013 compared to 2011. We also observe that the buffering amount is

independent of the video encoding rate. The change observed in 2013 is desirable because

4.3. YOUTUBE STREAMING IN THE WILD 64

Time (seconds)
D

o
w

n
lo

a
d

 A
m

o
u

n
t

(M
B

)

0

5

10

15

20

25

0 20 40 60 80 100 120 140

you11

you13 (window)

you13 (HLS)

(a): Download Amount during a sample
streaming session.

Time (seconds)

R
e
c
e
iv

e
 W

in
d
o
w

 (
M

B
)

0

0.3

0.6

0.9

1.2

1.5

0 40 80 120

you11

(b): Receive Window.

Time (seconds)

R
e
c
e
iv

e
 W

in
d
o
w

 (
M

B
)

0

0.3

0.6

0.9

1.2

1.5

0 40 80 120

you13 (window)

(c): Receive Window.

Time (seconds)

R
e
c
e
iv

e
 W

in
d
o
w

 (
M

B
)

0

0.3

0.6

0.9

1.2

1.5

0 40 80 120

you13 (HLS)

(d): Receive Window.

Figure 4.6: Representative trace for a streaming session of a HTML5 video with
Google Chrome. Smaller block sizes are used in 2013 compared to 2011. We
observe a combination of HLS and receive window based technique to throttle the
data transfer rate in 2013.

a small buffering amount implies that the player is not overwhelmed with video content.

In Figure 4.7(c), we observe that Google Chrome uses smaller block sizes in the steady

state phase. In particular, we observe block sizes less than 64 kB when the receive window

is used to throttle the data transfer rate, while block sizes of 256 kB are used when HLS

is used to stream HTML5 videos. In Figure 4.7(d), we observe that these block sizes are

used to ensure an accumulation ratio which is close to 1. An accumulation ratio less than

1 implies that amount of data present in the players buffer, and thus the amount of unused

bytes, decreases as playback progresses.

To summarize, we observe that Google Chrome uses a smaller buffering amount and

smaller block sizes in 2013 compared to 2011 when streaming HTML5 videos. The small

block sizes and an accumulation ratio close to 1 implies that Google Chrome wastes fewer

bytes in 2013 compared to 2011. For these reasons, using Google Chrome instead of

Internet Explorer is desirable when using HTML5 to stream YouTube videos.

Crude Streaming: HTML5 Videos to Firefox and HD videos to PCs

We observe the Crude streaming strategy when neither the server nor the client limit the

data transfer rate. The whole video is downloaded during the buffering phase; such video

streaming sessions do not contain a steady state phase. We observe this strategy when

streaming HTML5 videos on Firefox, and for HD videos with Flash. We do not present

traces for this strategy because the traffic patterns are exactly like a TCP file transfer. For

example, the time evolution of the download amount is similar to the one we observed in

Figure 4.4(a) when Internet Explorer used the Crude streaming strategy to stream HTML5

4.3. YOUTUBE STREAMING IN THE WILD 65

Buffering Amount (seconds of playback)

C
D

F

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

you11

you13

(a): Distribution of the Buffering
Amount measured in units of playback
time.

Buffering Amount (MB)

C
D

F

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

you11

you13

(b): Distribution of the Buffering
Amount.

Block size (kB)

C
D

F

1 4 16 64 256 1024 4096

0

0.2

0.4

0.6

0.8

1

you11

you13

(c): Distribution of the Block Size.

Accumulation Ratio
C

D
F

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

you11

you13

(d): Distribution of the Accumulation
Ratio.

Figure 4.7: Streaming HTML5 videos to Google Chrome. Google Chrome buffers a
smaller amount of data in 2013 compared to 2011. The smaller buffering amount
and an accumulation ratio close to 1 implies that Google Chrome maintains a
smaller amount of unused bytes in its buffers in 2013 compared to 2011. The small
block sizes in 2013 imply that the technique used to throttle the data transfer rate
operates at a smaller time scale compared to 2011.

videos.

The Crude streaming strategy is not desirable because it can overwhelm the player and

potentially waste the network resources when users interrupt the video playback due to

lack of interest. However, its primary advantage is that it uses TCP without any modi-

fication, a way in which TCP has been extensively studied and modeled [66, 99, 121]. In

contrast, we shall now see how a poor implementation of the Intelligent streaming strategy

can cause undesirable effects.

Discussion on ACK-Clocks

TCP is an ACK-clocked protocol because the TCP sender uses the acknowledgments (ACKs)

as a clock to inject new packets into the network [99]. The ACK-clock is important because

it is used by the TCP source to estimate the end-to-end available bandwidth.

The TCP source uses this estimate of the end-to-end available bandwidth to determine

the size of the TCP congestion window, the amount of bytes the source can send in one

round trip time. To ensure that the TCP source does not overwhelm the network without

probing the end-to-end available bandwidth, Allman et al. [66] recommend resetting the

TCP congestion window after idle periods in the order of a retransmission timeout. Thus

we expect the congestion window to decrease, and potentially reset to its initial value, after

long idle periods such as the OFF periods in the ON-OFF cycles.

4.3. YOUTUBE STREAMING IN THE WILD 66

However, we neither observe a decrease nor a reset of the TCP congestion window

during the steady state phase when streaming Flash videos in the you11 dataset. During

these streaming sessions, we observe that the entire block of 64 kB is sent in the first RTT

of the ON periods. This burst of data was received even after idle periods (OFF periods)

in the order of a few seconds, which implies that the TCP congestion window was not

reset after the OFF periods. This observation is important because the absence of an ACK-

clock can increase the loss rate in the networks. We believe the absence of ACK-clocks

to be reason for the high losses that Alcock et al. [65] report during YouTube streaming

sessions.

We observe ACK-clocks during streaming sessions for Flash videos in the you13 dataset,

which implies that YouTube has corrected the issue we observed in the you11 dataset.

Summary

We observe that the traffic patterns observed when streaming YouTube videos depend on

the browser and container. This observation implies that a large scale migration from one

browser to another or from Flash to HTML5 can completely change the traffic patterns

observed in the backbone links. This scenario cannot be ignored given that YouTube is

responsible for a significant fraction of Internet traffic [62].

We also observe that the streaming strategies and the resulting traffic patterns have

changed drastically from 2011 to 2013. In particular, we observe that Internet Explorer

is more aggressive in 2013 compared to 2011. This implies that an upgrade to Internet

Explorer 10 from Internet Explorer 9 can potentially waste a larger amount of bytes, and

thus network resources, when users interrupt video playback. We believe this is a step in

the wrong direction. Similarly, we do not observe any change in traffic patterns for HD

videos streamed using Flash, and when Firefox is used to stream HTML5 videos. We have

contacted the developers of Firefox, and they are currently focused on creating a generic

framework to support DASH [9]. We also observe that Google Chrome throttles the data

transfer rate at smaller time scales in 2013 compared to 2011. This implies that Google

Chrome developers have taken steps to reduce the amount of unused bytes.

4.3.2 Streaming to Mobile Devices

We now discuss the streaming strategies when streaming YouTube videos to mobile de-

vices. In particular, we observe that the Crude streaming strategy is not deployed when

streaming videos to mobile devices. However, we do observe different traffic patterns

when videos are streamed to iOS and Android devices. We begin by detailing the traffic

patterns observed when Android and iOS are used to stream YouTube videos followed by a

comparison of these patterns with those observed when using desktop browsers.

Traffic Characteristics

In Figure 4.8, we present a sample streaming session to highlight the differences between

the Android and iOS implementation of the Intelligent streaming strategy. In particular,

we observe that the native YouTube app for Android downloads video content in larger

blocks, seen as steps in the Figure 4.8(a), while we observe a smoother curve during the

4.3. YOUTUBE STREAMING IN THE WILD 67

Time (seconds)

D
o
w

n
lo

a
d

 A
m

o
u

n
t

(M
B

)

0

5

10

15

20

25

30

0 30 60 90 120 150 180

you11 (WiFi)

you13 (WiFi)

you13 (Cell)

(a): Sample Android streaming session.

Time (seconds)

D
o
w

n
lo

a
d

 A
m

o
u

n
t

(M
B

)

0

5

10

15

20

25

30

0 20 40 60 80 100

you11 (WiFi)

you13 (WiFi)

you13 (Cell)

(b): Sample iOS streaming session.

Figure 4.8: Sample streaming session to mobile devices. We observe iOS and
Android use large blocks to download multiple copies of the video content, each
of which is encoded using a different encoding rate.

Buffering Amount

C
D

F

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

you11 (WiFi)

you13 (WiFi)

you13 (Cell)

(a): Buffering Amount (Android).

Buffering Amount

C
D

F

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

you11 (WiFi)

you13 (WiFi)

you13 (Cell)

(b): Buffering Amount (iOS).

Figure 4.9: Buffering Amount. Multiple copies, each with a different encoding
rate, is downloaded in first few seconds resulting in a large buffering amount.
The YouTube app uses the buffering phase to estimate the end-to-end available
bandwidth.

iOS streaming sessions. This implies that the AppleCoreMedia library for iOS and the

StageFright library for Android use different techniques to stream HTML5 videos.

