
Experimental Assessment of BitTorrent Completion
Time in Heterogeneous TCP/uTP swarms

Claudio Testa1, Dario Rossi1, Ashwin Rao2, Arnaud Legout2

1 Telecom ParisTech, Paris, France – first.last@enst.fr
2 INRIA Planete, Sophia Antipolis, France – first.last@inria.fr

Abstract. BitTorrent, one of the most widespread used P2P application for file-
sharing, recently got rid of TCP by introducing an application-level congestion
control protocol named uTP. The aim of this new protocol is to efficiently use
the available link capacity, while minimizing its interference with the rest of user
traffic (e.g., Web, VoIP and gaming) sharing the same access bottleneck.
In this paper we perform an experimental study of the impact of uTP on the
torrent completion time, the metric that better captures the user experience. We
run BitTorrent applications in a flash crowd scenario over a dedicated cluster
platform, under both homogeneous and heterogeneous swarm population. Exper-
iments show that an all-uTP swarms have shorter torrent download time with
respect to all-TCP swarms. Interestingly, at the same time, we observe that even
shorter completion times can be achieved under mixtures of TCP and uTP traffic,
as in the default BitTorrent settings.

1 Introduction

Though some might argue that network congestion control is a problem that has been
studied to death–to which we tend to agree, at least concerning the large amount of
literature on the topic–yet the network architecture and usage are undergoing profound
changes, that make the study of congestion control issues once more necessary.

As far as the architectures are concerned, recent research has, e.g., addressed the
TCP incast problem in data center networks. As far as the usage is concerned, we have
lately witnessed to an explosion of new application-layer flow and congestion control
algorithms [1–3], which are usually implemented at the application-layer over either
TCP [1] or UDP [2, 3]. Depending on the application they have been built for, these
protocols have rather different goals that deeply influence their design.

In this work, we focus on the BitTorrent filesharing protocol that recently replaced
TCP by uTP1 [4, 5], a lower than best effort protocol for data transport on top of UDP.
uTP starts from the observation that nowadays the Internet bottleneck is typically at the
user ADSL access link: hence, congestion typically happens between different flows
of the same user. Moreover, since ADSL modems have rather long buffers (up to few
seconds [6, 7]), using TCP for non-interactive but massive data downloads has a possi-
bly negative impact on interactive communication (e.g., Skype, gaming, etc.). In other

1 Notice that this new protocol has two names: uTP in the BitTorrent community [4], and LED-
BAT in the IETF community [5], that we may use interchangeably in the following.

words, as TCP fills the buffer, the self-induced congestion translates into high latency
and losses, that possibly harms other interactive application. To avoid the troubles of
self-induced congestion and at the same time be efficient for massive data download,
uTP tries to limit the end-to-end delay (by reaching a fixed amount of target delay in the
access buffer) while maximizing the utilization of the access capacity. As the queuing
delay is bounded with uTP, this improves users experience for interactive applications.

While uTP has sound and appealing goals, it is clearly understood that users will
be the ultimate judge of BitTorrent performance, as in BitTorrent’s own words “unless
we can offer the same performance [of TCP], then people will switch to a different
BitTorrent client” [8]. Our recent work [9] suggests that uTP performs better than stan-
dard TCP, as the use of uTP practically limits the queuing delay to a small target, this
translates into faster signaling as a side effect. However, results in [9] are based on ns2
simulation: it becomes thus imperative to assess whether the observed phenomena also
happens in practice, which is precisely the scope of this work.

We run BitTorrent applications in a flash crowd scenario over the Grid’5000 plat-
form [10], with special attention to the main user-centric metric, the torrent completion
time. Results of our experiments confirm our previous simulation results, in that, as
observed in [9], uTP can reduce the torrent download time.

Yet, this experimental work brings new insights beyond [9]. Currently, the default
settings of BitTorrent yield to the use of a mixture of TCP and uTP traffic. Hence, in this
work we evaluate how this choice performs compared to the cases in which all peers
use only a single protocol between TCP and uTP. In this case, our experimental results
show that completion time under heterogeneous swarms can be even lower than all uTP
(and, clearly, all TCP) swarms.

The remainder of this paper is organized as follows. First, Section 2 discusses the
related work. Section 3 reports preliminary insights on low-level BitTorrent settings
gathered from a small local testbed, which are instrumental to our experiments, whose
results are reported in Section 4. Finally, we summarize the paper and discuss future
work in Section 5.

2 Related work

Two bodies of work are related to this study: on the one hand, we have work focus-
ing on congestion control aspects [1,2,11–13], and on the other hand work focusing on
BitTorrent [7,9,14–20]. First, congestion control literature already proposes several pro-
tocols aiming, as LEDBAT, to achieve lower-than-TCP priority, of which TCP-LP [12],
NICE [11], 4CP [13] are notable examples. Yet, we pinpoint a recent tendency toward
moving congestion and flow control algorithms from the transport layer to the applica-
tion layer, of which uTP [3] for background file-sharing, Skype [2] for interactive VoIP
and YouTube [1] for interactive VoD are again notable examples. Unlike transport-
layer congestion control, that applies to classes of applications, these application-layer
congestion control protocols are usually built for single applications, with specific re-
quirements in mind: these “one of a kind” deployments will in our opinion need further
attention in the future. Recently LEDBAT also got the attention of Apple’s developers,
resulting in a implementation for MAC OS (preliminary tests available at [21]).

