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■ Motivation.
■ The FS paradigm:

◆ Definition of congestion.
◆ Properties of an ideal congestion control protocol.
◆ Introduction of the FS paradigm.
◆ Application of the FS paradigm.

■ The PLM multicast congestion control protocol:
◆ Introduction of the PP bandwidth inference mechanism.
◆ Presentation of PLM.
◆ Simulations on basic scenarios.
◆ Simulations on realistic scenarios.

■ Conclusion.
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■ Congestion control is a central problem in networks:
◆ No congestion control = congestion collapse.
◆ Basic but efficient way to achieve quality of service.

■ Congestion control is a complex problem in networks:
◆ Distributed algorithm that must optimize the resource allocation

of the network.

■ Jacobson and Karels solution for TCP:
◆ Collaborative protocol (linear increase, multiplicative decrease).

■ The TCP-Friendly paradigm for applications that can not use
TCP:
◆ Preserve the collaborative assumption.
◆ Based of TCP long-term behavior.
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■ Collaborative assumption for CC:
◆ Strength:

✦ Does not require any network support to achieve fairness,
efficiency, and stability.

◆ Weaknesses:
✦ Requires collaboration of all end users, cannot be longer assumed:

• New applications perform better with non TCP-friendly protocol.

✦ Very constraining when devising new CC protocols.

■ TCP-friendly well suited for short term, NOT for long term.
■ Beyond TCP-friendliness:

◆ Very controversial.
◆ Essential to significantly improve congestion control protocols.
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■ The network support can help CC:
◆ Wide range of network support: from buffer management to

active networking.
◆ We still want a best effort network.
◆ We have to respect the End-to-End argument.

■ Network support can simply be a Fair Scheduler (FS), two
main contributions:
◆ Keshav: Fair Queuing (FQ) + Packet Pair.
◆ Shenker: Game theoretic study of CC.

■ Two very promising results, but still no paradigm for the
Internet:
◆ Offer an great alternative to the TCP-friendly paradigm.
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■ Congestion related to:
◆ User satisfaction.
◆ Network performance.
◆ Such a definition introduced by Keshav.

■ Definition of congestion:
◆ Congestion: decrease of satisfaction due to a modification of the

performance (bandwidth, delay, jitter, etc.) of the connection.

■ A CC protocol must avoid congestion.
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■ We assume selfish users.
■ Abstract formulation: the properties remain very general.
■ Nash equilibrium, Pareto optimality.
■ Properties of an ideal CC protocol:

◆ Stability: Existence and uniqueness of Nash equilibrium.
◆ Efficiency: Fast convergence toward Pareto optimality.
◆ Fairness: Max-min fairness.
◆ Robustness: Against malicious, misbehaving, and greedy users.
◆ Scalability: With bandwidths heterogeneity, receivers, etc.
◆ Feasibility: Technical requirements (Hardware, Software, Easy

to evaluate,…).

■ How can we devise such a CC protocol?
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■ FS paradigm for the design of end-to-end CC protocols:
◆ Set of assumptions:

✦ Network Part (NP): We assume a Fair Scheduler network.
✦ End System Part (ESP): We assume selfish and non-collaborative

end users (sufficient condition).

◆ Nearly ideal end-to-end CC protocols (stability, efficiency,
fairness, robustness, scalability, and feasibility).

◆ No need for specific mechanisms in the CC protocol to improve
one of the properties of an ideal CC protocol.

◆ Just address the application needs.

■ The FS paradigm does not give the mechanisms to meet the
application needs but considerably simplifies the design of CC
protocols.
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■ The study of FS paradigm is formal:
◆ Need a pragmatic validation.

■ Multicast dissemination of audio/video (multimedia) content is
challenging  for CC:
◆ No satisfactory congestion control protocols for multicast

delivery.
◆ RLM and RLC exhibit fundamental pathological behaviors, but

use interesting architectural choices (receiver-driven cumulative
layer multicast protocol).

◆ We applied the FS paradigm to design a new receiver-driven
cumulative layered multicast congestion control protocol.
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■ Previous protocols used bandwidth inference mechanisms
based on congestion signal (losses, ECN, etc.):
◆ The bottleneck buffer needs to overflow.
◆ The congestion signal (missing packet) reaches the receiver far

after the queue starts to build (i.e. congestion starts).
◆ No information on the available bandwidth.

■ Bandwidth inference mechanism based on explicit available
bandwidth notification (Packet Pairs).
◆ Has none of the congestion signal drawbacks.

■ PLM is a pragmatic test of the validity of the FS paradigm.
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■ The Packet Pair (PP) bandwidth inference mechanism first
introduced by Keshav (PP is two packets sent back-to-back,
PP+FQ = PP spaced out by the available bandwidth):
◆ A sender based version.
◆ Estimates used for a fine grain rate adjustment.
◆ Needs complex estimator to filter out noise.

■ The PP bandwidth inference mechanism applied to PLM:
◆ A receiver based version of PP. Less noise (Paxson), no

problem due to the reverse path noise and bottleneck.
◆ We use PP for a coarse grain adaptation, less sensitive to

noise.