Unlike PCs, the native YouTube app for iOS and Android begins a streaming session

by downloading multiple copies of a chunk of video content, each copy encoded using a

different encoding rate. This is done to ensure playback at the highest possible encoding

rate [36, 46]. Similarly, the encoding rate of each chunk downloaded after the buffer-

ing phase depends on the end-to-end available bandwidth estimated during the buffering

phase [98]. This implies that the block sizes in the steady state phase depend on the esti-

mate of the end-to-end available bandwidth, and on the different encoding rates in which

the video is available for download [98]. The dependence of the buffering amount and

the block sizes on a range of encoding rates implies that we cannot accurately determine

the amount of playback time downloaded during the buffering phase and the accumula-

tion ratio during the steady state phase. We therefore focus our attention on the buffering

amount, i.e., the amount of data downloaded while the player estimates the end-to-end

available bandwidth.

In Figure 4.9, we present the distribution of the buffering amount. The buffering

amount is important because a large buffering implies a large memory footprint on the re-

source constrained mobile devices [109, 110]. Furthermore, the players use the buffering

4.3. YOUTUBE STREAMING IN THE WILD 68

Download Rate (kbps)

C
D

F

100 200 500 1000 2000 5000

0

0.2

0.4

0.6

0.8

1
And. (Cell)

GC

Flash

And. (Wifi)

IE

(a): Comparing download rates of An-
droid and PC Browsers.

Download Rate (kbps)

C
D

F

100 200 500 1000 2000 5000

0

0.2

0.4

0.6

0.8

1
And. (Cell)

iOS (Cell)

iOS (Wifi)

And. (Wifi)

(b): Comparing Android and iOS down-
load rates.

Figure 4.10: Comparison of download rates. Among desktop browsers, only In-
ternet Explorer (IE) streaming HTML5 videos is more aggressive than Android.
Android is less aggressive compared to iOS when using cellular networks because
Android explicitly demands user’s permission to stream high quality videos when
using cellular networks.

amount to estimate the end-to-end available bandwidth and determine the best encoding

rate for playback. We observe that when using Wi-Fi, Android devices download signifi-

cantly more amount of data during the buffering phase in 2013, compared to Wi-Fi in 2011

and cellular in 2013. One reason for this behavior is the preference for video content at

the highest encoding rate when using Wi-Fi; users have to explicitly allow high quality

videos to be downloaded over cellular networks [55]. In Figure 4.9(b), we observe that iOS

exhibits a similar behavior when streaming videos over Wi-Fi. The difference in the buffer-

ing amount over Wi-Fi compared to cellular networks implies that measurement studies

performed over Wi-Fi networks provide an incomplete picture for the buffering amount.

To summarize, we observe that Android and iOS use the Intelligent streaming strategy

when streaming YouTube videos. The difference in traffic patterns over Wi-Fi and cellular

justify the need for a platform like Meddle. Because the native YouTube app for Android

and iOS download content at various encoding rates, the accumulation ratio and block

sizes cannot be used to characterize the traffic. We therefore focus on comparing how

aggressive these apps are compared to PC browsers.

Comparison with PCs

In Figure 4.10, we compare the average download rate observed during the first 300 sec-

onds of the streaming session when using PC browsers and the native YouTube app. Our

goal here is to see if the native YouTube app for Android and iOS is more aggressive in

downloading video content compared to PC browsers. For a meaningful comparison, we

consider only the download rate observed when streaming the 50 videos in the you13

dataset to the mobile devices and PCs. For each streaming session, we compute the av-

erage download rate by dividing the total amount of data downloaded during the first 300

seconds of the streaming session by the total time required to download the data. We

do not consider HTML5 videos to Flash and HD for this comparison because they do not

explicitly throttle the data transfer rate and use the Crude streaming strategy.

In Figure 4.10(a), we observe that when using Wi-Fi, the Android app (And. Wi-Fi) is

more aggressive compared to Google Chrome (GC) streaming HTML5 videos and desktop

4.4. DISCUSSION 69

browsers streaming Flash videos. One reason for this behavior is the preference of higher

encoding rates by the app when using Wi-Fi. In contrast, when using cellular networks

we observe that the download rate when using Android (And. Cell) is comparable to the

rate observed when streaming HTML5 videos to Google Chrome or Flash videos to desktop

browsers. We also observe that Internet Explorer (IE) is the most aggressive application in

downloading the video content. The reason for this behavior is the accumulation ratio of 5

which we observed in Figure 4.5(d).

In Figure 4.10(b), we observe that like Android devices, the iOS devices are more ag-

gressive when using Wi-Fi networks than cellular networks. However, unlike the native An-

droid app, the native iOS app does not allow the user to select lower encoding rates over

cellular networks [56]. This makes the native iOS app potentially more aggressive com-

pared to the native Android app when using cellular networks. Indeed, in Figure 4.10(b),

we observe higher rates for iOS compared to Android when streaming videos over cellular

networks.

To summarize, we observe that when using Wi-Fi networks, the native apps for An-

droid and iOS are more aggressive in downloading video compared to not only Google

Chrome streaming HTML5 videos but also Flash videos streamed to PCs. Furthermore,

we observe that behavior over cellular networks for Android and iOS are different, primar-

ily because the native YouTube apps for Android explicitly demands permissions from the

user to stream high quality videos. These subtle differences are the cause for the vastly

different traffic patterns that we observe.

4.4 Discussion

In this chapter, we presented an in-depth traffic characterization of YouTube. We identify

two streaming strategies with fundamentally different traffic properties and show that im-

plementation of these streaming strategies depend on the application and the container

used. We observe that these streaming strategies produce a wide range of traffic pat-

terns ranging from bulk TCP file transfer to non ACK-clocked traffic. These traffic patterns

have been independently reported but without a detailed discussion on the factors that

contribute to these patterns and the underlying streaming strategies [65, 98, 120, 129].

Unlike previous works, we characterize in detail the traffic generated by the current

implementation of each streaming strategy. We also use Meddle to quantify the impact

of access technology, and we observe that the traffic patterns are different when using

Wi-Fi or cellular networks. This observation is important because studies based on Wi-

Fi measurements can provide an incomplete picture on how mobile devices stream video

content. We also observe that upgrading to Internet Explorer 10 from Internet Explorer 9

can potentially waste a larger amount of bytes, and thus network resources, when users

interrupt video playback.

The observations we made in this chapter are important because YouTube is responsi-

ble for a large share of Internet traffic [62], and a sudden change of browser, container, or

device in a large population might have a significant impact on the network traffic. Con-

sidering the very fast changes in trends, this is a real possibility, the most likely being a

change from Flash over PCs to HTML5 over mobile devices.

5 Conclusions

We designed, implemented, and deployed Meddle, a platform to monitor and interpose on

mobile Internet traffic. Meddle uses traffic indirection, a technique supported out-of-the-

box by popular mobile OSes, to ensure participation from real users. Our reason to use

crowdsourcing is in spirit of the quote, eternal vigilance is the price of liberty, by John

Philpot Curran [79]. Indeed, liberty of all mobile users is at stake because mobile devices

are capable of monitoring and influencing their activities [87, 102, 137].

In this dissertation, we demonstrate that Meddle can be used by researchers and end-

users to improve transparency and end-user control in mobile networks. We now present

the key implications of our work, followed by how Meddle can be used in conjunction with

existing solutions to address some open research problems.

5.1 Key Implications

Our goal is to enable all mobile users to monitor and control their Internet traffic, and

Meddle, our platform, is our first step in this direction. Meddle is built using VPNs and

middleboxes to allow real users to participate in research activities without voiding their

device and service warranty. In particular, Meddle is agnostic to the OS, ISP, and access

technologies used by mobile devices. We show that Meddle can be used to monitor and

manipulate all Internet traffic, including SSL traffic, from real users by incurring a small

overhead in terms of latency, power, and data consumption. Meddle provides users the

flexibility of deploying it on home gateways or sharing a Meddle deployment managed

by researchers. Thus, Meddle offers an ideal vantage point that allows researchers to

use their research activities as incentives to recruit real users. For example, peer-to-peer

solutions are not widely used by mobile devices compared to desktops. One reason is the

increased power and network consumption when uploading data to reciprocate for the data

downloaded. Meddle can be used to offload the maintenance of P2P connections and the

uploads.

Meddle allows access to the mobile Internet traffic, however to characterize this traffic

it is necessary to identify the apps and the Web services responsible for these network

flows. We used ground-truth data from controlled experiments to develop techniques to

identify the apps and Web services from protocol headers. We also developed techniques

to identify leaks of personally identifiable information (PII). In particular, we used Med-

dle’s ability to monitor SSL traffic and observed that misbehaving apps collude with ads

and analytics libraries, and use HTTP and SSL to leak PIIs. Such analysis previously re-

quired either warranty voiding the OS [82, 83, 96], or performing static analysis on the

app binaries [73, 82]. We then used our research results to build a tool that allows users

to visualize and block PII leaks, an incentive to recruit users in future research activities.

We thus demonstrate that the research work coming from Meddle can be used to create

incentives to recruit users to participate in future research activities.

Considering the very fast changes in trends in Internet traffic, we envision that mobile

70

5.2. OPEN PROBLEMS 71

devices will soon replace PCs to stream videos. For example, YouTube currently accounts

for 20% of mobile downstream traffic in North America, Europe and Latin America [37].