Second, BitTorrent literature dissected many aspects of this successful P2P proto-
col, from the pioneering time of [14]. While our own previous works, such as [15, 16],
already study BitTorrent download performance by means of either passive measure-
ments or experimental tests (as in this work), however they report on performance at a
time when BitTorrent was using TCP, and should thus be updated in light of BitTorrent
recent evolution. More generally, though related work on uTP exists [7,9,17,17–20,22],
it does however adopt a congestion control perspective (with the exception of [9]). In
particular, an experimental approach is adopted in [6,7,17]: [17] attacks the problem of
clock drift in uTP, while [7] performs a black box study of initial proprietary versions
of the protocol and [6] focuses on the interaction of uTP and active queue management
techniques that are becoming commonplace in modern home gateways. A simulative
approach is instead adopted in [18–20, 22]: a fairness issue of uTP is revealed in [18]
and solved in [19], while [20] compares (i) the level of low-priority of TCP-LP [12],
NICE [11] and uTP [3] and (ii) the fairness of TCP and uTP, and finally [22] investigates
policies for dynamic parameter tuning.

The only previous work addressing the impact of uTP on BitTorrent completion
time is our own recent work [9], that however employs ns2 simulations unlike in this
work. Interestingly, some of the observations of this study are in agreement with [9],
e.g., showing a larger completion time for increasing buffer occupancy on the data
plane. Yet, we point out that [9] does not consider an hardcoded preference for uTP, nor
bidirectional uTP connections: hence, an interesting difference with respect to the cur-
rent work is that [9] forecasted heterogeneous performance for heterogeneous swarms
(i.e., larger completion time for TCP peers) that we have shown not to hold on practice.

3 Preliminary Insights

As previously stated, the uTP protocol aims at jointly (i) being efficient by fully ex-
ploiting the link capacity when no other traffic is present, and (ii) being low priority
by yielding to other competing traffic on the same bottleneck. In order to achieve both
these goals, uTP needs to insert only a limited amount of packets in the bottleneck
buffer: on the one hand, since the queue is non empty, the capacity is fully exploited.
On the other hand, as the queuing delay in the buffer remains bounded, this does not
harm interactive applications.

uTP exploits the ongoing data transfer to measure the One-Way Delay (OWD)
on the forward path. While measuring the OWD is notoriously tricky among non-
synchronized Internet hosts, uTP is interested in the difference between the current
OWD and the minimum OWD ever observed (used as an approximate reference of
the base propagation delay). In turn, this OWD difference yield to a measure of the
current queuing delay, that is used to drive the congestion window dynamics: when the
measured queuing delay is below a given target delay, the congestion window grows,
but when the queuing delay exceeds the target the congestion window shrinks.

The impact of this new protocol on the performance of BitTorrent can be affected
by essentially two different settings. At a single flow level, uTP is primarily driven by
the uTP target delay setting. At a swarm level, peers relative preference for TCP vs uTP
protocols plays an important role as well. Hence, before running a full-fledged set of

experiments, we need to get some preliminary insights on the settings of the above two
parameters. In more details, these are: (i) net.utp target delay, that tunes the value of
uTP delay of each flow, and (ii) bt.transp disposition, that drives TCP vs uTP preference
of the BitTorrent client.

To this aim, we perform a battery of tests in a completely controlled environment
involving one seed and two leechers, all running the latest version of the uTorrent client
available for Linux (3.0 build 25053, released on March 2011). Clients in the local
testbed are interconnected by a 100 Mbps LAN and we use the Hierarchical Token
Bucket (HTB) of netem to emulate an access bottleneck on the PC running the seed,
whose uplink capacity is then capped at 5 Mbps. Any additional delay was added on the
testbed links. The tracker is private within the testbed and is used to announce a set of
three different torrent files having different file and chunk sizes (file size of 10, 50 and
100 MBytes, and chunk size of 256, 512 and 1024 KBytes respectively).

To understand the BitTorrent settings, we tweaked the default configuration2 aiming
at (i) verifying the compliance of net.utp target delay to the imposed delay and (ii)
understanding how bt.transp disposition settings, which controls when uTP is used,
impacts the performance of BitTorrent.

In the case of (i) net.utp target delay, usually a single experiment is sufficient to
verify its compliance, since every flow obeys its own setting. Conversely multiple ex-
periments were necessary in the case of (ii) bt.transp disposition, since the behavior of
a peer is affected by the bt.transp disposition value of other peers as well.

In the following we summarize the most relevant findings of the local testbed exper-
iments. Overall, in these tests we captured about 2 GBytes of packet level traces, that we
make available to the scientific community at [23]. The remainder of the experiments,
performed on the Grid’5000 platform, are reported in Section 4.

