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ABSTRACT
Constructive methods for matrices of multihomogeneous re-
sultants for unmixed systems have been studied in [7, 14,
16]. We generalize these constructions to mixed systems,
whose Newton polytopes are scaled copies of one polytope,
thus taking a step towards systems with arbitrary supports.
First, we specify matrices whose determinant equals the re-
sultant and characterize the systems that admit such formu-
lae. Bézout-type determinantal formulae do not exist, but
we describe all possible Sylvester-type and hybrid formu-
lae. We establish tight bounds for the corresponding degree
vectors, as well as precise domains where these concentrate;
the latter are new even for the unmixed case. Second, we
make use of multiplication tables and strong duality theory
to specify resultant matrices explicitly, in the general case.
The encountered matrices are classified; these include a new
type of Sylvester-type matrix as well as Bézout-type matri-
ces, which we call partial Bezoutians. Our public-domain
Maple implementation includes efficient storage of com-
plexes in memory, and construction of resultant matrices.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Algebraic Manipula-
tions—algebraic algorithms

General Terms
Algorithms, Theory

Keywords
multihomogeneous system, resultant matrix, Sylvester, Bé-
zout,determinantal formula, Maple implementation

1. INTRODUCTION
Resultants provide efficient ways for studying and solving

polynomial systems by means of their matrices. This paper
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considers the sparse (or toric) resultant, which exploits a
priori knowledge on the support of the equations. We con-
centrate on mixed multihomogeneous, or mixed multigraded,
systems; their study is a first step away from the theory of
homogeneous and unmixed multihomogeneous systems, to-
wards fully exploiting arbitrary sparse structure.

Multihomogeneous systems are encountered in several ar-
eas e.g. [3, 8, 12] Few foundational works exist, such as [13],
where bigraded systems are analyzed, or [10], where straight-
line programs are applied. Our work continues that of [7,
14, 16], where the unmixed case has been treated, and gen-
eralizes their results. We focus on systems whose Newton
polytopes are scaled copies of one polytope, thus taking a
step towards systems with arbitrary supports. This is the
first work that treats mixed multihomogeneous equations,
and provides explicit resultant matrices.

Sparse resultant matrices are of different types. On the
one end of the spectrum are the pure Sylvester-type matrices,
filled in by polynomial coefficients; such are Sylvester’s and
Macaulay’s matrices. On the other end are the pure Bézout-
type matrices, filled in by the coefficients of the Bezoutian
polynomial. Hybrid matrices contain blocks of both pure
types.

We examine Weyman complexes (defined below), which
generalize the Cayley-Koszul complex and yield the mul-
tihomogeneous resultant as the determinant of a complex.
These complexes are parametrized by a degree vector m;
when the complex has two terms, its determinant is that
of a matrix expressing the map between these terms, and
equals the resultant. In this case, there is a determinantal
formula, and the corresponding vector m is determinantal .
The resultant matrix is then said to be exact, or optimal,
in the sense that there is no extraneous factor in the deter-
minant. As is typical in all such approaches, including this
paper, the polynomial coefficients are assumed to be suffi-
ciently generic for the resultant, as well as any extraneous
factor, to be nonzero.

In [16], the unmixed multihomogeneous systems for which
a determinantal formula exists were classified; see also [9,
Sec. 13.2]. To identify explicitly the corresponding mor-
phisms and the vectors m was the focus of [7]. The main
result of Sturmfels and Zelevinsky [14] was to establish that
a determinantal formula of Sylvester type exists (for un-
mixed systems) precisely when a simple condition holds on
the cardinalities of the groups of variables and their degrees.
In [14, Thm. 2] all such formulae are characterized by show-
ing a bijection with the permutations of the variable groups
and by defining the corresponding vector m. This includes



all known Sylvester-type formulae, in particular, of linear
systems, systems of two univariate polynomials, and biho-
mogeneous systems of 3 polynomials whose resultant is, re-
spectively, the coefficient determinant, the Sylvester resul-
tant and the classic Dixon formula.

