Pathological Behaviors for RLM and RLC

Arnaud Legout/Ernst W. Biersack
Eurecom
Arnaud.Legout@eurecom.fr
Outline

- Motivation.
- RLM reminder.
- RLM pathological behaviors.
- RLC reminder.
- RLC pathological behaviors.
- Conclusion.
Motivation

- RLM is the first and most popular receiver-driven layered multicast congestion control protocol:
 - Only a few studies about RLM exist that essentially show it performs reasonably well.
- RLC is a TCP-like version of RLM:
 - Not aware of any studies about RLC.
- We present simple scenarios where RLM and RLC exhibit fundamental pathological behaviors:
 - Fundamental: the problems are inherent to the protocol itself.
 - Pathological: we observe undesirable behaviors that significantly reduce the performance of RLM/RLC.
Receiver-driven cumulative layered multicast Congestion Control (CC) protocol for video dissemination:

- The video stream can be organized and striped in cumulative layers.
- Multicast capable network.
- The source sends each layer on a different multicast group.

All the protocol machinery is at the receiver side (receiver-driven).

Timers:

- Join timer T_j: Periodicity of the join experiments.
- Detection timer T_d: Estimation of the time to decide if a join experiment has succeeded.
RLM reminder

■ Bandwidth inference mechanism:
 ◆ Make a join experiment every T_j (multiplicatively increased when a join experiment fails, reduced (relaxed) every T_d). Add the layer if the join experiment succeeds, i.e. no loss during a T_d after the join experiment has started.
 ◆ In case of loss observed wait a T_d in the hysteresis state. Drop a layer if at the end of the hysteresis period there is more than 25% loss rate (i.e. congestion). Only one layer dropped per T_d.

■ Shared learning: In case of join experiment, send a message to the whole group. Precludes a join experiment at a higher layer while there is an experiment for a lower layer. Receivers learn from failed join experiment of the other receivers.
RLM Simulations: Convergence

- Evaluation of the speed, stability, and accuracy of the RLM convergence in the context of a large heterogeneity of delay and bandwidth
- 10Kbit/s per layer (tough test).
- Very slow convergence (Minimum join timer T_j set to 5 seconds).
- 3.2% mean loss rate (25% loss threshold).
- Low number a join experiments.

7/3/00
RLM Simulations: Scalability

- Evaluation of the RLM scalability with the number of receivers and with late joins
- 50Kbit/s per layer.
- 20+5+5 receivers.
- Receiver synchronization due to the shared learning (precludes joining an upper layer while there is a join experiment for a lower layer).
RLM Simulations: Dynamics

- 3 RLM + 1 CBR. Evaluation of the scalability of RLM with the number of session, RLM adaptation to heavy congestion.
- 20 Kbit/s per layer.
- Slow convergence (Min $T_j=5$ s).
- High unfairness.
The process of dropping layers is very conservative (one layer dropped per detection timer).

High number of losses in case of congestion: 2.3% mean loss rate.
RLM Simulations: RLM and TCP

- 1 RLM + 2 TCP. RLM starts first.
- RLM gets all the available bandwidth. RLM needs to experience high losses to drop a layer: loss threshold is 25%. TCP cannot grab bandwidth.
- 20 Kbit/s per layer

- 1 RLM + 2 TCP. RLM starts after TCP1.
- RLM is unable to grab bandwidth. A join experiment succeeds only when there is no loss during a detection timer period. TCP produces at least a loss per cycle.
RLM Pathological Behaviors

- Minimum join timer (slow convergence):
 - Tradeoff between speed of convergence and periodic congestion due to the join experiments.

- High loss threshold/Hysteresis state (high loss rate, starves TCP when RLM starts first):
 - Tradeoff between a conservative and a reactive behavior in case of losses.

- Shared learning (receiver synchronization), Conservative join experiments (TCP starves RLM when TCP starts first):
 - Foundations of RLM.

- Conservative layer drop process (transient periods of high congestion):
 - Necessary to avoid cascade drops, very hard to tune.
RCI Reminder

- Receiver-driven cumulative layered multicast CC protocol:
 - Data that can be organized and striped in cumulative layers.
 - Multicast capable network.
 - The source sends each layer on a different multicast group.
 - Layers exponentially distributed.

- Bandwidth inference: Periodic bursts (double the throughput for a short fixed period of time) followed by an idle period.

- Synchronization points (SP) on each layer, spaced proportionally to the bandwidth of the corresponding layer (exponentially), and always located at the end of a burst.
RLC Reminder

- **Mechanism:**
 - Add a layer at a SP if no losses are experienced during the burst preceding that SP.
 - Drop a layer on congestion (a loss), one layer drop per **deaf period** (fixed value). TCP-like behavior: exponential decrease in case of loss.
Evaluation of the speed, stability, and accuracy of RLC convergence in the context of a large heterogeneity of delay and bandwidth.

- Base layer: 32 Kbit/s.

The periodic bursts do not succeed to make the bottleneck queue overflow (erroneous bandwidth inference).

- Mean loss rate: 13%.
Evaluation of the RLC scalability with the number of receivers and with late joins.

- 20+5+5 receivers.
- At SP1 a burst creates congestion.
- As SP5 and SP1 are synchronized, the late receivers must wait until SP6 to add a layer.
RLC Simulations: RLC and TCP

- 20 ms bottleneck link delay.
- RLC shares unfairly the bandwidth with TCP.
- A small RTT leads to a small TCP cycle (frequent periodic losses).

- 200 ms bottleneck link delay.
- RLC shares fairly the bandwidth with TCP.
- A large RTT leads to a large TCP cycle (sparse periodic losses).
RLC Pathological Behaviors

- The bandwidth inference mechanism based on periodic bursts does not succeed (does not make the queue overflow):
 - We need to know how long the bursts should persist to make the queue overflow. Comes close to a new bandwidth inference mechanism.

- Synchronization points as distributed in RLC significantly slow down the convergence of the RLC receivers:
 - Open problem!

- TCP-like: responsive to losses but independent of the RTT (unfairness with TCP):
 - Open problem!
Conclusion

- RLM and RLC exhibit fundamental pathological behaviors:
 - **RLM**:
 - Slow convergence.
 - Sustained loss rate.
 - Receiver synchronization.
 - Conservative/aggressive with TCP.
 - **RLC**:
 - Poor bandwidth inference mechanism.
 - Slow convergence.
 - TCP-like but independent of the RTT.

Thanks!
Questions?