3.1 net.utp target delay: Target delay settings

The net.utp target delay parameter stores the value of the uTP target delay in millisec-
onds, and its default value is equal to 100 ms as stated in the BEP29 [4]. Furthermore,
uTP is also standardized at the IETF LEDBAT Working Group [3], which specifies
100 ms as a mandatory upper bound value (while earlier version of the draft referred
to a 25 ms delay target).

Yet, the GUI of the Windows client allows to modify its default value, opening the
way for competition between legacy applications. This behavior is confirmed by Fig. 1,
where we show two experiments, performed at different times, where a single uTP flow
sends data on a 5 Mbps bottleneck, with different values of the uTP target delay. We
see in Fig. 1 that for both target delay settings, BitTorrent is using the entire available
capacity, and the end-to-end delay corresponds to the target that we set by means of the
net.utp target delay parameter.

2 uTorrent clients store their configuration in a file which is not directly editable (as it also con-
tains an hash value on the configuration content, performed by the client itself) and moreover
Linux GUIs do not offer the possibility of modifying the default settings. However, the config-
uration file format used by Linux clients is the same as the one of the Windows clients: hence,
we used Windows GUIs to produce a pool of configuration files, that we later loaded in Linux.

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 50 100
 0

 20

 40

 60

 80

 100

 120

 140

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

R
T

T
 [

m
s]

Time [s]

net.utp_target_delay = 25 ms

Throughput
RTT

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 50 100
 0

 20

 40

 60

 80

 100

 120

 140

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

R
T

T
 [

m
s]

Time [s]

net.utp_target_delay = 100 ms

Throughput
RTT

Fig. 1. uTP Target Settings: RTT and throughput for a single flow with net.utp target delay=25 ms
(left) and net.utp target delay=100 ms (right).

As the uTP/LEDBAT specifications [3,4] refer to a mandatory target value, we com-
ply to the standard and focus in the remainder of this paper on the study of swarms with
the same default value for net.utp target delay. At the same time, we point out that as a
future work, it would be interesting to see whether, by tweaking the net.utp target delay
value, some peers (or some applications) can gather an advantage over the rest of the
swarm.

3.2 bt.transp disposition: TCP vs uTP settings

The second parameter, namely bt.transp disposition, controls which protocol is used
for the incoming and outgoing data connection of the client. As reported in the online
uTorrent manual3, bt.transp disposition is a bitmask that sums up the following behav-
iors:

– 1: attempt outgoing TCP connections
– 2: attempt outgoing uTP connections
– 4: accept incoming TCP connections
– 8: accept incoming uTP connections
– 16: use the new uTP header format

uTorrent default value is 31, which means that the client will accept both TCP and uTP
flavors, for either sending or receiving data, possibly using the new uTP header format.

To understand the implications of bt.transp disposition settings, we perform a num-
ber of tests with heterogeneous settings of the client. Notice that the parameter space
we explore and that we make available at [23] is larger than the one reported in Tab. 1.
Yet, for the sake of simplicity, we only report in the table the cases that we later study
in Section 4, which already conveys some interesting information. Notice also that in
all the experiments, the seed is set with the default value bt.transp disposition=31.

In Case 1, the two leechers A and B have different setting for the bt.transp disposition
parameter: more precisely, A should attempt data connection only using TCP while B

3 http://www.bittorrent.com/help/manual/appendixa0212#bt.transp disposition

Table 1. TCP vs uTP BitTorrent transport disposition.

case peer attempt accept disp A → BB → A comment

2
A TCP TCP 5

B * * 31
TCP

Legacy BitTorrent
implementationsTCP

1
A TCP * 13

B uTP * 14

Hardcoded uTP
preferenceuTPuTP

should use uTP (and both will accept every flavor in reception). Our experiments show
that in this scenario, peer B sends data to peer A using the uTP protocol, which is the
expected behavior. However, peer A sends data to peer B using the uTP protocol too,
which happens consistently over all repetitions, and irrespectively of file and chunks
size. The reason is that when a uTP connection from B to A is opened, peer A can use
this opened bidirectional connection to send data to peer B. Besides, as confirmed by
Arvid Norberg, one of the main BitTorrent developers, the uTorrent client has a hard-
coded uTP preference, so that in case both a TCP and a uTP connection will be suc-
cessfully established, the former will be closed and only the latter will be used. As we
will see in Section 4, this preference has some important (and beneficial) consequences
on the overall swarm completion time.

In Case 2, leecher A attempts and accepts only connection via TCP (as a legacy
BitTorrent implementation would do), while leecher B maintains the default value for
bt.transp disposition (which means to attempt and accept both protocols). In this sce-
nario, any communication between the two peers are performed using the TCP proto-
col, which is consistent and expected for backward compatibility with older BitTorrent
clients.