■ A PP signal of congestion leaves the queue before the queue
starts to build and far before the queue overflows.
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◆ Before F3 starts, the PP space gives the available bandwidth
B/2.

◆ One FS round after the first packet of F3 was backlogged in Q,
a PP leaves Q spaced out by the available bandwidth B/3:

✦ This PP was backlogged in Q before F3 started in Q.
✦ This PP leaves Q when there is only one packet of F3 backlogged

in Q (far before the queue starts to build).
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■ PLM is a receiver-driven cumulative layered multicast
congestion control protocol:
◆ Data that can be striped in cumulative layers

(Audio/Video/Data).
◆ Multicast capable network.
◆ Fair scheduler network.

■ PLM source:
◆ The source sends each layer on a different multicast group.

✦ Same multicast tree for all the multicast groups of the same PLM
session.

◆ The source sends on each layer packet by pair (PP).

■ The PPs allow to dynamically infer the available bandwidth
for each receiver (explicit available bandwidth notifications).
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■ PLM receiver:
◆ Each PP received leads to an estimate of the available

bandwidth.
◆ We drop layers each time we have an estimate lower than the

current layer subscription until the layer subscription is lower
than the estimate.

◆ We add layers according to the minimum estimate received
during a period C (the Check value) if all the estimates received
during C are greater than the current layer subscription.

■ Note the simplicity of the protocol, no specific mechanism to
improve one of the properties of an ideal CC protocol.

■ Does it work?
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■ Simple scenarios, not intended to be realistic.
■ Allow to assess the fundamental properties of PLM.
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■ Evaluation of the speed, stability,
and accuracy of the PLM
convergence in the context of a
large heterogeneity of delay and
bandwidth.

■ 10 Kbit/s per layer (tough test).

■ All the receivers converge to the
optimal rate in the order of C=1
second and stay at this rate
during the whole simulation.
No loss induced.
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■ Evaluation of the PLM scalability
with the number of receivers and
with late joins.

■ 50 Kbit/s per layer.

■ 20+5+5 receivers.
■ PLM convergence is independent

of the number of receivers and of
the late joins. No loss induced.
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■ 3 PLM + 3 CBR. Evaluation of the
scalability  of PLM with the
number of sessions, PLM
adaptation to heavy congestion.

■ 20 Kbit/s per layer.

■ PLM adapt to the available
bandwidth in less than a RTT.
No loss induced even in case of
high congestion.
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■ PLM performs very well for the basic scenarios:
◆ Fast convergence, stability, scalability, fairness, no loss

induced.
◆ Do these nice properties still hold in a realistic environment?

■ Strong evidence of self similar and even multifractal traffic in
the Internet.
◆ We use the Anja Feldmann’s Sigcomm’99 scenarios and add a

PLM session in these scenarios (self similar and multifractal
background traffic).
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■ Evaluation of PLM with a complex
background traffic (Feldmann):

◆ Si are web servers, Ri are web
clients.

◆ A session is defined for a
client. Each session contains
300 pages, each page
contains 1 object:

✦ 100 sessions: lightly loaded.

✦ 400 sessions: heavy loaded.

◆ For a given session, a client
requests each page on a
randomly chosen server.

◆ The object size is Pareto
distributed.
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■ Background traffic

■ 100 sessions. Mean throughput
for the background traffic at the
bottleneck (N5,N6): 737 Kbit/s.

■ Self similar and multifractal
background traffic.

■ PLM

■ Mean throughput seen by the
PLM receiver. C=1s, exponential
layers, 1000 bytes packet size.

■ PLM closely follow the
background traffic, no loss.
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■ Layer subscription for C=1s, 100
sessions, exponential layers, and
1000 bytes PLM packet size.

■ 2090 layer changes. This is not a
sign of instability.

■ PLM mean throughput: 733 Kbit/s.

■ Layer subscription for C=5s, 100
sessions, exponential layers, and
1000 bytes PLM packet size.

■ 417 layer changes.
■ PLM mean throughput: 561 Kbit/s.

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

Time (s)

La
ye

r 
su

bs
cr

ip
tio

n

Layer subscription for the PLM receiver

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

Time (s)

La
ye

r 
su

bs
cr

ip
tio

n

Layer subscription for the PLM receiver



9/22/00 25

■ PLM is:
◆ Stable, fast convergence, no pathological oscillations.
◆ Efficient, track the available bandwidth without loss induced.
◆ Fair with TCP and PLM.
◆ Robust against other congestion control protocols.
◆ Scalable due to the receiver-driven cumulative layered solution.
◆ Feasible due to its simplicity, in the ns distribution.
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■ We have introduced the FS-paradigm for the design of CC
protocols. Appealing properties, but need a pragmatic
validation.

■ We devised PLM, a new multicast CC protocol for
audio/video/data multicast dissemination:
◆ PLM bandwidth inference mechanism based on PP.
◆ PLM outperforms all the previous multicast layered CC protocols:

✦ PLM converges fast to the optimal rate and tracks this rate with no
loss induced. PLM is efficient, stable, fair, and simple.

✦ PLM still performs well with a realistic background traffic.

■ PLM is incontestably a practical validation of the FS-paradigm.
■ FS paradigm + PLM = original and comprehensive study of the

CC problem.                      Thanks!