In [14], they characterized all determinantal Cayley-Kos-
zul complexes, which are instances of Weyman complexes
when all the higher cohomologies vanish. In [7], this charac-
terization is extended to the whole class of unmixed Weyman
complexes. It is also shown that there exists a determinan-
tal pure Bézout-type resultant formula iff there exists such
a Sylvester-type formula. Explicit choices of determinantal
vectors are given for any matrix type, as well as a choice
yielding pure Bézout type formulae, if one exists. The same
work provides tight bounds for the coordinates of all possi-
ble determinantal vectors and constructs a family of (rect-
angular) pure Sylvester-type formulae among which lies the
smallest such formula. This paper shall extend these results
to unmixed systems.

Studies exist, e.g. [3], for computing hybrid formulae for
the resultant in specific cases. The work in [17] elaborates on
the transformations between Sylvester and Bézout-type ma-
trices (called Cayley-type). In [1], the Koszul and Cech co-
homologies are studied in the mixed multihomogeneous case
so as to define the resultant in an analogous way to the one
used in Sect. 2. In [5], hybrid resultant formulae were pro-
posed in the mixed homogeneous case; this work is general-
ized here to multihomogeneous systems. Similar approaches
are applied to Tate complexes [4] to handle mixed systems.
We shall generalize this construction to multi-homogeneous
polynomials.

The main contributions of this paper are as follows: Firstly,
we establish the analog of the bounds given in [7, Sect. 3]
and greatly simplify their proof for the unmixed case. We
characterize the scaled systems that admit a determinantal
formula, either pure or hybrid. If pure determinantal for-
mulae exist, we explicitly provide the m-vectors that corre-
spond to them. In the search for determinantal formulae we
discover box domains that consist of determinantal vectors
thus improving the blind search for these vectors adopted
in [7]. We conjecture that a formula of minimum dimension
can be recovered from the centers of such boxes, analogous
to the homogeneous case. We make the differentials in the
Weyman complex explicit and provide details of the com-
putation. Note that the actual construction of the matrix,
given the terms of the complex, is nontrivial. Our study
has been motivated by [7], where similar ideas are used in
the (unmixed) examples of their Sect. 7, though without
proofs and with some constructions which we rectify in Ex-
ample 4.3. Finally, we deliver a complete, publicly available
Maple package for the computation of multihomogeneous
resultant matrices. Based on the software of [7], it has been
enhanced with new functions, including some which had not
been implemented even for the unmixed case, such as the
construction of resultant matrices and the efficient storage
of complexes.

The rest of the paper is organized as follows. We start
with sparse resultants and Weyman complexes; Sect. 2.1 in-
troduces concepts to study the latter. Sect. 3 classifies the
systems that admit hybrid and pure determinantal formu-
lae; explicit vectors are provided for pure formulae and min-
imum dimension choices are conjectured. Bounds on the
coordinates of all determinantal vectors are also obtained.

In Sect. 4 we construct the actual matrices; we present
Sylvester and Bézout-type constructions, and examples that
demonstrate our results. We conclude with our Maple im-
plementation. The Appendix contains proofs and examples
that did not fit the space requirements.

2. RESULTANTS VIA COMPLEXES
We define the resultant, and connect it to complexes by

homological constructions. Take the product X := Pl1 ×
· · ·×Plr of projective spaces over an algebraically closed field
F of characteristic zero, for r ∈ N. Its dimension equals the
number of affine variables n =

Pr
k=1 lk. We consider poly-

nomials over X of scaled degree: their multidegree is a mul-
tiple of a base degree d = (d1, . . . , dr) ∈ Nr, say deg fi = sid.
We assume s0 ≤ · · · ≤ sn and gcd(s0, . . . , sn) = 1, so that
the data l, d, s = (s0, . . . , sn) ∈ Nn+1 fully characterize the
system. We denote by S(d) the vector space of multihomo-
geneous forms of degree d defined over X. These are homo-
geneous of degree dk in the variables xk for k = 1, . . . , r. A
system of type (l, d, s) belongs to V = S(s0d)⊕· · ·⊕S(snd).

Definition 2.1. Consider a scaled multihomogeneous sys-
tem f = (f0, . . . , fn) defined by the cardinalities l ∈ Nr, base
degree d ∈ Nr and s ∈ Nn+1. There exists a unique up to
sign, irreducible polynomial R(f0, . . . , fn) = Rl,d,s(f0, . . . , fn)
in Z[V ], which vanishes iff the f0, . . . , fn have a common
root in X. This is the multihomogeneous resultant of f .