Other cases, not shown in Tab. 1, yield to different shares of traffic between TCP
and uTP. At the same time, since the number of leechers is small, the exact value of
the breakdown is heavily influenced by the seeder flavor as well. As such, we defer a
quantitative analysis of such a breakdown in the next section.

4 Experimental Results

We now report the experimental results on the impact of uTP and TCP transport on the
torrent completion time. First we briefly describe the Grid’5000 experimental platform
and then focus on two case studies, namely (i) homogeneous and (ii) heterogeneous
swarms, depending on the bt.transp disposition settings for the leechers.

Homogeneous settings refer to scenarios were all peers have either a TCP-only pref-
erence (bt.transp disposition=5, which mimic the behavior of old uTorrent versions or
legacy applications), or a uTP-only preference (bt.transp disposition=10, in case uTP
will prevail over TCP), or are able to speak both protocols (bt.transp disposition=31,
the current default behavior, though with an hardcoded preference for uTP as we have
seen in Section 3.2).

Homogeneous settings provide a useful reference, but we must consider also exper-
iments with heterogeneous scenarios that correspond to what is observed in the Internet
with clients that do not support uTP at all, or that support uTP but as a fallback choice
rather than the default one.

We therefore investigate heterogeneous settings as well, considering scenarios with
different ratios of peers using uTP and TCP. More precisely, we consider the case where
peers are able to accept any incoming protocol, but have different preferences for the
uplink protocol (bt.transp disposition=13 for TCP, and bt.transp disposition=14 for
uTP). We consider the case where the preference splits are 50/50, 25/75, or 75/25 to
mimic scenarios where TCP vs uTP preferences are fairly balanced, or biased toward
one of the two protocols.

Notice that, while there may be several uTP implementations available, different
BitTorrent applications use different default settings (i.e., sticking to TCP preference
or embracing uTP) depending on the success of the new protocol (and the existence of
readily available libraries for different operating systems).

4.1 Grid’5000 Setup

We performed experiments on a dedicated cluster of machines that run Linux as the host
operating system and using the uTorrent 3.0 client as before. Hosts of the Grid’5000
platform are interconnected by an high-speed 1 Gbps LAN, and we emulate realistic
bandwidth restrictions and queueing of home gateways by using the netem module
for the Linux kernel. As noted in [3] and experimentally confirmed by [6, 7], ADSL
modems can buffer up to a few seconds worth of traffic: in our experiments, we set the
buffer size B according to the uplink capacity C so that B/C = 1 second worth of
traffic.

We instrumented the Linux kernel to log the queue size Q in bytes and packets af-
ter each dequeue operation, logging also the cumulative number of packets served and
dropped by the queue. During our experiments, we disabled the large segment offload-
ing [24] which ensured that the maximum segment size of the TCP and uTP packets
never exceeded the maximum transfer unit (MTU). In each experiment we used the Cu-
bic flavor of TCP, the default for Linux kernels: in reason of our previous work [7], we
may expect Cubic to be more aggressive with respect to the standard TCP NewReno
flavor, and more similar to the default TCP Compound flavor adopted in recent versions
of Windows.

We use 76 machines on the Grid’5000 platform and consider an Internet flash crowd
scenario, where a single seed is initially providing all the content (a 100 MBytes file)
to a number of leechers all arriving at the same time (and never leaving the system).
Furthermore, each BitTorrent peer (i) experiences an ADSL access bottleneck [25] and
(ii) encounters a self-induced congestion, unrelated to the cross-traffic [3].

As for (i), we start by considering 3 simple homogeneous capacity scenarios in
which we limit the leechers and seed uplink capacity to C =1, 2 and 5 Mbps with the
Hierarchical Token Bucket algorithm. For the sake of simplicity, as the qualitative re-
sults do not change for different values of C, in the following we report the results for
C = 1Mbps. While it could be objected that Internet capacity are not homogeneous,
we argue that homogeneous scenarios are needed as a first necessary step before more

complex and realistic environments are emulated. Additionally, the impact of hetero-
geneous access capacity is a well known clustering effect [16], that we believe to fall
outside of our main aim, i.e., the comparison of TCP vs uTP transport, and that can be
studied with a future experimental campaign.

As for (ii), we are forced to map a single peer on each host of the Grid’5000 plat-
form, as otherwise unwanted mutual influence may take place on multiple peers running
on the same hosts. Given the number of hosts N = 76 we can use, this constrains us on
the size of the swarm we investigate. However, we prefer to take a cautious approach,
and avoid to introduce the aforementioned mutual influence that could bias in an unpre-
dictable way the results of our experiments (see a discussion on the conclusions).

We repeat the experiments three times for each settings, to smooth out stochastic
variability in the experiments due to BitTorrent random decisions (e.g., chunk selec-
tion, choke, optimistic unchoking etc). Also, we make results of our campaign avail-
able to the scientific community as for the local testbed at [23]. Overall, the volume of
collected data in the Grid’5000 testbed amounts to about 10 GBytes. Yet, we point out
that, in reason of the large number of experiments and seeds, we were not able to store
packet-level traces, but only periodic transport-layer (i.e., TCP, UDP traffic amount),
application layer (i.e., tracker) and queuing logs.

