Title	Introduction	Methodology	Experimental Results	Conclusion	Backup
	000	00	00 000	00	

BitTorrent Experiments on Testbeds: A Study of the Impact of Network Latencies

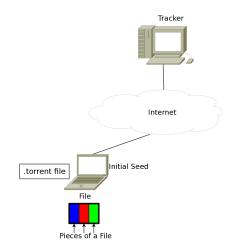
Ashwin Rao, Arnaud Legout, and Walid Dabbous

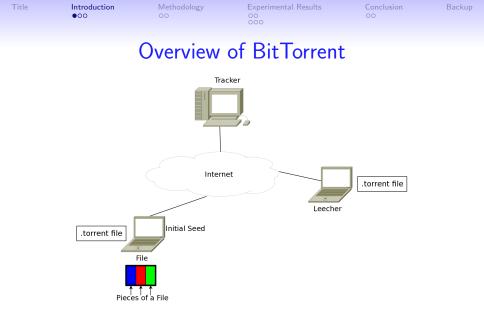
INRIA, Projet Planète (ashwin.rao,arnaud.legout,walid.dabbous)@inria.fr

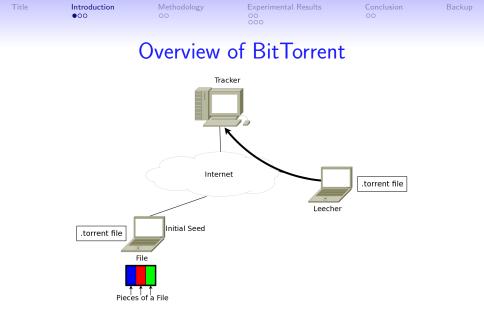
Methodology

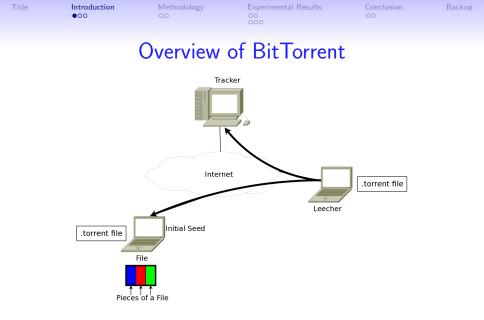
Experimental Results

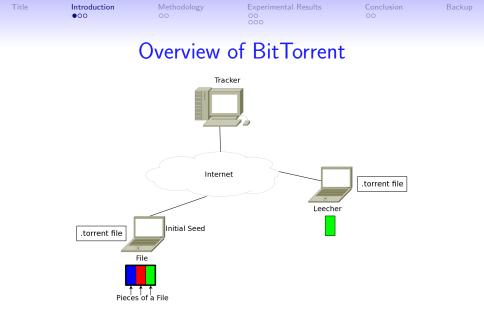
Homogeneous Latency Heterogeneous Latency

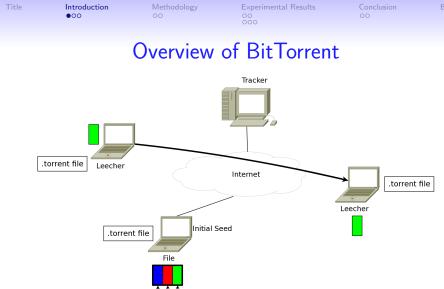

Conclusion




Methodology 00 Experimental Results


Conclusion 00 Backup


Overview of BitTorrent



000

Evaluation of BitTorrent Performance

Planetlab sites [planete-lab.org]

Grid5000 sites [grid5000.fr]

Grid5000 and PlaneteLab Testbeds

0.00

Evaluation of BitTorrent Performance

Planetlab sites [planete-lab.org]

Grid5000 sites [grid5000.fr]

- Grid5000 and PlaneteLab Testbeds
- Absence of network latency between
 - Instances of application running on same machine
 - Machines in the same LAN

Introduction

1ethodology

Experimental Results

Conclusion

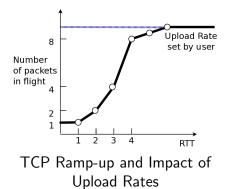
Backup

Evaluation of BitTorrent Performance

Planetlab sites [planete-lab.org]

Grid5000 sites [grid5000.fr]

- Grid5000 and PlaneteLab Testbeds
- Absence of network latency between
 - Instances of application running on same machine
 - Machines in the same LAN