This is an instance of the sparse resultant. It is itself
multihomogeneous in the coefficients of each fi, with degree
given by the multihomogeneous Bézout bound:

Lemma 2.2. The resultant polynomial is homogeneous in
the coefficients of each fi, i = 0, . . . , n, with degree

degfi R =

 
n

l1, . . . , lr

!
dl11 · · · dlrr s0 · · · sn

si
.

This yields the total degree of the resultant
Pn
i=0 degfi R.

The rest of the section gives details on the underlying
theory. The vanishing of the multihomogeneous resultant
can be expressed as the failure of a complex of sheaves to
be exact. This allows to construct a class of complexes of
finite-dimensional vector spaces whose determinant is the
resultant polynomial. This definition of the resultant was
introduced by Cayley [9, App. A], [15].

For u ∈ Zr, Hq (X,OX(u)) denotes the q-th cohomology
of X with coefficients in the sheaf O(u). Throughout this
paper we write for simplicity Hq(u), even though we also
keep the reference to the space whenever it is different than
X, for example H0(Plk , uk). To a polynomial system f =
(f0, . . . , fn) over V , we associate a finite complex of sheaves
K• on X :

0→ Kn+1 → · · ·
δ2−→ K1

δ1−→ K0
δ0−→ · · · → K−n → 0 (1)

This complex (whose terms are defined in Def. 2.3 below) is
known to be exact iff f0, . . . , fn share no zeros in X; it is
hence generically exact. When passing from the complex of
sheaves to a complex of vector spaces there exists a degree of
freedom, expressed by a vector m = (m1, . . . ,mr) ∈ Zr. For
every given f we specialize the differentials δi : Ki → Ki−1,
i = 1 − n, . . . , n + 1 by evaluating at f to get a complex of
finite-dimensional vector spaces. The main property is that
the complex is exact iff R(f0, . . . , fn) 6= 0 [15, Prop. 1.2].



The main construction that we study is this complex,
which we define in our setting. It extends the unmixed case,
where for given p the direct sum collapses to

`
n+1
p

´
copies of

a single cohomology group.

Definition 2.3. For m ∈ Zr, ν = −n, . . . , n + 1 and
p = 0, . . . , n+ 1 set

Kν,p =
M

0≤i1<···<ip≤n

Hp−ν

 
m−

pX
θ=1

siθd

!

where the direct sum is over all possible indices i1 < · · · <
ip. The Weyman complex K• = K•(l, d, s,m) is generically

exact and has terms Kν =

n+1M
p=0

Kν,p.

This generalizes the classic Cayley − Koszul complex.
The determinant of the complex can be expressed as a quo-
tient of products of minors from the δi. It is invariant under
different choices of m ∈ Zr and equals the multihomoge-
neous resultant R(f).

2.1 Combinatorics of K•
We present a combinatorial description of the terms in our

complex, applicable to the unmixed case as well. For details
on the co-homological tools that we use, see [9].

By the Künneth formula, we have the decomposition

Hq (α) =

jk∈{0,lk}M
j1+···+jr=q

rO
k=1

Hjk
“

Plk , αk
”
, (2)

where q = p−ν and the direct sum runs over all integer sums
j1 + · · · + jr = q, jk ∈ {0, lk}. In particular, H0(Plk , αk) is
isomorphic to S(αk), the graded piece of S in degree αk,
or if you prefer the space of all homogeneous polynomials in
lk+1 variables with total degree αk, where α = m−zd ∈ Zr
for z ∈ Z.

By Serre duality, for any α ∈ Zr, we know that

Hq(α) ' Hn−q(−l − 1− α)∗, (3)

where ∗ denotes dual, and 1 ∈ Nr a vector full of ones.
Furthermore, we identify Hlk (Plk , αk) as the dual space
S(−αk − lk − 1)∗. This is the space of linear functions
Λ : S(αk) → F. Sometimes we use the negative symmetric
powers to interpret dual spaces, see also [16, p.576]. This
notion of duality is naturally extended to the direct sum of
cohomologies: the dual of a direct sum is the direct sum of
the duals of the summands. The next proposition (Bott’s
formulae, cf. [2]) implies that this dual space is nontrivial iff
−αk − lk − 1 ≥ 0.

Proposition 2.4. For any α ∈ Zr and any k ∈ {1, . . . , r},
(a) Hj(Plk , αk) = 0, ∀j 6= 0, lk,
(b) Hlk (Plk , αk) 6= 0 ⇔ αk < −lk, dimHlk (Plk , αk) =`−αk−1

lk

´
.