4.2 Homogeneous bt.transp disposition settings

Results of the homogeneous case are reported in Fig. 2. For each metric of interest,
the figure reports the envelope of the gathered results, i.e., the minimum and maximum
curves over the three iterations.

We express results in terms of (i) the cumulative distribution function (CDF) of the
torrent completion time T , on the right plots and of (ii) the complementary cumulative
distribution function (CCDF) of the buffer occupancy Q of the access link of each peer,
on the left plots. The buffer occupancy is expressed both in bytes (bottom x-axis) and
in terms of the amount of delay an interactive application would experience for the
emulated access capacity (top x-axis).

Additional details are reported in the inset of each figure, showing: (iii) the average
E[T] and standard deviation σ[T] of the torrent completion time; (iv) the byte-wise
share between TCP and uTP, with a notation X/Y that specifies that X% (Y%) of the
bytes are carried over TCP (uTP), with X + Y = 100%; (v) the mean queue size E[Q]
in KBytes and milliseconds.

In the top row we report the scenario where all peers use default settings (bt.transp disposition=31),
i.e., the peers are able to speak both TCP and uTP protocols. Middle plots report the case
of an all-uTP swarm (bt.transp disposition=10), while all-TCP swarms (bt.transp disposition=5)
are depicted in the bottom row.

Notice that, on the long run, all swarms achieves similar efficiency: looking at the
CDF of the buffer occupancy in Fig. 2 we can see that in roughly 80% of the time,
after a dequeue operation the queue is non-empty. That efficiency is also tied to the
BitTorrent system dynamics (e.g., pipelining of the requests, chunk exchange dynamics,
etc.). Also the number of packets remaining in the queue after a packet transmission
further depends on the congestion control protocol of choice. As expected, TCP AIMD
dynamics tend to fill the buffer, while uTP strives (and manages) to limit the queue size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25000 50000 75000 100000 125000

 0 200 400 600 800 1000

C
C

D
F

Buffer occupancy [Bytes]

Queuing delay [ms]

Envelope

E[QDef]=21.2 KB (169 ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
20

0

 1
25

0

 1
30

0

 1
35

0

 1
40

0

 1
45

0

 1
50

0

 1
55

0

 1
60

0

C
D

F

Completion Time [s]

Default (31)

E[TDef]=1278 s
σ(TDef)=12 s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25000 50000 75000 100000 125000

 0 200 400 600 800 1000

C
C

D
F

Buffer occupancy [Bytes]

Queuing delay [ms]

Envelope

E[QUDP]=13.6 KB (108 ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
20

0

 1
25

0

 1
30

0

 1
35

0

 1
40

0

 1
45

0

 1
50

0

 1
55

0

 1
60

0
C

D
F

Completion Time [s]

uTP (10)

E[TUDP]=1345 s
σ(TUDP)=35 s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25000 50000 75000 100000 125000

 0 200 400 600 800 1000

C
C

D
F

Buffer occupancy [Bytes]

Queuing delay [ms]

Envelope

E[QTCP]=48.2 KB (385 ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
20

0

 1
25

0

 1
30

0

 1
35

0

 1
40

0

 1
45

0

 1
50

0

 1
55

0

 1
60

0

C
D

F

Completion Time [s]

TCP (5)

E[TTCP]=1421 s
σ(TTCP)=38 s

Fig. 2. Buffer occupancy CCDF (left) and Completion time CDF (right) for ho-
mogeneous swarms: default settings (bt.transp disposition=31, top), uTP only swarm
(bt.transp disposition=10, center) and TCP only swarms (bt.transp disposition=5, bottom). The
vertical line in the Buffer occupancy plot represent the average of the queue length (in KB and
ms).

These behaviors translate into different completion times statistics and, especially,
completion times appear to benefit from a mixture of TCP and uTP traffic. We point
out that, in the mixed case where BitTorrent peers are able to speak both protocols
(bt.transp disposition=31), the following happens: two connections, a TCP and an uTP
ones are attempted, and in case uTP is successfully opened, it is preferred over the TCP
one. This translates into a traffic mixture where about 80% of the data traffic happens
to be carried over uTP.

Notice that the queue size alone cannot explain the difference in the completion
time statistics (as otherwise, completion time in all-uTP swarms will be the lowest).
Hence, we conjecture this result to be the combination of two effects –on the control

and data plane– that are assisted by the use of uTP and TCP respectively. First, a longer
queue size due to TCP can negatively influence the completion time, by hindering a
timely dissemination of control information (e.g., chunk interest). The longer the time
needed to signal out interests, the longer the time prior to start their download, and their
subsequent upload to other peers (which harms all-TCP completion time).

Notice indeed that as in the all-TCP case the one way queuing delay may reach up
to 400 ms on average, this entails that RTT for signaling exchanges may be on the order
of a second, that can possibly slow down significantly the chunk spreading dynamics.
Consider then that BitTorrent is using pipeling to avoid a slowdown of the transfer due
to the propagation delay of requests for new chunks. From our experiments, it appears
that the pipelining used by BitTorrent is not large enough to deal with delays that might
be encountered with xDSL connections.