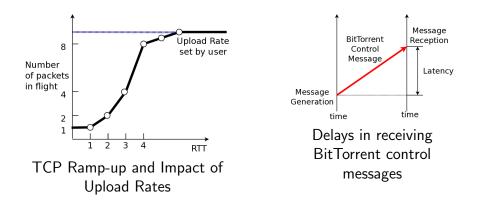

Does network latency affect the outcome of BitTorrent experiments performed on testbeds

Methodology 00 Experimental Results

Conclusion

Backup

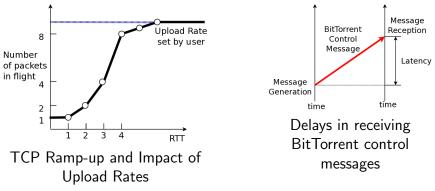
Can Latency Impact BitTorrent Performance?



Methodolog

Experimental Results

Conclusion 00 Backup


Can Latency Impact BitTorrent Performance?

Methodology 00 Experimental Results

Conclusion 00 Backup

Can Latency Impact BitTorrent Performance?

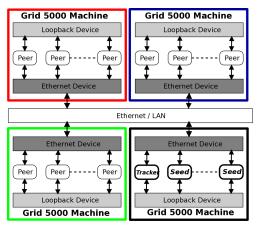
Can testbeds such as Grid5000 be used for experimental evaluation of BitTorrent?

Methodology

Experimental Results

Homogeneous Latency Heterogeneous Latency

Conclusion


Introduct

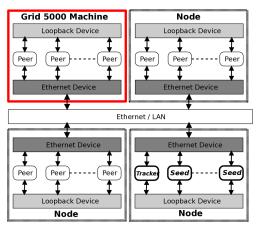
Methodology

Experimental Results

Conclusion 00 Backup

Testbed Setup

4 Machines of Grid5000 Experimental Testbed


Introduct

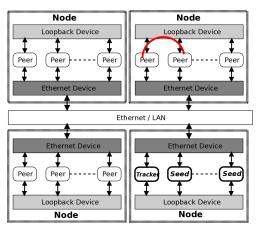
Methodology

Experimental Results

Conclusion 00 Backup

Testbed Setup

Machines capable of running 100 instances of BitTorrent Client


mtroduc

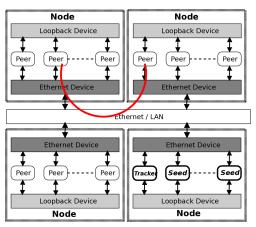
Methodology

Experimental Results

Conclusion 00 Backup

Testbed Setup

Peers on same machine communicate using Loopback device


mtroduc

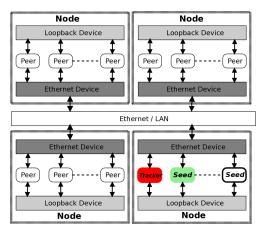
Methodology

Experimental Results

Conclusion 00 Backup

Testbed Setup

Peers on different machines communicate using Ethernet device


introduc

Methodology

Experimental Results

Conclusion 00 Backup

Testbed Setup

Tracker and Seed placed on same machine

ntroduction

Methodology O Experimental Results

Conclusion 00 Backup

Experiment Setup

- Experiment Parameters
 - 50 MB file
 - 1 Tracker, 1 Seed, and 300 Leechers
 - Upload rates 10 KiB/s to 100 KiB/s
 - Emulate RTT 1000 ms
- Metric
 - Download completion time

Outi

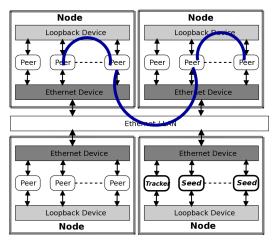
Introduction

Methodology

Experimental Results

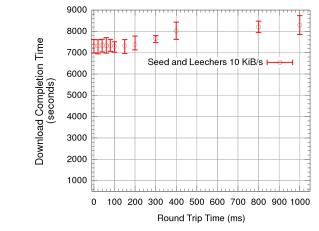
Homogeneous Latency Heterogeneous Latency

Conclusion


Introductio

Methodolog 00 Experimental Results

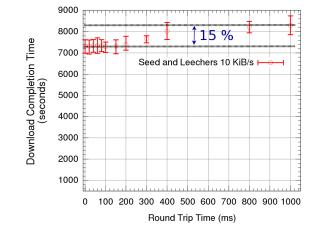
Conclusion


Backup

Homogeneous Latency - Setup

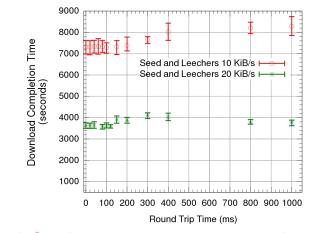
Same delay on Loopback and Ethernet Device