We therefore characterized YouTube traffic, one of the most dominant sources of Inter-

net traffic by volume. We observed that client side applications and the YouTube servers

control the data transfer rate producing traffic patterns that are completely different from

those observed during typical file transfers. Therefore, the traffic patterns observed when

streaming YouTube videos depend on the client side application (desktop browser or mo-

bile app) and container (Flash or HTML5). We observed that streaming videos to mobile

devices produce traffic patterns that are completely different from those observed when

using desktop browsers, and that these traffic patterns change when mobile devices use

Wi-Fi instead of cellular networks. This observation implies that a large scale migration

from one application to another (browser to mobile app) or from Flash to HTML5 can com-

pletely change the traffic patterns and the traffic volume on backbone links. Considering

the very fast changes in trends this is a real possibility, the most likely being a change from

streaming Flash videos to PCs to streaming HTML5 videos to mobile devices.

5.2 Open Problems

We used Meddle to touch the tip of the iceberg that represents the problems on trans-

parency and control in mobile networks. We now discuss some of these open problems and

how Meddle can be used in conjunction with existing solutions to address these problems.

Meddle gives access to the Internet traffic from mobile devices, however, it cannot

monitor the non-IP traffic such as telephony and SMS. Indeed, malicious apps that use

SMS for their operations cannot be diagnosed by using only Meddle. However, Meddle

can be used to analyze the IP traffic generated by these apps. For example, malicious apps

built using the Perkele malware kit [58] are known to generate IP traffic along with SMS

traffic. To diagnose such apps, Meddle can be used to analyze the IP traffic generated by

code segments that cannot be analyzed by AppFence and droidguard. Using techniques

similar to those by Perdisci et al. [119] and those discussed in Section 3.2, Meddle can be

used to identify malware from their IP traffic. Thus, Meddle can be used in conjunction

with existing tools to diagnose apps that generate IP and non-IP traffic.

Meddle relies on VPNs to redirect Internet traffic regardless of the ISPs used by the

mobile device. Mobile ISPs are known to deploy middleboxes that modify Internet traf-

fic [15, 31]. For example, Wang et al. [136] discuss the various middleboxes such as fire-

walls that modify the traffic in flight. Though VPNs can mitigate unwanted modifications

by ISPs, they cannot be used to characterize ISP modifications. We propose that by using

a HTTP proxy in place of a VPN proxy can be used to study modifications of HTTP traf-

fic. This HTTP proxy can be used to inject code such as TripWires [125] to detect packet

modifications in flight. We are currently working on a prototype of this solution.

Meddle was conceptualized to provide a user-friendly solution to the problem of lack

of transparency and end-user control in the mobile ecosystem. Though Meddle does not

provide a silver-bullet to this problem, it allows end-users to participate and contribute in

our on-going effort of improving transparency and end-user control in mobile networks.

Appendices

72

A Other Lessons from Meddle de-

ployment

A.1 Diversity of ISPs and Access Technologies

AS Description Access Technology
12844 ASN-BOUYGTEL-MOBILE Bouygues Telecom Cellular
5410 ASN-BOUYGTEL-ISP Bouygues Telecom S.A. Wi-Fi
7018 ATT-INTERNET4 - AT&T Services, Inc. Wi-Fi
20057 AT&T Wireless Service Cellular

Table A.1: Example of AS description strings. We use the AS description to esti-
mate the access technology used by the mobile device.

Meddle gives access to all the Internet traffic from a mobile device. To infer the access

technology (Wi-Fi or cellular), we use the AS description from WHOIS data for each IP

address used by a mobile device. For example, in Table A.1, for AS number 12844, we

observe a description ASN-BOUYGTEL-MOBILE Bouygues Telecom, a clear indication that

this AS is begin used for cellular services.

Based on this classification, the mobiWest dataset consists of traffic from 54 distinct

ASes, of which we identify 9 to be cellular ASes. Similarly, the mobiEast dataset consists

of traffic from 23 distinct ASes of which 7 are cellular ASes. Note that, this classification

fails when a cellular network is used by Wi-Fi access points to connect to the Internet. For

example, the home-gateway of one user in the mobiWest dataset uses a cellular connection

instead of a wired connection. In this case, though the mobile device is using Wi-Fi to

communicate with the Internet, our classification technique would classify this traffic as

cellular.

During the measurement study, each device in the mobiWest and mobiEast dataset is

connected to our Meddle server from at most two distinct cellular ASes. A median of 4

Wi-Fi ASes were observed per device in the mobiWest dataset, and for one device, we

observed traffic from 25 different Wi-Fi ASes spread across 5 countries. In terms of traffic

volumes, collectively our users’ devices transferred 0-56% of their traffic over cellular, and

the remainder over WiFi. The key take-away is that, measuring traffic from a single cellular

carrier or Wi-Fi access point misses a large fraction of traffic generated by the devices.

A.2 Monitoring Evolution of Apps: The Case of Google Search

By monitoring an app behavior over time, Meddle can be used to gain insights on the

impact of updates. In particular, Meddle can be used to give insights on unpublicized

revelations on the network activity of apps.

As an example, we show how Google searches from mobile devices have evolved with

time. In the desktop environment, Google searches use HTTPS connections. In contrast,

73

A.3. COMPRESSING MOBILE TRAFFIC: THE CASE OF COUNTERPRODUCTIVE
COMPRESSION 74

Time Bytes Query Remote
Downloaded String Server

1353489965.97 356 a suggestqueries.google.com
1353489966.19 321 aw suggestqueries.google.com
1353489966.47 300 awe suggestqueries.google.com
1353489966.88 301 awes suggestqueries.google.com

Table A.2: Google Search in the clear.

Android iOS
mercuryapps.foxnews.com www.engadget.com
www.google.com itunes.apple.com
www.quora.com iadctest.qwapi.com
opml.radiotime.com www.google.com
www.pandora.com beacon.flipboard.com

Table A.3: Top five sites using counterproductive compression.

we noticed that the default browsers on iOS (version 5) and Android (version 4.0 and 4.1)

send user queries in the clear. In particular, as shown in Table A.2, each letter is sent in

the clear as the user types it. Interestingly, as of iOS 6 and Android 4.2, these searches are

now sent using HTTPS, addressing a significant privacy vulnerability. To the best of our

knowledge, this change has not been publicized.

A.3 Compressing Mobile Traffic: The Case of Counterproduc-

tive Compression

In the mobiWest dataset, we observed that 42.45% of the HTTP flows (1.06% by volume)

have a mime-type containing “text.” This content can be potentially compressed by the

remote server. Importantly, our analysis reveals that 23% of HTTP flows in the mobiWest

dataset are uncompressed, and these flows contribute only 0.5% of our users’ total data.

Thus, we believe that there are few meaningful opportunities for compressing content

flowing through our Meddle servers; instead, we believe most improvements will come

from transcoding media content to a lower bitrate or resolution.

Interestingly, we also observe that compression is counter-productive for 4% of the all

the flows that have a mime-type containing “text”–the volume of data after compression is

larger than the volume before compression. In Table A.3, we present the top five sources

of traffic in the mobiWest dataset for which compression is counterproductive. As one

example, we find that despite good intentions, Google’s use of compression for search

responses generally does more harm than good.

B Video Streaming Revisited

We now present an overview of the network traffic characteristics of Netflix traffic. We

then derive a mathematical model to evaluate the impact of the streaming strategies on

the stochastic properties of the aggregate video streaming traffic. Our model can be used

to dimension the network for video streaming. In particular, it sheds light on the impor-

tance of the different video streaming parameters for traffic engineering. For example, we

show that an increase in the video encoding rates will produce smoother aggregate video

streaming traffic. We also present the video streaming parameters that can be adapted to

minimize the amount of unused bytes on user interruptions due to lack of interest.

B.1 Characterize Netflix Traffic

Device Application Strategy (SilverLight)

Mobile
iOS X

Android X

PC
Internet Explorer X
Google Chrome X

Firefox X

Table B.1: Netflix Streaming Strategies. X represents Intelligent streaming strat-
egy while X represents the Crude streaming strategy.

0 20 40 60 80 100
0

20

40

60

80

D
o
w

n
lo

a
d
 A

m
o
u
n
t
(M

B
)

Time (s)

Silverlight

(a): Netflix to PCs.

0 25 50 75 100 125 150
0

20

40

60

D
o
w

n
lo

a
d
 A

m
o
u
n
t
(M

B
)

Time (s)

Android

(b): Netflix to Android.

0 20 40 60 80 100
0

10

20

30

D
o
w

n
lo

a
d
 A

m
o
u
n
t
(M

B
)

Time (s)

iPad

(c): Netflix to iOS.

Figure B.1: Netflix Streaming Strategies

In Table B.1, we summarize the streaming strategies used to stream Netflix videos. For

PCs, we streamed 200 videos that were randomly selected from the list of 11208 videos

available for watching instantly as of 20-May-2011. For mobile devices, we streamed 50

videos of the 200 videos streamed to PCs.

In Figure B.1 and Table B.1, we observe that Netflix uses the Intelligent streaming

strategy to stream videos to PCs and mobile devices. The streaming strategies for mobile

devices are similar to that observed in Section 4.3.2, the cycles of ON-OFF periods when

using Android have a larger duration compared to iOS devices. Netflix uses Silverlight

as the container to stream videos to PCs, and like Flash videos, we observe the same

streaming strategy regardless of the browser used.

75

B.2. MODEL FOR AGGREGATE VIDEO TRAFFIC 76

B.2 Model for Aggregate Video Traffic

In Section 4.3 and Section B.1, we observe that the application and the container deter-

mine the strategy to stream videos. We now present a mathematical model to express the

stochastic properties of the aggregate video streaming traffic as a function of the video

parameters. Our model can be used to dimension the network and quantify the impact of

migrating from one strategy to another.