However, as previously said, the completion times statistics are not fully explained
in terms of the queuing delay, as otherwise all-uTP swarms should be the winner. Yet,
while uTP limits the queue size and avoids to interfere with a timely dissemination of
control messages, uTP is also by design less aggressive than TCP. It follows that TCP
may be more efficient for rapidly sharing chunks in the data plane. This can in turn harm
the all-uTP completion time, that is slightly larger with respect to the default settings
bt.transp disposition=31.

Interestingly, our previous simulation study [18] shown that a combination of TCP
and uTP can increase the efficiency on the case of two flows sharing a bottleneck link.
Shortly, this happens because the low-priority protocol is still able to exploit the capac-
ity unused by TCP (as its rate increases when queuing is low), without at the same time
increasing the average system queuing delay (as its rate slow down when TCP traffic
increases). The experimental results of this work further confirm that a combination of
TCP and uTP can be beneficial to the completion time of the whole swarm as well.
Moreover, although the exact shape of the completion time CDFs differ across experi-
ments (due to the stochastic nature of BitTorrent chunk scheduling and peer selection
decisions), the results are consistent across all iterations.

Unfortunately, latest versions of uTorrent do not allow to export chunk level logs,
which could bring further information as the trading dynamics between peers, that re-
mains an interesting direction for future work.

4.3 Heterogeneous bt.transp disposition settings

Having seen that a mixture of TCP and uTP protocols can be beneficial to the comple-
tion time, we further investigate different shares of TCP (bt.transp disposition=13) vs
uTP peers (bt.transp disposition=14), i.e., peers that prefer one of the two protocols for
active connection open, but that can otherwise accept any incoming connections.

We consider three peer-wise shares, namely 25/75, 50/50, and 75/25 (in the X/Y
notation, X% represents the percentage of peers preferring TCP on their uplink, i.e.,
bt.transp disposition=13). These shares represent three different popularity cases of
uTP, that can be either the default in only few implementations of the BitTorrent appli-
cations (25/75), or compete equally (50/50) or even be dominant (75/25). We believe
these shares to represent illustrative points, covering all relevant scenarios of the possi-
ble population repartition.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25000 50000 75000 100000 125000

 0 200 400 600 800 1000

C
C

D
F

Buffer occupancy [Bytes]

Queuing delay [ms]

Envelope

E[Qall]= 42.3 KB (337 ms)
E[QTCP]= 49.1 KB (393 ms)

E[QUDP]= 17.0 KB (136 ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
20

0

 1
25

0

 1
30

0

 1
35

0

 1
40

0

 1
45

0

 1
50

0

 1
55

0

 1
60

0

C
D

F

Completion Time [s]

Share TCP/UDP
Peer: 75/25
Byte: 77/23

Completion Time
E[Tall]=1420 s
E[TTCP]=1419 s
E[TUDP]=1424 s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25000 50000 75000 100000 125000

 0 200 400 600 800 1000

C
C

D
F

Buffer occupancy [Bytes]

Queuing delay [ms]

Envelope

E[Qall]= 34.5 KB (276 ms)

E[QTCP]= 49.8 KB (399 ms)

E[QUDP]= 16.5 KB (132 ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
20

0

 1
25

0

 1
30

0

 1
35

0

 1
40

0

 1
45

0

 1
50

0

 1
55

0

 1
60

0
C

D
F

Completion Time [s]

Share TCP/UDP
Peer: 50/50
Byte: 49/51

Completion Time
E[Tall]=1369 s
E[TTCP]=1368 s
E[TUDP]=1372 s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25000 50000 75000 100000 125000

 0 200 400 600 800 1000

C
C

D
F

Buffer occupancy [Bytes]

Queuing delay [ms]

Envelope

E[Qall]= 25.4 KB (203 ms)

E[QTCP]= 51.3 KB (411 ms)

E[QUDP]= 15.9 KB (127 ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
20

0

 1
25

0

 1
30

0

 1
35

0

 1
40

0

 1
45

0

 1
50

0

 1
55

0

 1
60

0

C
D

F

Completion Time [s]

Share TCP/UDP
Peer: 25/75
Byte: 29/71

Completion Time
E[Tall]=1323 s
E[TTCP]=1320 s
E[TUDP]=1324 s

Fig. 3. Buffer occupancy CCDF (left) and Completion time CDF (right) for heterogeneous
swarms: prevalence of TCP peers (75/25, top), fair population share (50/50 middle), and preva-
lence of uTP peers (25/75, bottom).

The plots in Fig. 3 additionally report (i) the average queuing delay, for all the
swarm as well as for different peer classes, (ii) the peer- and byte-wise traffic shares,
and (iii) the average system completion time, as well as the average completion time
for peers of different classes.