Experimental Results

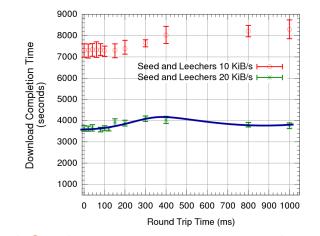


Download Completion Time vs RTT

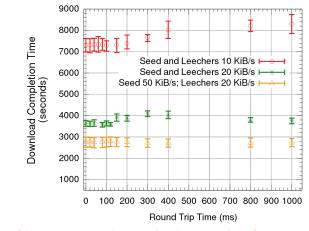
Experimental Results


Conclusio 00 Backup

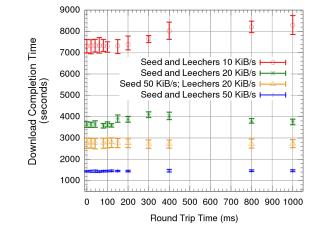
Homogeneous Latency - Experiment Results


1000 ms RTT does not increase Average Download Completion Time by more than 15%

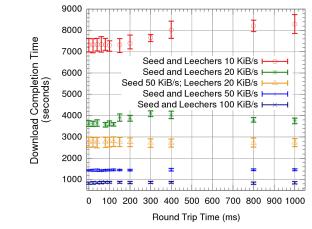
Experimental Results


Download Completion Time not a monotonously increasing function of RTT

Experimental Results


Download Completion Time not a monotonously increasing function of RTT

Experimental Results


Impact of latency not observed when seed is fast

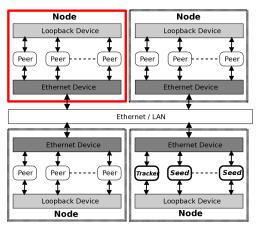
Experimental Results

Marginal impact of RTT

Experimental Results

Marginal impact of RTT

Introductio


Aethodology

Experimental Results

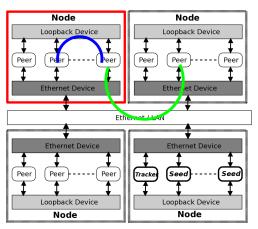
Conclusion

Backup

Heterogeneous Latency

Each machine used to abstract an AS

Introductio


Aethodology

Experimental Results

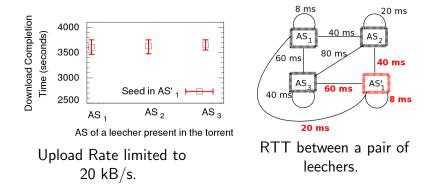
Conclusion

Backup

Heterogeneous Latency

Different latency on loopback and ethernet device

uction


lethodology

Experimental Results

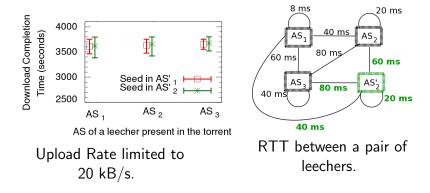
Conclusion

Backup

Results - Small RTT Between Peers

RTT between any two peers is less than 100 ms

luction


Aethodology

Experimental Results

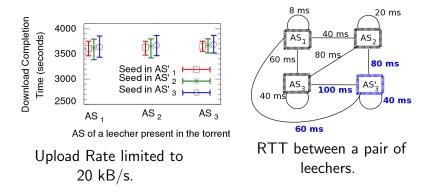
Conclusion

Backup

Results - Small RTT Between Peers

RTT between any two peers is less than 100 ms Marginal Impact of Latency

duction

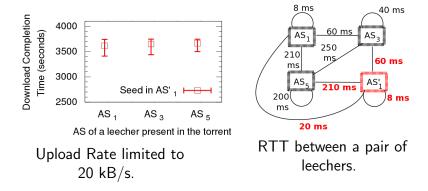

lethodology

Experimental Results

Conclusion

Backup

Results - Small RTT Between Peers

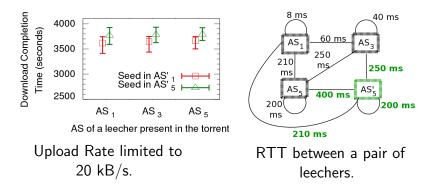


RTT between any two peers is less than 100 ms Marginal Impact of Latency Intr 000 Methodolog 00 Experimental Results

Conclusion

Backup

Results - Large RTT Between Some Peers



RTT between some of the peers is greater than 200 ms

Introduc 000 Methodolog 00 Experimental Results

Conclusion 00 Backup

Results - Large RTT Between Some Peers

RTT between some of the peers is greater than 200 ms Marginal Impact of Latency

Methodology

Experimental Results

Homogeneous Latency Heterogeneous Latency

Conclusion

• Latency has a marginal impact on the outcome of BitTorrent experiments

• Latency has a marginal impact on the outcome of BitTorrent experiments

BitTorrent experiments can be performed on testbeds without explicitly emulating latency.