We first develop our model for the case of users that do not interrupt the video down-

load. We then study the impact of user interruption due to lack of interest on the accumu-

lation ratio and the amount of data downloaded in the buffering phase. We then quantify

the amount of bandwidth wasted when users interrupt the video download due to lack of

interest.

For our model, we assume that the video streaming sessions arrive according to a homo-

geneous Poisson process with rate λ. We use the measurements performed by Yu et al. [141]

for the Poisson assumption of the arrival rate.1 Let Tn, n ∈ Z, denote the arrival time of

the n-th video. We assume that n−th video is streamed at a fixed encoding rate, en, and

has a fixed duration (length), Ln; the size of the n-th video is Sn = enLn. We also assume

that the network is over provisioned: the end-to-end available bandwidth is larger than the

video encoding rate for each video streaming session. This hypothesis is validated by our

measurements presented in Section 4.3. Indeed, during our measurements we observed

an accumulation ratio larger than one, which implies that the download rate, and hence

the end-to-end available bandwidth, is larger than the video encoding rate.

B.2.1 Video Download without Interruptions

We now model the aggregate data rate of video streaming traffic when users do not inter-

rupt the video download. We first examine the Crude strategy where the whole video is

downloaded at the end-to-end available bandwidth. We assume the time required to down-

load the n-th video is Dn. For the n-th video, the video download is active at time t when

Tn ≤ t ≤ Tn + Dn. Let Xn(t − Tn) denote the download rate of the n-th video at time t;

Xn(t) = 0 when t < Tn and t > Tn + Dn. Let R(t) denote the aggregate data rate of the

video streaming traffic at time t.

According to Barakat et al. [69], the mean and variance of the aggregate data rate are:

E[R(t)] = λE[Sn], (B.1)

VR = E[R2(t)]− (E[R(t)])2 = λE[

∫ Dn

0
X2

n(u)du], (B.2)

respectively.

When the download rate of the n-th video is a constant Gn, substituting Dn =
Sn
Gn

,

1Given the fact that users watch the videos in series, it is easy to prove that the Poisson assumption is not
needed at the video level. It is enough to have the Poisson assumption at the user level, which is very likely to
be the case given the human nature of this activity.

B.2. MODEL 77

Name Description
λ Arrival rate of videos streaming sessions.
n number of videos.
en Encoding rate of the n-th video.
Ln Duration (or length) of the n-th video.
Bn Buffering amount for the n-th video.
B′

n Buffering amount for the n-th video in terms of playback time.
Sn Size of the n-th video Sn = enLn.
kn The accumulation ratio for the n-th video.
βn Users interrupt the n-th video after time βnLn.
R(t) Aggregate data rate of streaming traffic at time t.
R′(t) Aggregate amount of bandwidth wasted at time t when users interrupt video

download due to lack of interest.

Table B.2: Variables used in the model.

Sn = enLn, and Xn(t) = Gn for Tn ≤ t ≤ Tn +Dn, in equations B.1 and B.2 yields:

E[R(t)] = λE[en]E[Ln], (B.3)

VR = λE[en]E[Ln]E[Gn]. (B.4)

Equations B.3 and B.4 give the mean and variance of the aggregate data rate of video

streaming traffic when the Crude streaming strategy is used to stream videos.

We now show that when users do not interrupt the video download, the mean and vari-

ance of the data rate are independent of the streaming strategy used. Let D′
n(> Dn) denote

the time required to download the video when the video contents are downloaded using ei-

ther the Intelligent streaming strategy. For the n-th video, the download rate is Gn during

the ON periods and 0 in the OFF periods. If the download rate does not change during the

data transfer, then
∫ Dn

0 X2
n(u)du =

∫ D
′
n

0 X2
n(u)du = enLnGn, which leads to the same vari-

ance as in Equation B.4. Using the same argument and the framework in Barakat et al. [69],

one can extend this result to higher moments of the aggregate traffic.

Therefore, when users do not interrupt the video downloads, we conclude the following:

1. Equations B.3 and B.4 can be used to dimension the network for video streaming.

A simple rule would be to set the bitrate of links carrying video streaming traffic to

E[R(t)] + α
√
Vr, where α ≥ 1 is a constraint on the tolerable bandwidth violations.

2. The mean and variance of the aggregate data rate of video streaming traffic are in-

dependent of the underlying streaming strategies used, and hence the required band-

width. This is important as video services, where the users are expected to view the

whole video and not interrupt the video download, can safely select a streaming strat-

egy that can be optimized for other goals such as server load without overwhelming

the network.

3. An increase in the video encoding rate, for example when YouTube increases the default

video resolution, shall increase the aggregate rate of video traffic. However, because

the variance is a linear function of the video encoding rate, the aggregate traffic shall

be smoother than the aggregate traffic observed at lower encoding rates.

B.2. MODEL 78

B.2.2 Video Download with Interruptions

Users can interrupt a streaming session due to various reasons such as poor playback

quality or lack of interest in the given video. When a user interrupts the video download

due to lack of interest, the data downloaded but not used by the player is wasted. The

wastage of network resources can be quantified using the amount of unused bytes. The

amount of unused bytes due to lack of interest is important because Gill et al. [91] observe

that 80% of the video interruptions in a campus network are due to lack of user interest.

According to Finamore et al. [89], 60% of the YouTube videos are watched for less than

20% of their duration.

We now present the impact of the buffering amount and the accumulation ratio on

the amount of unused bytes. We assume that the user interrupts the download of the n-th

video after time τn from the start of the video playback. We further assume that the amount

downloaded in the buffering phase is Bn, Bn ≥ 0, and the time required for downloading

this amount is negligible. If Gn is the average download rate in the steady state phase, then

the amount of data that can be downloaded up to time τn is Bn +Gnτn. We keep denoting

the encoding rate and duration of the n-th video as en and Ln respectively. Thus, the

interruption of the n-th video shall take place before the whole video has been downloaded

only if

enLn > Bn +Gnτn ≥ enτn. (B.5)

We now assume the download rate of the n-th video is limited by the accumulation ratio

kn =
Gn

en
, kn ≥ 1. We also assume that τn = βnLn, where βn, βn < 1, is the fraction of the

n-th video watched before interruption. Equation B.5 can now be written as

enLn > Bn + enknβnn ≥ enβnLn. (B.6)

When Bn = enB
′
n, where B′

n is the amount of playback time buffered in the buffering

phase, the left hand side of Equation B.6 can be written as

B′
n < Ln(1− knβn). (B.7)

In Section 4.3.1, we observed a buffering of 40 seconds worth of playback, and an accu-

mulation ratio of 1.25 for Flash videos. When a user interrupts the video download after

watching 20% of the video, substituting B′
n = 40 seconds, kn = 1.25, and β = 0.2 yields

Ln = 53.3 seconds. This implies that, assuming a fast buffering, YouTube Flash videos that

have a duration smaller than 53.3 seconds will be downloaded before the viewers have seen

20% of the video.

We now use the amount of unused bytes to obtain the average bandwidth wasted due

to user interruption. When the n-th user interrupts the video download at time τn, then the

amount of bytes downloaded is min(Bn+Gnτn, enLn). The total amount of bytes consumed

by the player up to time τn is enτn. Therefore, the amount of unused bytes is min(Bn +

Gnτn, enLn)− enτn, and the average bandwidth wasted is given by

E[R′(t)] = λE[min(Bn +Gnτn, enLn)− enτn]. (B.8)

When the accumulation ratio of the n-th video is kn and the user interrupts the video

B.2. MODEL 79

after viewing βn fraction of the video, then substituting Bn + Gnτn = enB
′
n + enLnknβn in

Equation B.8 yields

E[R′(t)] = λE[en]E[min(B
′
n + knβnLn, Ln)− βnLn]. (B.9)

In summary, Equation B.7 provides a condition to limit the amount of unused bytes

when users interrupt the video download due to lack of interest. Equations B.8 and B.9

can be used to compute the amount of bandwidth wasted due to user interruptions.

C Other Work

I now present a short description of the work I co-authored during my Ph.D. thesis, but that

are not part of the present manuscript. These works were performed to create a foundation

on the tools that were useful in creating Meddle.

1. Can Realistic BitTorrent Experiments Be Performed on Clusters?

Network latency and packet loss are considered to be an important requirement for

realistic evaluation of Peer-to-Peer protocols. Dedicated clusters, such as Grid’5000, do

not provide the variety of network latency and packet loss rates that can be found in the

Internet. However, compared to the experiments performed on testbeds such as PlanetLab,

the experiments performed on dedicated clusters are reproducible, as the computational

resources are not shared. In this paper, we perform experiments to study the impact of

network latency and packet loss on the time required to download a file using BitTorrent.

In our experiments, we observe a less than 15% increase on the time required to download

a file when we increase the round-trip time between any two peers, from 0 ms to 400

ms, and the packet loss rate, from 0% to 5%. Our main conclusion is that the underlying

network latency and packet loss have a marginal impact on the time required to download

a file using BitTorrent. Hence, dedicated clusters such as Grid’5000 can be safely used to

perform realistic and reproducible BitTorrent experiments.