As for (i), the average queuing delay statistics are as expected, with an increase of
the queuing delay of uTP peers due to bursty acknowledgements in reply to TCP traffic
due to TCP peers in the reverse path. As for (ii), the byte-wise share closely follow the
peer-wise share. Finally, let us focus on (iii) the completion time statistics. Interestingly,
as Fig. 3 shows, while a small amount of TCP traffic is beneficial in reducing the overall
swarm completion time (bottom row), a large TCP amount can instead slow down the
torrent download for the whole system (top row).

 1200

 1300

 1400

 1500

 1600

 0 0.2 0.4 0.6 0.8 1

al
l U

D
P (1

0)

D
ef

au
lt

(3
1)

25
/7

5

50
/5

0

75
/2

5

al
l T

C
P (5

)

C
o

m
p

le
ti

o
n

 T
im

e
[s

]

TCP Bytes share

E[T] ± σ(T)
Linear regression

 1200

 1300

 1400

 1500

 1600

 10000 20000 30000 40000 50000

al
l U

D
P (1

0)

D
ef

au
lt

(3
1)

25
/7

5

50
/5

0

75
/2

5

al
l T

C
P (5

)

C
o

m
p

le
ti

o
n

 T
im

e
[s

]

E[Q] [Bytes]

E[T] ± σ(T)
Linear regression

Fig. 4. Completion time as a function of the TCP vs uTP byte-wise share (left) and as a function
of the average buffer occupancy (right).

Further, notice that completion times are practically the same for uTP and TCP peers
(with a slight advantage for the latter). Hence, differently from our previous simulation
work [9], we do not observe an unfairness of completion time between different peer
classes within an heterogeneous swarm. This is due to the fact that [9] considered a
simpler model for bt.transp disposition, that neither (i) accounted for TCP peers using
an already opened uTP connection in the reverse side nor (ii) for the hardcoded uTP
preference.

4.4 uTP vs TCP in a nutshell

Fig. 4 present a summary of our results considered so far. T is the completion time
(mean and standard deviation) for different iterations with both homogeneous and het-
erogeneous swarm populations. The T metric is reported as a function of the byte-wise
TCP traffic share (left plot) and of the average buffer occupancy (right plot).

Both plots also report, for TCP traffic shares different from zero (non-0 TCP) only,
a linear regression of the completion time. Notice that the linear model provides a nice
fit to forecast the completion time performance in presence of different TCP vs uTP
mixtures.

Furthermore, as observed in [9] by means of simulation, Fig. 4 confirms that the
completion time increases for increasing buffer occupancy, which in turn generally in-
creases with the amount of TCP traffic exchanged.

As previously argued, this is due to a slow-down of BitTorrent signaling traffic,
while the completion time increase of all-uTP swarms is instead likely due to the low-
priority of uTP in the data plane. Hence, we also remark a non-monotonous behavior
for the completion time, that decreases for decreasing percentages of TCP traffic, and
then increases again for all-uTP swarms. As different dynamics takes place, hence the
linear dependence only applies in case of uTP and TCP traffic mixtures (i.e., non-0 TCP
traffic share).

Finally, notice that the default BitTorrent settings consistently yield to the shortest
download time we observed in the experiments, which confirms the soundness of the
bt.transp disposition design decision and settings.

5 Conclusions

This work assess the impact of uTP (the new BitTorrent congestion control algorithm
for data exchange) on the torrent completion time (the main user QoE metrics) by means
of an experimental campaign carried on in a fairly large scale controlled testbed.

Our results show that, in flash crowd scenarios, users will generally benefit of a
mixture of TCP and uTP traffic, both in homogeneous and heterogeneous swarms. In-
terestingly indeed, results with mixed TCP and uTP traffic show consistently shorter
download time with respect to the case of homogeneous swarms using either an all-
TCP or an all-uTP congestion control. Especially, our results confirm the soundness
of default BitTorrent settings, which use both TCP and uTP protocols and lead to the
shortest completion time in our experiments.

This results is the combination of two effects, on the control and data plane, that are
assisted by the use of uTP and TCP respectively. By keeping the queue size low, uTP
yields to a timely dissemination of signaling information, that would otherwise incur
in higher delays due to longer queues building up with TCP. At the same time, by its
more aggressive behavior, TCP yields to higher efficiency in the data plane, that results
in more timely dissemination of chunk content.

This work leaves a number of interesting points open, that we aim at addressing in
the future. First, we would like to investigate whether it would be possible to extend the
swarm size by running multiple peers per machine, without however incurring in a bias
due to the mutual interaction of the traffic injected. Second, we would like to study the
impact of heterogeneous target values in the swarm (i.e., to see whether fairness issues
can possibly arise) and refine our experimental setup (e.g., including heterogeneous ca-
pacities, peer churn, etc.). Third, on a longer timescale, we aim at developing a passive
BitTorrent inspector, capable of parsing traffic to produce chunk-level logs, that would
greatly enhance our analysis capabilities.