(c) H0(Plk , αk) 6= 0⇔ αk ≥ 0, dimH0(Plk , αk) =
`
αk+lk
lk

´
.

Definition 2.5. Given l, d ∈ Nr and s ∈ Nn+1, define
the critical degree vector ρ ∈ Nr by ρk := dk

Pn
θ=0 sθ−lk−1,

for all k = 1, . . . r.

The Künneth formula (2) states that Hq(α) is a sum of
products. We can give a better description:

Lemma 2.6. If Hq(α) is nonzero, then it is equal to a
product Hj1(Plk , αk)⊗ · · · ⊗Hjr (Plk , αk) for some integers
j1, . . . , jr with jk ∈ {0, lk},

Pr
k=1 jk = q.

Proof. By Prop. 2.4(a), onlyH0(Plk , αk) orHlk (Plk , αk)
may be nonzero. By Prop. 2.4(b,c) at most one of them ap-
pears.

Putting together Def 2.3 and (2) we get

Kν,p =
M

0≤i1<···<ip≤n

rO
k=1

Hjk

 
Plk ,mk −

pX
θ=1

siθdk

!
(4)

for some integer sums j1 + · · · + jr = p − ν, jk ∈ {0, lk}
such that all the terms in the product do not vanish. Con-

sequently, dimHq (α) =

rY
k=1

dimHjk
“

Plk , αk
”
. The dimen-

sion of Kν,p follows by taking the sum over all α = m −Pp
θ=1 siθd, for all combinations {i1 < · · · < ip} ⊆ {0, . . . , n}.
Throughout this paper we denote [u, v] := {u, u+1, . . . , v};

given p ∈ [0, n+ 1], the set of possible sums of p coordinates
out of vector s is Sp :=

˘Pp
θ=1 siθ : 0 ≤ i1 < · · · < ip ≤ n

¯
and by convention S0 = {0}. By Prop. 2.4, the set of integers
z such that both H0(Plk ,mk− zdk) and Hlk (Plk ,mk− zdk)
vanish is:

Pk :=

„
mk

dk
,
mk + lk
dk

–
∩ Z.

We adopt notation from [16]: for u ∈ Z, Pk < u ⇐⇒ u >
mk+lk
dk

and Pk > u ⇐⇒ u ≤ mk
dk

. Note that we use this

notation even if Pk = ∅. As a result, the z ∈ Z that lead
to a nonzero Hjk (Plk ,mk − zdk), for jk = lk or jk = 0, and
p ∈ [0, n+ 1], lie in:

Qp = Sp \ ∪r1Pk, and Q = ∪n+1
p=0Qp. (5)

Now #Pk ≤ lk implies #(∪kPk) ≤ n. So #(∪pSp) ≥ n + 2
implies #Q ≥ 2. We define a function q : Q→ [0, n] by

q(z) :=
X
Pk<z

lk. (6)

Observe that Hj(X,m− zd) 6= 0 ⇐⇒ z ∈ Q and j = q(z);
also the system is unmixed iff Sp = {p}. Clearly 1 ≤ #Sp ≤`
n+1
p

´
, the former inequality being strict for s 6= 1 ∈ Nn+1

and p 6= 0, n+ 1.
The following lemma generalizes [16, Prop.2.4].

Lemma 2.7. Let ν ∈ Z, p ∈ {0, . . . , n+1} and Kν,p given
by Def. 2.3; then Kν,p 6= 0 ⇐⇒ ν ∈ {p− q(z) : z ∈ Qp}.

Proof. Assuming Kν,p 6= 0, there exists a nonzero sum-
mand Hp−ν(m − zd) 6= 0. By Lem. 2.6 it is equal to
Hj1(Plk ,mk − zdk) ⊗ · · · ⊗ Hjr (Plk ,mk − zdk) 6= 0, jk ∈
{0, lk} and

p− ν =

rX
k=1

jk =
X
Pk<z

lk ⇒ ν = p−
X
Pk<z

lk.

Conversely, if ν ∈ {p − q(z) : z ∈ Qp} then Qp 6= ∅. Now

z ∈ Qp implies z /∈ P , which means Hq(z)(m− zd) 6= 0, the
latter being a summand of Kν,p.