2. Floor the Ceil & Ceil the Floor: Revisiting AIMD Evaluation

Additive Increase Multiplicative Decrease (AIMD) is a widely used congestion control

algorithm that is known to be fair and efficient in utilizing the network resources. In this

paper, we revisit the performance of the AIMD algorithm under realistic conditions by ex-

tending the seminal model of Chui et al. [78]. We show that under realistic conditions the

fairness and efficiency of AIMD is sensitive to changes in network conditions. Surprisingly,

the root cause of this sensitivity comes from the way the congestion window is rounded

during a multiplicative decrease phase. For instance, the floor function is often used to

round the congestion window value because either kernel implementations or protocol re-

strictions mandate to use integers to maintain system variables. To solve the sensitivity

issue, we provide a simple solution that is to alternatively use the floor and ceiling func-

tions in the computation of the congestion window during a multiplicative decrease phase,

when the congestion window size is an odd number. We observe that with our solution

the efficiency improves and the fairness becomes one order of magnitude less sensitive to

changes in network conditions.

80

http://dx.doi.org/10.1109/P2P.2010.5569970
http://hal.inria.fr/hal-00733890/

Bibliography

[1] Ad blocking with ad server hostnames and IP addresses. Cited in page 47

[2] Adblock Plus: Surf the web without annoying ads! Cited in page 22, 47

[3] Adobe Flash Video File Format Specification. Adobe Systems Incorporated. Cited in

page 52

[4] Aliyun. Cited in page 31

[5] Android developers: Security with https and ssl. Cited in page 22

[6] App States and Multitasking. Cited in page 3, 7

[7] BitTorrent - Delivering the World’s Content. Cited in page 28

[8] Browser detection using the user agent. Cited in page 34

[9] Bugzilla@Mozilla: Bug 733010 - Video download should be rate limited to avoid
bufferbloat. Cited in page 66

[10] Certificate and public key pinning - owasp. Cited in page 22

[11] Configuring Your Xcode Project for Distribution. Cited in page 39, 45

[12] Core Media Framework Reference. Cited in page 36, 58

[13] Download Internet Explorer 10. Cited in page 57

[14] Download Internet Explorer 9. Cited in page 57

[15] Free attaqué pour les ralentissements de youtube. Cited in page 24, 71

[16] GCM Architectural Overview. Cited in page 40, 42

[17] Ghostery: Knowledge + Control = Privacy. Cited in page 22, 47

[18] Google analytics: Mobile app analytics. Cited in page 39

[19] Google Now. The right information at just the right time. Cited in page 7

[20] Google play: Transaction fees. Cited in page 4, 5

[21] Grow your business with iad. Cited in page 6

[22] How do I configure my router for Spotify. Cited in page 33

[23] http://www.google.com/chrome/. Cited in page 57

[24] http://www.mozilla.com/firefox. Cited in page 57

[25] Introducing Collusion. Discover whoś tracking you online. Cited in page 22, 48

[26] Invalid video bitrate while using libwebM parser for YouTube files. Cited in page 56

[27] Local and Push Notification Programming Guide. Cited in page 40, 42

[28] MaskMe Protects Your Online Privacy. Cited in page 22

[29] MATLAB - The Language of Technical Computing - MathWorks. Cited in page 29

81

http://pgl.yoyo.org/adservers/
https://adblockplus.org
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf
http://www.aliyun.com/
http://developer.android.com/training/articles/security-ssl.html#Pinning
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html
http://www.bittorrent.com/
https://developer.mozilla.org/en-US/docs/Browser_detection_using_the_user_agent
https://bugzilla.mozilla.org/show_bug.cgi?id=733010
https://bugzilla.mozilla.org/show_bug.cgi?id=733010
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/mac/documentation/CoreMedia/Reference/CoreMediaFramework/
http://windows.microsoft.com/en-us/internet-explorer/ie-10-worldwide-languages
http://windows.microsoft.com/en-us/internet-explorer/ie-9-worldwide-languages
http://www.lemonde.fr/technologies/article/2012/09/20/free-attaque-pour-les-ralentissements-de-youtube_1763130_651865.html
http://developer.android.com/google/gcm/gcm.html
http://www.ghostery.com/
http://www.google.com/analytics/features/mobile-app-analytics.html
http://www.google.com/now/
https://support.google.com/googleplay/android-developer/answer/112622?hl=en
https://developer.apple.com/iad/
https://support.spotify.com/us/problems/#\protect \kern -.1667em\relax /article/How-do-I-configure-my-router-for-Spotify
http://www.google.com/chrome/
http://www.mozilla.com/firefox
http://www.mozilla.org/en-US/collusion/
http://comments.gmane.org/gmane.comp.multimedia.webm.user/2171
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
http://www.abine.com/
http://www.mathworks.fr/products/matlab/

BIBLIOGRAPHY 82

[30] Media | Android Developers. Cited in page 36, 58

[31] Mise à jour Freebox Server 1.1.9. Cited in page 71

[32] MIUI. Cited in page 31, 32

[33] Mobilescan. Cited in page 50

[34] Naming a Package (The Java TM Tutorials : Learning the Java Language: Packages).
Cited in page 36

[35] Openvpn. Cited in page 17

[36] Overview of MPEG-DASH Standard. Cited in page 55, 67

[37] Sandvine Report: Apple Takes Big Bite of Streaming Video. Cited in page 52, 71

[38] Squid-in-the-middle SSL Bump. Cited in page 21

[39] ssldump home page. Cited in page 29

[40] StrongSwan VPN Client. Cited in page 17

[41] TCPDUMP/LIBPCAP public repository. Cited in page 29

[42] The iOS Environment. Cited in page 3, 7

[43] The R project for Statistical Computing. Cited in page 29

[44] They’re (Almost) All Dirty: The State of Cheating in Android Benchmarks. Cited in

page 9

[45] TuneIn: Listen to Online Radio, Music, and Talk Stations. Cited in page 35

[46] Using HTTP Live Streaming. Cited in page 55, 67

[47] VP8 and WebM Tools. Cited in page 56

[48] VPN On Demand. Cited in page 16

[49] WebM: an open web media project. Cited in page 57

[50] WebM Clearly not supported by Win8 with IE10. Cited in page 61

[51] What is Adblock Plus for Android? Cited in page 22

[52] Wikipedia: Usage share of web browsers. Cited in page 57

[53] Xiaomi. Cited in page 31, 32

[54] YouTube HTML5 Video Player. Cited in page 52, 56, 58

[55] YouTube on Android: Settings on Android. Cited in page 68

[56] YouTube on iOS: Settings on iOS. Cited in page 69

[57] App Store Tops 40 Billion Downloads with Almost Half in 2012, 2012. Cited in page 10

[58] A Closer Look: Perkele Android Malware Kit - Krebs on Security, 2013. Cited in page

71

[59] Adobe Flash Player 11 : Tech specs : System requirements, 2013. Cited in page 52, 58

[60] Build a great app business with AdMob, 2013. Cited in page 2, 6

http://source.android.com/devices/media.html
http://dev.freebox.fr/blog/?p=1123
http://en.miui.com
http://privacychoice.org/mobilescaninfo
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://openvpn.net/
http://dashif.org/mpeg-dash/
https://www.sandvine.com/pr/2013/5/14/sandvine-report-apple-takes-big-bite-of-streaming-video.html
http://wiki.squid-cache.org/Features/SslBump
http://www.rtfm.com/ssldump/
http://play.google.com/store/apps/details?id=org.strongswan.android
http://www.tcpdump.org/
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
http://www.r-project.org/
http://www.anandtech.com/show/7384/state-of-cheating-in-android-benchmarks
http://www.tunein.com
https://developer.apple.com/library/ios/documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple_ref/doc/uid/TP40008332-CH102-SW15
http://www.webmproject.org/tools/
http://help.apple.com/iosdeployment-ipcu/mac/1.0/#appbec2d1af
http://www.webmproject.org/
http://code.google.com/p/webm/issues/detail?id=403
https://adblockplus.org/en/android-about
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://www.xiaomi.com/en
http://www.youtube.com/html5
https://support.google.com/youtube/answer/3052855?hl=en-GB&ref_topic=3272917
https://support.google.com/youtube/answer/3015489?hl=en&ref_topic=3227636
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://krebsonsecurity.com/2013/08/a-closer-look-perkele-android-malware-kit/
http://www.adobe.com/products/flashplayer/tech\discretionary {-}{}{}specs.html#mobile
http://www.google.com/ads/admob/

BIBLIOGRAPHY 83

[61] Gartner Says Smartphone Sales Grew 46.5 Percent in Second Quarter of 2013 and
Exceeded Feature Phone Sales for First Time, 2013. Cited in page 3, 16

[62] Global Internet Phenomena. Sandvine, 2013. Cited in page 52, 61, 66, 69

[63] Google: Mobile Ads, 2013. Cited in page 2, 6, 39

[64] iAd, 2013. Cited in page 6

[65] Alcock, S., and Nelson, R. Application flow control in YouTube video streams. ACM
SIGCOMM Computer Communication Review 41 (April 2011). Cited in page 66, 69

[66] Allman, M., Paxson, V., and Blanton, E. TCP Congestion Control. IETF Network
Working Group, Request for Comments: 5681, 2009. Cited in page 65

[67] Alvestrand., H. Overview: Real Time Protocols for Brower-based Applications.
IETF Network Working Group, Request for Comments: draft-ietf-rtcweb-overview-
08, 2013. Cited in page 28

[68] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. PScout: Analyzing the Android
Permission Specification. In Proc. of CCS (2012). Cited in page 7