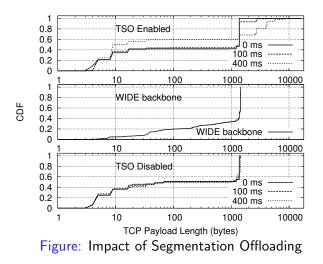
oduction

Methodology 00 Experimental Results

Conclusion

Backup

BitTorrent Experiments on Testbeds: A Study of the Impact of Network Latencies

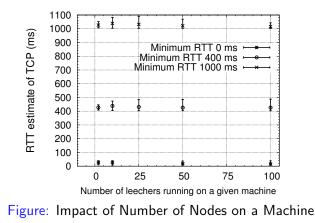

Ashwin Rao (ashwin.rao@inria.fr)

Introduct 000 Methodolog 00 Experimental Results

Conclusion

Backup

TCP Segmentation Offloading


ntroduction

Methodology 00 Experimental Results

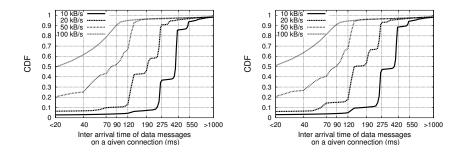
Conclusion

Backup

Number of Nodes on a Machine

Machines support up to 100 instances of a leecher

ntroduction


/lethodology

Experimental Results

Conclusion

Backup

Send Call Inter-arrival Time

ntroductior

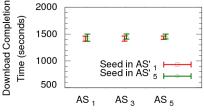
M<mark>ethodology</mark> 00 Experimental Results

Conclusion

Backup

RTT between pair of peers

	AS_1	AS_2	AS_3	AS ₄	AS_5
AS_1	8 ms	40 ms	60 ms	210 ms	210 ms
AS_2	40 ms	20 ms	80 ms	230 ms	230 ms
AS_3	60 ms	80 ms	40 ms	250 ms	250 ms
AS_4	210 ms	230 ms	250 ms	100 ms	400 ms
AS_5	210 ms	230 ms	250 ms	400 ms	200 ms


Table: RTT between a pair of leechers.

	AS_1	AS_2	AS_3	AS ₄	AS_5
AS'_1	20 ms	40 ms	60 ms	210 ms	210 ms
AS_2'	40 ms	60 ms	80 ms	230 ms	230 ms
AS'_3	60 ms	80 ms	100 ms	250 ms	250 ms
AS'_4	210 ms	230 ms	250 ms	400 ms	400 ms
AS_5'	210 ms	230 ms	250 ms	400 ms	400 ms

Table: RTT between the initial seed and the leechers.

Introduction Methodology Experimental Results Conclusion 000 00 00 00 00 000

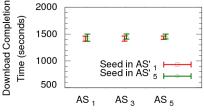
Results - Large RTT Between Some Peers

AS of a leecher present in the torrent

Figure: Upload rate limited to 50 KiB/s. RTT between some peers more than 100 ms.

RTT of even 400 ms has marginal impact on download completion time

	AS_1	AS_3	AS_5
AS_1	8 ms	60 ms	210 ms
AS_3	60 ms	40 ms	250 ms
AS_5	210 ms	250 ms	200 ms
AS'_1	20 ms	60 ms	210 ms
AS'_5	210 ms	250 ms	400 ms


Table: RTT between a pair of leechers. –/16

Backup

Introduction
Methodology
Experimental Results
Conclusion

000
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
<t

Results - Large RTT Between Some Peers

AS of a leecher present in the torrent

Figure: Upload rate limited to 50 KiB/s. RTT between some peers more than 100 ms.

RTT of even 400 ms has marginal impact on download completion time

	AS_1	AS_3	AS_5
AS_1	8 ms	60 ms	210 ms
AS_3	60 ms	40 ms	250 ms
AS_5	210 ms	250 ms	200 ms
AS'_1	20 ms	60 ms	210 ms
AS'_5	210 ms	250 ms	400 ms

Table: RTT between a pair of leechers. –/16

Backup