One instance of the complexity of the mixed case is that
in the unmixed case, given p ∈ [0, n+1], there exists at most
one integer ν such that Kν,p 6= 0.

All formulae (including determinantal ones) come in dual
pairs, thus generalizing [7, Prop.4.4].



Lemma 2.8. Assume m,m′ ∈ Zr satisfy m + m′ = ρ,
where ρ is the critical degree vector. Then, Kν(m) is dual to
K1−ν(m′) for all ν ∈ Z. In particular, m is determinantal
iff m′ is determinantal, yielding matrices of the same size,
namely dim(K0(m)) = dim(K1(m′)).

Proof. Based on the equality m + m′ = ρ we deduce
that for all J ⊆ [0, n + 1], it holds that m′ −

P
i∈J sid =

−l − 1 − (m −
P
i/∈J sid). Therefore, for all q = 0, . . . , n,

Serre’s duality (3) implies that Hq(X,m′ −
P
i∈J sid) and

Hn−q(X,m−
P
i/∈J sid) are dual.

Let #J = p and ν = p − q; since (n + 1 − p) − (n −
q) = 1 − (p − q) = 1 − ν, we deduce that Kν,p(m) is
dual to K1−ν,n+1−p(m

′) for all p ∈ [0, n + 1] which leads
to Kν(m)∗ ' K1−ν(m′) for all ν ∈ Z, as desired. In partic-
ular, K−1(m) ' K∗2 (m′) and K0(m) ' K∗1 (m′), the latter
giving the matrix dimension in the case of determinantal
formulae.

3. DETERMINANTAL FORMULAE
This section focuses on formulae that yield square matri-

ces expressing the resultant without extraneous factors and
prescribes the corresponding determinantal m-vectors.

Determinantal formulae exist only if there is exactly one
nonzero differential, so the complex consists of two consecu-
tive nonzero terms. The determinant of the complex is the
determinant of this differential. We now specify this differ-
ential; for the unmixed case cf. [16, Lem.3.3].

Lemma 3.1. If m is determinantal then the nonzero part
of the complex is δ1 : K1 → K0.

Proof. The condition that m is determinantal is equiva-
lent to the fact that N := {p− q(z) : z ∈ Qp, p ∈ [0, n+ 1]}
consists of two consecutive integers.

Let z1 = minQ < z2 = maxQ, since #Q ≥ 2. There
exist p1, p2 with p1 < p2 such that z1 =

Pp1
θ=1 siθ and z2 =Pp2

λ=1 sjλ where the indices are sub-sequences of [0, n], of
length p1 and p2 resp. The p1 integers

0, s0, s0 + s1, . . . , s0 + · · ·+ sp1−2 ∈ Z

are distinct, smaller than z1, hence belong to ∪Pk<z1Pk.
Also, it is clear that, for all k ∈ [1, r], #Pk ≤ dlk/dke ≤ lk
thus

p1 ≤ #
[

Pk<z1

Pk ≤
X
Pk<z1

#Pk ≤ q(z1). (7)

This means p1 − q(z1) ≤ 0. Symmetric arguments lead to
n+1−p2 ≤

P
Pk>z2

lk = n−q(z2), implying p2−q(z2) ≥ 1.

Hence there exists a positive integer in N ; from (7) we
must have a non-positive integer in N . Since #N = 2
and the integers of N are consecutive we deduce that N =
{0, 1}.

Corollary 3.2. If m ∈ Zr is determinantal, then equal-
ity holds in (7) . In particular, for k ∈ [1, r] s.t. either
Pk < z1 or Pk > z2, we have #Pk = lk and any two such
Pk are disjoint.

3.1 Bounds for determinantal vectors
We generalize the bounds in [7, Sect.3] to the mixed case,

for the coordinates of all determinantal m−vectors. We fol-
low a simpler and more direct approach based on a global
view of determinantal complexes.

Lemma 3.3. If a vector m ∈ Zr is determinantal then the
corresponding

Sr
1 Pk is contained in

ˆ
0,
Pn

0 si
˜
.

The bound below is proved in [7, Cor.3.9] for the unmixed
case. They also show with an example that this bound is
tight with respect to individual coordinates. We give an
independent, significantly simplified proof, which extends
that result to the scaled case.