[69] Barakat, C., Thiran, P., Iannaccone, G., Diot, C., and Owezarski, P. Modeling Internet
backbone traffic at the flow level. IEEE Transactions on Signal Processing 51, 8
(2003). Cited in page 76, 77

[70] Barré, S., Bonaventure, O., Raiciu, C., and Handley, M. Experimenting with multipath
tcp. Proc. of the ACM SIGCOMM Conference (2010). Cited in page 23

[71] Bermudez, I. N., Mellia, M., Munafo, M. M., Keralapura, R., and Nucci, A. DNS to the
Rescue: Discerning Content and Services in a Tangled Web. In Proc. of the Internet
Measurement Conference (IMC) (2012). Cited in page 42, 43

[72] Bonaventure, O. Apple seems to also believe in Multipath TCP, 2013. Cited in page 23

[73] Book, T., Pridgen, A., and Wallach, D. S. Longitudinal Analysis of Android Ad Library
Permissions. Proceedings of Mobile Security Technologies (MoST) (2013). Cited in

page 6, 7, 10, 11, 48, 70

[74] Border, J., Kojo, M., Griner, J., Montenegro, G., and Shelby, Z. Performance enhanc-
ing proxies intended to mitigate link-related degradations. IETF Network Working
Group, Request for Comments: 3135, 2001. Cited in page 23

[75] Carpenter, B., and Brim, S. Middleboxes: Taxonomy and Issues. IETF Network
Working Group, Request for Comments: 3234, 2002. Cited in page 11

[76] Chen, X., Jin, R., Suh, K., Wang, B., and Wei, W. Network Performance of Smart
Mobile Handhelds in a University Campus WiFi Network. In Proc. of the Internet
Measurement Conference (IMC) (2012). Cited in page 11

[77] Cheng, R., Scott, W., Krishnamurthy, A., and Anderson, T. FreeDOM: A New Baseline
for the Web. In Proc. of the Workshop on Hot Topics in Networks (HotNets) (2012).
Cited in page 28

[78] Chiu, D.-M., and Jain, R. Analysis of the Increase and Decrease Algorithms for Con-
gestion Avoidance in Computer Networks. Comput. Netw. ISDN Syst. (1989). Cited

in page 80

[79] Davis, T. O. The speeches of the Right Honourable John Philpot Curran. Cited in page

70

http://www.gartner.com/newsroom/id/2573415
http://www.gartner.com/newsroom/id/2573415
https://www.sandvine.com/trends/global-internet-phenomena/
http://www.google.com/think/products/mobile-ads.html
http://advertising.apple.com/
http://dx.doi.org/10.1145/1971162.1971166
http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/draft-ietf-rtcweb-overview-08
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1109/TSP.2003.814521
http://dx.doi.org/10.1109/TSP.2003.814521
http://dx.doi.org/10.1145/1851275.1851254
http://dx.doi.org/10.1145/1851275.1851254
http://dx.doi.org/10.1145/2398776.2398819
http://dx.doi.org/10.1145/2398776.2398819
http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://arxiv.org/abs/1303.0857
http://arxiv.org/abs/1303.0857
http://tools.ietf.org/html/rfc3135
http://tools.ietf.org/html/rfc3135
http://tools.ietf.org/html/rfc3234
http://dx.doi.org/10.1145/2398776.2398809
http://dx.doi.org/10.1145/2398776.2398809
http://dx.doi.org/10.1145/2390231.2390252
http://dx.doi.org/10.1145/2390231.2390252
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
https://archive.org/details/speechesofrighth00curr

BIBLIOGRAPHY 84

[80] Desnos, A., and Erra, R. Descriptional Entropy: Application to Security Software
Analysis. In Advanced Infocomm Technology, vol. 7593 of Lecture Notes in Computer
Science. 2013. Cited in page 10

[81] Durumeric, Z., Kasten, J., Bailey, M., and Halderman, J. A. Analysis of the HTTPS
Certificate Ecosystem. Proc. of the Internet Measurement Conference (IMC) (2013).
Cited in page 41

[82] Egele, M., Kruegel, C., Kirda, E., and Vigna, G. PiOS: Detecting Privacy Leaks in
iOS Applications. In Proceedings of the Network and Distributed System Security
Symposium (2011). Cited in page 1, 7, 10, 11, 14, 22, 48, 70

[83] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., and Sheth, A. N.
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In Proc. of the USENIX Operating Systems Design and Implemen-
tation (OSDI) (2010). Cited in page 1, 7, 9, 10, 11, 14, 48, 70

[84] Enck, W., Ongtang, M., and McDaniel, P. On Lightweight Mobile Phone Application
Certification. In Proc. of CCS (2009). Cited in page 48

[85] Erman, J., Gerber, A., and Sen, S. HTTP in the Home: It is not just about PCs. ACM
SIGCOMM Computer Communication Review (2011). Cited in page 35, 45

[86] Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., and Estrin, D. A First Look
at Traffic on Smartphones. In Proc. of the Internet Measurement Conference (IMC).
Cited in page 32, 34

[87] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., and Estrin, D.
Diversity in Smartphone Usage. In Proceedings of the International conference on
Mobile systems, applications, and services (Mobisys) (2010). Cited in page 7, 11, 32, 34,

70

[88] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-
Lee, T. Hypertext transfer protocol–http/1.1. IETF Network Working Group, Request
for Comments: 2616, 1999. Cited in page 34

[89] Finamore, A., Mellia, M., Munafò, M. M., Torres, R., and Rao, S. G. YouTube Every-
where: Impact of Device and Infrastructure Synergies on User Experience. In Proc.
of the Internet Measurement Conference (IMC) (2011). Cited in page 53, 78

[90] Ghobadi, M., Cheng, Y., Jain, A., and Mathis, M. Trickle: Rate limiting youtube video
streaming. In Proc. of the USENIX Annual Technical Conference (2012). Cited in page

55, 60

[91] Gill, P., Arlitt, M., Li, Z., and Mahanti, A. Youtube Traffic Characterization: A View
From the Edge. In Proc. of the Internet Measurement Conference (IMC) (2007).
Cited in page 53, 78

[92] Guha, S., Cheng, B., and Francis, P. Privad: Practical privacy in online advertising.
In Proc. of USENIX NSDI (2011). Cited in page 28

[93] Hickson, I. HTML5: A vocabulary and associated APIs for HTML and XHTML. W3C
Working Draft, 2011. Cited in page 52

[94] Hoffman, P. Algorithms for internet key exchange version 1 (ikev1). Cited in page 17

[95] Holz, R., Braun, L., Kammenhuber, N., and Carle, G. The SSL Landscape - A Thor-
ough Analysis of the X.509 PKI Using Active and Passive Measurements. Proc. of the
Internet Measurement Conference (IMC) (2011). Cited in page 41

http://dx.doi.org/10.1007/978-3-642-38227-7_25
http://dx.doi.org/10.1007/978-3-642-38227-7_25
http://conferences.sigcomm.org/imc/2013/reviews/crimc-durumeric.pdf
http://conferences.sigcomm.org/imc/2013/reviews/crimc-durumeric.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/9_2.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/9_2.pdf
http://dl.acm.org/citation.cfm?id=1924971
http://dl.acm.org/citation.cfm?id=1924971
http://dx.doi.org/10.1145/1653662.1653691
http://dx.doi.org/10.1145/1653662.1653691
http://dx.doi.org/10.1145/1925861.1925876
http://dx.doi.org/10.1145/1879141.1879176
http://dx.doi.org/10.1145/1879141.1879176
http://dx.doi.org/10.1145/1814433.1814453
http://tools.ietf.org/html/rfc2616
http://dx.doi.org/10.1145/2068816.2068849
http://dx.doi.org/10.1145/2068816.2068849
https://www.usenix.org/system/files/conference/atc12/atc12-final236.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final236.pdf
http://dx.doi.org/10.1145/1298306.1298310
http://dx.doi.org/10.1145/1298306.1298310
http://www.w3.org/TR/html5/
http://tools.ietf.org/html/rfc4109
http://dx.doi.org/10.1145/2068816.2068856
http://dx.doi.org/10.1145/2068816.2068856

BIBLIOGRAPHY 85

[96] Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D. “These Aren’t the
Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious
Applications. In Proc. of CCS (2011). Cited in page 1, 7, 9, 10, 11, 14, 22, 47, 48, 50, 70

[97] Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z. M., Sen, S., and Spatscheck, O.
An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on
Performance. In Proc. of the ACM SIGCOMM Conference (2013). Cited in page 25

[98] Huang, T.-Y., Handigol, N., Heller, B., McKeown, N., and Johari, R. Confused, Timid,
and Unstable: Picking a Video Streaming Rate is Hard. In Proc. of the Internet
Measurement Conference (IMC) (2012). Cited in page 67, 69

[99] Jacobson, V. Congestion Avoidance and Control. In Proc. of the ACM SIGCOMM
Conference (1988). Cited in page 65

[100] Jobs, S. Thoughts on Flash, 2010. Cited in page 52, 58

[101] Josefsson, S. The Base16, Base32, and Base64 Data Encodings. IETF Network Work-
ing Group, Request for Comments: 4648, 2006. Cited in page 11, 24

[102] Katz, J. E. Magic in the air: Mobile communication and the transformation of social
life, vol. 1. Transaction Books, 2011. Cited in page 70