Acknowledgement

We thank Arvid Norberg for the fruitful discussions. Experiments presented in this pa-
per were carried out using the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from CNRS, RENATER and
several Universities as well as other funding bodies [10]. Project funding for our future
work on the topic would be more than welcome.

References

1. Alcock, S., Nelson, R.: Application flow control in youtube video streams. ACM SIGCOMM
Computer Communication Review 41(2) (2011) 24–30

2. Bonfiglio, D., Mellia, M., Meo, M., D.Rossi: Detailed analysis of skype traffic. IEEE Trans-
action on Multimedia 11(1) (January 2009) 117–127

3. Shalunov, S.e.a.: Low Extra Delay Background Transport (LEDBAT). IETF Draft (Oct
2010)

4. Norberg, A.: BitTorrent Enhancement Proposals on µTorrent transport protocol. http:
//www.bittorrent.org/beps/bep_0029.html (2009)

5. IETF: LEDBAT Working Group Charter. http://datatracker.ietf.org/wg/
ledbat/charter/

6. Schneider, J., Wagner, J., Winter, R., Kolbe, H.: Out of my Way – Evaluating Low Extra
Delay Background Transport in an ADSL Acciess Network. In: 22nd International Teletraffic
Congress (ITC22), Amsterdam, The Netherlands (Sep 2010)

7. Rossi, D., Testa, C., Valenti, S.: Yes, we LEDBAT: Playing with the new BitTorrent conges-
tion control algorithm. In: Passive and Active Measurement (PAM 2010), Zurich, Switzer-
land (Apr 2010)

8. Morris, S.: µTorrent release 1.9 alpha 13485. http://forum.utorrent.com/
viewtopic.php?pid=379206#p379206 (Dec 2008)

9. Testa, C., Rossi, D.: The impact of utp on bittorrent completion time. In: 11th IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P), Kyoto, Japan (2011)

10. https://www.grid5000.fr
11. Venkataramani, A., Kokku, R., Dahlin, M.: TCP Nice: A mechanism for background trans-

fers. In: 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI
2002), Boston, MA (Dec 2002)

12. Kuzmanovic, A., Knightly, E.: TCP-LP: low-priority service via end-point congestion con-
trol. IEEE/ACM Transactions on Networking (TON) 14(4) (2006) 752

13. Liu, S., Vojnovic, M., Gunawardena, D.: 4cp: Competitive and considerate congestion con-
trol protocol. In: ACM SIGCOMM, Pisa, Italy (Sep 2006)

14. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer
networks. ACM SIGCOMM Comp. Comm. Rev. 34(4) (2004) 367–378

15. Rao, A., Legout, A., Dabbous, W.: Can realistic bittorrent experiments be performed on
clusters? In: 10th IEEE International Conference on Peer-to-Peer Computing (P2P). (aug.
2010) 1 –10

16. Legout, A., Liogkas, N., Kohler, E., Zhang, L.: Clustering and sharing incentives in bittorrent
systems. In: Proc. of ACM SIGMETRICS’07, San Diego, CA, USA (June 2007)

17. Cohen, B., Norberg, A.: Correcting for clock drift in uTP and LEDBAT. In: Invited talk at
9th USENIX International Workshop on Peer-to-Peer Systems (IPTPS 2010), San Jose, CA
(Apr 2010)

18. Rossi, D., Testa, C., Valenti, S., Muscariello, L.: LEDBAT: the new BitTorrent congestion
control protocol. In: 19th IEEE International Conference on Computer Communications and
Networks (ICCCN 2010), Zurich, Switzerland (Aug 2010)

19. Carofiglio, G., Muscariello, L., Rossi, D., Valenti, S.: The quest for LEDBAT fairness. In:
IEEE Global Communication (GLOBECOM 2010), Miami, FL (Dec 2010)

20. Carofiglio, G., Muscariello, L., Rossi, D., Testa, C.: A hands-on Assessment of Transport
Protocols with Lower than Best Effort Priority. In: 35th IEEE Local Computer Network
(LCN 2010), Denver, CO (Oct 2010)

21. Padma Bhooma: Measurements using the LEDBAT implementation for MAX OS X. http:
//www.ietf.org/mail-archive/web/ledbat/current/msg00532.html

22. Abu, A., Gordon, S.: A Dynamic Algorithm for Stabilising LEDBAT Congestion Win-
dow. In: 2nd IEEE International Conference on Computer and Network Technology (ICCNT
2010), Bangkok, Thailand (Apr 2010)

23. http://perso.telecom-paristech.fr/˜testa/pmwiki/pmwiki.php?n=
Main.BTtestbed

24. Mogul, J.C.: Tcp offload is a dumb idea whose time has come. In: 9th conference on Hot
Topics in Operating Systems - Volume 9, Berkeley, CA, USA, USENIX Association (2003)
5–5

25. Akella, A., Seshan, S., Shaikh, A.: An empirical evaluation of wide-area internet bottlenecks.
In: Proc. of the 3rd ACM SIGCOMM Conference on Internet Measurement (IMC’03), Mi-
ami, FL, USA (Oct. 2003)