[103] Kaufman, C., Hoffman, P., Nir, Y., and Eronen, P. Internet Key Exchange Protocol
Version 2 (IKEv2). Cited in page 17

[104] Kent, S., and Seo, K. Security architecture for the internet protocol. IETF Network
Working Group, Request for Comments: 4301, 2008. Cited in page 17

[105] Keybl, A. Mozilla’s Heartbeat & Quarterly Firefox OS Releases. Cited in page 11

[106] Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., and Jahanian, F. Inter-
net inter-domain traffic. In Proc. of the ACM SIGCOMM Conference (2010). Cited in

page 52

[107] Laugesen, J., and Yuan, Y. What Factors Contributed to the Success of Apple’s
iPhone? In Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-
GMR), 2010 Ninth International Conference on (2010). Cited in page 5

[108] Leontiadis, I., Efstratiou, C., Picone, M., and Mascolo, C. Don’t kill my ads! Balancing
Privacy in an Ad-Supported Mobile Application Market. In Proc. of Hotmobile (2012).
Cited in page 46

[109] Liu, Y., Li, F., Guo, L., Shen, B., and Chen, S. A Comparative Study of Android and
iOS for Accessing Internet Streaming Services. In Proc. PAM, vol. 7799. 2013. Cited

in page 67

[110] Liu, Y., Li, F., Guo, L., Shen, B., and Chen, S. Effectively Minimizing Redundant
Internet Streaming Traffic to iOS Devices. In Proc. of IEEE INFOCOM (2013). Cited

in page 67

[111] Lockheimer, H. Android and Security, Feb 2012. Cited in page 4, 9

[112] Maier, G., Feldmann, A., Paxson, V., and Allman, M. On Dominant Characteristics
of Residential Broadband Internet Traffic. In Proc. of the Internet Measurement
Conference (IMC) (2009). Cited in page 52

[113] Maier, G., Schneider, F., and Feldmann, A. A First Look at Mobile Hand-held Device
Traffic. Proc. PAM (2010). Cited in page 11, 32, 34, 35, 45

http://dx.doi.org/10.1145/2046707.2046780
http://dx.doi.org/10.1145/2046707.2046780
http://dx.doi.org/10.1145/2046707.2046780
http://dx.doi.org/10.1145/2486001.2486006
http://dx.doi.org/10.1145/2486001.2486006
http://dx.doi.org/10.1145/2398776.2398800
http://dx.doi.org/10.1145/2398776.2398800
http://dx.doi.org/10.1145/52324.52356
http://www.apple.com/hotnews/thoughts-on-flash/
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc4301
https://blog.mozilla.org/futurereleases/2013/07/19/mozillas-heartbeat-quarterly-firefox-os-releases/
http://dx.doi.org/10.1145/1851182.1851194
http://dx.doi.org/10.1145/1851182.1851194
http://dx.doi.org/10.1109/ICMB-GMR.2010.63
http://dx.doi.org/10.1109/ICMB-GMR.2010.63
http://dx.doi.org/10.1145/2162081.2162084
http://dx.doi.org/10.1145/2162081.2162084
http://dx.doi.org/10.1007/978-3-642-36516-4_11
http://dx.doi.org/10.1007/978-3-642-36516-4_11
http://dx.doi.org/10.1109/INFCOM.2013.6566773
http://dx.doi.org/10.1109/INFCOM.2013.6566773
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://dx.doi.org/10.1145/1644893.1644904
http://dx.doi.org/10.1145/1644893.1644904
http://dx.doi.org/10.1007/978-3-642-12334-4_17
http://dx.doi.org/10.1007/978-3-642-12334-4_17

BIBLIOGRAPHY 86

[114] Mockapetris, P. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION. IETF
Network Working Group, Request for Comments: 1035, 1987. Cited in page 41

[115] Orwell, G. Nineteen Eighty-Four. eBooks @ Adelaide, 2006. Cited in page 1

[116] Pathak, A., Hu, Y. C., and Zhang, M. Where is the energy spent inside my app? Fine
Grained Energy Accounting on Smartphones with Eprof. In Proc. of Eurosys (2012).
Cited in page 10, 14

[117] Paxson, V. Bro: a System for Detecting Network Intruders in Real-Time. Computer
Networks 31 (1999). Cited in page 29, 32

[118] Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. Addroid: Privilege Separation for
Applications and Advertisers in Android. In Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security (2012), ACM. Cited in page

50

[119] Perdisci, R., Lee, W., and Feamster, N. Behavioral Clustering of HTTP-Based Malware
and Signature Generation Using Malicious Network Traces. In Proc. of the USENIX
Symposium on Networked System Design and Implementation (NSDI) (2010). Cited

in page 34, 45, 71

[120] Plissonneau, L., En-Najjary, T., and Urvoy-Keller, G. Revisiting web traffic from a
DSL provider perspective: the case of YouTube. In Proc. of the 19th ITC Specialist
Seminar (2008). Cited in page 69

[121] Postel, J. Transmission Control Protocol (TCP). IETF Network Working Group, Re-
quest for Comments: 793, 1981. Cited in page 55, 65

[122] Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S., and Spatscheck, O. Profiling Resource
Usage for Mobile Applications: A Cross-layer Approach. In Proceedings of the Inter-
national conference on Mobile systems, applications, and services (Mobisys) (2011).
Cited in page 14

[123] Qian, F., Wang, Z., Gerber, A., Mao, Z. M., Sen, S., and Spatscheck, O. Characterizing
Radio Resource Allocation for 3G Networks. In Proc. of IMC (2010). Cited in page 14,

25

[124] Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., and Shayan-
deh, S. AppInsight: Mobile App Performance Monitoring in the Wild. Proc. of the
USENIX Operating Systems Design and Implementation (OSDI) (2012). Cited in page

7, 10, 14

[125] Reis, C., Gribble, S. D., Kohno, T., and Weaver, N. C. Detecting In-Flight Page
Changes with Web Tripwires. In Proc. of the USENIX Symposium on Networked
System Design and Implementation (NSDI) (2008). Cited in page 23, 71

[126] Rescorla, E. HTTP Over TLS. IETF Network Working Group, Request for Comments:
2818. Cited in page 11, 40, 41

[127] Roesner, F., Kohno, T., and Wetherall, D. Detecting and Defending Against Third-
Party Tracking on the Web. Proc. of USENIX NSDI (2012). Cited in page 46, 47, 49

[128] Sanou, B. ICT Facts and Figures. Tech. rep., International Telecommunications
Union, 2013. Cited in page 2

[129] Saxena, M., Sharan, U., and Fahmy, S. Analyzing Video Services in Web 2.0: A
Global Perspective. In Proceedings of the 18th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (2008). Cited in page 69

http://tools.ietf.org/html/rfc1035
http://ebooks.adelaide.edu.au/o/orwell/george/o79n
http://dx.doi.org/10.1145/2168836.2168841
http://dx.doi.org/10.1145/2168836.2168841
http://www.icir.org/vern/papers/bro-CN99.pdf
http://dx.doi.org/10.1145/2414456.2414498
http://dx.doi.org/10.1145/2414456.2414498
http://static.usenix.org/event/nsdi10/tech/full_papers/perdisci.pdf
http://static.usenix.org/event/nsdi10/tech/full_papers/perdisci.pdf
http://tools.ietf.org/html/rfc793
http://dx.doi.org/10.1145/1999995.2000026
http://dx.doi.org/10.1145/1999995.2000026
http://dx.doi.org/10.1145/1879141.1879159
http://dx.doi.org/10.1145/1879141.1879159
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-91.pdf
http://www.usenix.org/events/nsdi08/tech/full_papers/reis/reis.pdf
http://www.usenix.org/events/nsdi08/tech/full_papers/reis/reis.pdf
http://tools.ietf.org/html/rfc2818
https://www.usenix.org/conference/nsdi12/detecting-and-defending-against-third-party-tracking-web
https://www.usenix.org/conference/nsdi12/detecting-and-defending-against-third-party-tracking-web
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013.pdf
http://dx.doi.org/10.1145/1496046.1496056
http://dx.doi.org/10.1145/1496046.1496056

BIBLIOGRAPHY 87

[130] Shekhar, S., Dietz, M., and Wallach, D. S. Adsplit: Separating smartphone advertis-
ing from applications. In Proc. of USENIX Security Symposium (2012). Cited in page

50

[131] Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., and Sekar, V. Mak-
ing Middleboxes Someone Else’s Problem: Network Processing as a Cloud Service.
In Proc. of the ACM SIGCOMM Conference (2012). Cited in page 11

[132] Smith, B. More about the App Store GPL Enforcement, 2010. Cited in page 4

[133] Sommers, J., and Barford, P. Cell vs. WiFi: On the Performance of Metro Area Mobile
Connections. In Proc. of the Internet Measurement Conference (IMC) (2012). Cited

in page 25, 34, 45

[134] Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., and Hoffmann, J. Mobile-
sandbox: Having a Deeper Look into Android Applications. In Proceedings of the
Annual ACM Symposium on Applied Computing (SAC) (2013). Cited in page 10

[135] Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, Y., Papagiannaki, K.,
Haddadi, H., and Crowcroft, J. Breaking for Commercials: Characterizing Mobile
Advertising. In Proc. of the Internet Measurement Conference (IMC) (2012). Cited in

page 11, 14, 22, 46, 47, 48

[136] Wang, Z., Qian, Z., Xu, Q., Mao, Z., and Zhang, M. An Untold Story of Middleboxes in
Cellular Networks. In Proc. of the ACM SIGCOMM Conference (2011). Cited in page

25, 71

[137] Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., and Venkataraman, S. Identifying
Diverse Usage Behaviors of Smartphone Apps. In Proc. of the Internet Measurement
Conference (IMC) (2011). Cited in page 7, 14, 32, 34, 35, 39, 45, 70

[138] Xu, Q., Gerber, A., Mao, Z. M., and Pang, J. Acculoc: Practical localization of per-
formance measurements in 3g networks. In Proc. of MobiSys (2011). Cited in page

14

[139] Yan, L. K., and Yin, H. DroidScope: Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis. In Proc. of USENIX Security
Symposium (2012). Cited in page 7

[140] Yegneswaran, V., Giffi, J. T., Barford, P., and Jha, S. An Architecture for Generating
Semantics-Aware Signatures. Proc. of USENIX Security Symposium (2005). Cited in

page 34, 45

[141] Yu, H., Zheng, D., Zhao, B. Y., and Zheng, W. Understanding User Behavior in Large-
Scale Video-on-Demand Systems. In Proc. of Eurosys (2006). Cited in page 76

[142] Zhang, L. Building Facebook Messenger, 2011. Cited in page 32, 40, 42

[143] Zhang, L., Zhou, F., Mislove, A., and Sundaram, R. Maygh: Building a CDN from
Client Web Browsers. Proc. of Eurosys. Cited in page 28

http://dl.acm.org/citation.cfm?id=2362793.2362821
http://dl.acm.org/citation.cfm?id=2362793.2362821
http://dx.doi.org/10.1145/2342356.2342359
http://dx.doi.org/10.1145/2342356.2342359
http://www.fsf.org/blogs/licensing/more-about-the-app-store-gpl-enforcement
http://dx.doi.org/10.1145/2398776.2398808
http://dx.doi.org/10.1145/2398776.2398808
http://dx.doi.org/10.1145/2480362.2480701
http://dx.doi.org/10.1145/2480362.2480701
http://dx.doi.org/10.1145/2398776.2398812
http://dx.doi.org/10.1145/2398776.2398812
http://dx.doi.org/10.1145/2018436.2018479
http://dx.doi.org/10.1145/2018436.2018479
http://dx.doi.org/10.1145/2068816.2068847
http://dx.doi.org/10.1145/2068816.2068847
http://dx.doi.org/10.1145/1999995.2000013
http://dx.doi.org/10.1145/1999995.2000013
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final107.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final107.pdf
http://static.usenix.org/events/sec05/tech/full_papers/yegneswaran/yegneswaran_html/
http://static.usenix.org/events/sec05/tech/full_papers/yegneswaran/yegneswaran_html/
http://dx.doi.org/10.1145/1217935.1217968
http://dx.doi.org/10.1145/1217935.1217968
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
http://dx.doi.org/10.1145/2465351.2465379
http://dx.doi.org/10.1145/2465351.2465379

Abstract

Mobile devices are increasingly becoming the primary device to access the Internet.
Despite this thriving popularity, the current mobile ecosystem is largely opaque because of
the vested monetary interests of its key players: mobile OS providers, creators of mobile
applications, stores for mobile applications and media content, and ISPs. This problem
of opaqueness is further aggravated by the limited control end-users have over the infor-
mation exchanged by their mobile devices. To address this problem of opaqueness and
lack of control, we designed a user-centric platform, Meddle, that uses traffic indirection
to diagnose mobile devices. Compared to an on-device solution, Meddle uses two well-
known technologies, VPNs and middleboxes, and combines them to provide a solution that
is agnostic to OS, ISP, and access technology. We use Meddle for controlled experiments
and an IRB approved study, and observed that popular iOS and Android applications leak
personally identifiable information in the clear and also over SSL. We then use Meddle to
prevent further leaks using a DNS based packet filter. We also use our platform to detail
the network characteristics of video streaming services, the most popular Web-service in
the current Internet. We observe that the network traffic characteristics vary vastly with
the device (mobile or desktop), application (native applications and also between individ-
ual desktop browsers), and container (HTML5 and Flash). This observation is important
because the increased adoption of one application or streaming service, for example, an
increase in the usage of mobile devices to stream videos, could have a significant impact
on the network traffic.

Résumé

Les terminaux mobiles (smartphones et tablettes) sont devenus les terminaux les plus
populaires pour accéder à Internet. Cependant, l’écosystème incluant les terminaux mo-
biles est maintenu opaque à cause des intérêts financiers des différents acteurs : les con-
cepteurs des systèmes d’exploitation et des applications, les opérateurs des "stores", et les
FAI. Cette opacité est renforcée par le peu de contrôle qu’ont les utilisateurs sur les infor-
mations échangées par leur terminal. Pour résoudre ce problème d’opacité et de manque
de contrôle, on a créé une plate-forme, Meddle, qui utilise la redirection de trafic des
terminaux mobiles pour analyser et modifier ce trafic. Contrairement aux solutions qui
nécessitent d’être implémentées sur le terminal, Meddle combine les techniques de VPN
et de “middlebox” pour offrir une solution indépendante de l’OS, du FAI et de l’accès radio.
On a utilisé Meddle pour des expérimentations contrôlées et pour une étude utilisateurs
approvée par un IRB. On a observé que des applications populaires sous iOS et Android
exposaient des informations personnelles dans le traffic réseau en clair et chiffré. On a
ensuite exploité Meddle pour prévenir ces fuites d’informations privées. On a également
utilisé Meddle pour étudier les caractéristiques réseaux du trafic vidéo sur Internet. On a
trouvé que ce trafic dépend fortement du type de terminal, de l’application utilisée pour
regarder la vidéo (application native ou navigateur Web) et du contenant (HTML5, Flash,
Silverlight). Ce résultat montre qu’un changement dans le terminal, l’application ou le
contenant peut avoir un impact important sur le réseau.

	Introduction
	The Mobile Ecosystem
	The Mobile Operating System
	The Mobile Applications (Apps)
	The Stores for Software and Media Content Distribution
	The Internet Service Providers
	The Web of Interdependence

	The Problem: Lack of Transparency and Control
	Our Definition for Transparency and Control
	The Need for Transparency and Control
	The Compromise We Are Compelled to Make

	Discussion on Related Work
	Constrained to a Single Mobile OS
	Constrained to Apps
	Constrained by Access Technology
	Positioning of Our Contributions with Related Work

	Summary of Contributions

	Meddle Architecture
	Goal
	Architecture
	How ubiquitous is the VPN technology on mobile devices?
	Meddle on iOS Devices
	Meddle on Android Devices

	How to monitor all the Internet traffic flowing through Meddle?
	Outbound Path: Ability to Associate a Device with its Flows
	Inbound Path: The Reverse Path Mapping Problem
	Our Solution: Looping Through Tun Interface

	How to modify traffic using Meddle?
	Analyze SSL flows
	Filter Personally Identifiable Information (PII) Leaks

	Architecture Summary

	Discussion on Feasibility
	Limitations of VPN Based Traffic Redirection
	System Overheads
	Establishment delay
	Increased Network Latency
	Power Consumption
	Data Consumption

	Legal Issues
	Discussion

	Application Diagnosis
	Methodology and Dataset Description
	The mobiExpt Dataset
	The mobiWest and mobiEast Datasets

	Identifying Apps and Services
	Focus on the Most Popular Protocols: HTTP and SSL
	HTTP Traffic Classification Methodology
	Advantages and Disadvantages of the HTTP User-Agent
	Advantages and Disadvantages of the HTTP Host
	Our Technique: Combination of User-Agent and Host

	Evaluation of HTTP Classification Methodology
	Classification of HTTP Traffic in the mobiExpt dataset
	Classification of HTTP Flows in the Wild (mobiWest and mobiEast)

	SSL Traffic Classification Methodology
	Port Number Based Classification
	Advantages and Disadvantages of Certificates and Server Name Indication
	DNS Classification
	Our Technique: Two Phase SSL Classification

	Evaluation of SSL Traffic Classification Methodology
	Discussion

	Diagnosing Privacy Invasive Apps
	PII leaks in mobiExpt
	PII leaks in the Wild (mobiWest and mobiEast)
	Visualizing and Filtering PII leaks

	Discussion

	Characterize YouTube Traffic
	Streaming Strategies
	Phases of Data Transfer in Streaming Sessions
	The Crude and Intelligent Streaming Strategies
	Discussion on Techniques to Throttle Data Transfer Rate
	Metrics to Characterize Streaming Strategies

	Dataset Description
	YouTube Streaming in the Wild
	Streaming to PCs
	Flash Videos to PC Browsers
	HTML5 Videos to Internet Explorer
	HTML5 Videos to Google Chrome
	Crude Streaming: HTML5 Videos to Firefox and HD videos to PCs
	Discussion on ACK-Clocks
	Summary

	Streaming to Mobile Devices
	Traffic Characteristics
	Comparison with PCs

	Discussion

	Conclusions
	Key Implications
	Open Problems

	Appendix Other Lessons from Meddle deployment
	Diversity of ISPs and Access Technologies
	Monitoring Evolution of Apps: The Case of Google Search
	Compressing Mobile Traffic: The Case of Counterproductive Compression

	Appendix Video Streaming Revisited
	Characterize Netflix Traffic
	Model for Aggregate Video Traffic
	Video Download without Interruptions
	Video Download with Interruptions

	Appendix Other Work