Theorem 3.4. For determinantal m ∈ Zr, for all k we

have max{−dk,−lk} ≤ mk ≤ dk
nX
0

si−1+min{dk− lk, 0}.

Proof of Th. 3.4. Observe that by Lem. 3.1 there are
no k ∈ [1, r] such that Pk < 0 or Pk >

Pn
0 si. Combining

this fact with Lem. 3.3, we get

mk/dk ≥ −1 and (mk + lk)/dk < 1 +

nX
0

si (8)

for all k ∈ [1, r]. Furthermore, the sets Pk, k ∈ [1, r] can be
partitioned into two (not necessarily non-empty) classes, by
considering the integers z1, z2 of Lem. 3.1:

• Pk < z1 or Pk > z2, with cardinalities #Pk = lk.

• z1 < Pk < z2, without cardinality restrictions (possi-
bly empty).

Taking into account that Pk =
“
mk
dk
, mk+lk

dk

i
∩ Z we get

(mk + lk)/dk ≥ 0 and mk/dk <

nX
0

si (9)

for all k ∈ [1, r].

Our implementation in Sect. 5 conducts a search in the
box defined by the above bounds. For each m in the box, the
dimension of K2 and K−1 is calculated; if both are zero the
vector is determinantal. Finding these dimensions is time
consuming; the following lemma provides a cheap necessary
condition to check before calculating them.

Lemma 3.5. If m is determinantal then there exist in-
dices k, k′ ∈ [1, r] such that mk < dk(sn−1 + sn) and mk′ ≥
dk′
Pn−2

0 si − lk′ .

Proof. If for all k, mk/dk ≥ s0+s1 then q(sn−1+sn) = 0
by (5), so for p = 2 we have p−q(sn−1+sn) = 2−0 = 2 which
contradicts the fact that m is determinantal. Similarly, if for
all k, (mk + lk)/dk <

Pn−2
0 si ⇒ q

`Pn−2
0 si

´
= n and for

p = n− 1 we have p− q
`Pn

2 si
´

= (n− 1)− n = −1, which
is again infeasible.

3.2 Characterization and explicit vectors
We provide necessary and sufficient conditions for the data

l, d, s to admit a determinantal formula; we call this data de-
terminantal. Also, we derive multidimensional integer inter-
vals (boxes) that yield determinantal formulae and conjec-
ture that minimum dimension formulae appear near the cen-
ter of these intervals. For determinantal formulae, it holds
K2 = K−1 = 0.

Lemma 3.6. If m ∈ Zr is a determinantal vector for the
data l, d, s, then this data admits a determinantal vector
m′ ∈ Zr with Pk ∩ Pk′ = ∅ for all k, k′ ∈ [1, r].



Let σ : [1, r]→ [1, r] be any permutation. One can identify
at most r! classes of determinantal complexes, indexed by
the permutations of {1, . . . , r}. This classification arises if
we look at the nonzero terms that can occur in the complex,
provided that the sets Pk satisfy

Pσ(1) ≤ Pσ(2) ≤ · · · ≤ Pσ(r)

where we set Pi ≤ Pj ⇐⇒ mi/di ≤ mj/dj . Any given
m defines these sets, as well as an ordering between them.
This fact allows us to classify determinantal m-vectors and
the underlying complexes.

For this configuration, expressed by σ, the only nonzero
summands of Kν can be Kν,ν+q where q takes values in the
set {0, lσ(1), lσ(1) + lσ(2), . . . , n}. To see this, observe that
q(z) =

P
Pk<z

lk, z ∈ N cannot have more than r+1 distinct
values; so if the relative ordering of the Pk is fixed as above,
then these are the only possible values of q. This leads us
to the following description of K2 and K−1:

Kσ
2 =

rM
k=1

K
2,2+

Pk−1
i=1 lσ(i)

, Kσ
−1 =

rM
k=1

K−1,−1+
Pk
i=1 lσ(i)

By the proof of Lem. 2.8, the dual of Kσ
ν (m) is Kτ

1−ν(ρ−m)
where τ is the permutation s.t. τ(i) := r + 1− σ(i).

Let π[k] :=
P
π(i)≤π(k) li. If π = Id this is Id[k] = l1 +

· · ·+ lk. We now characterize determinantal data:

Theorem 3.7. The data l, d, s admit a determinantal for-
mula iff there exists π : [1, r]→ [1, r] s.t.

dk

nX
n−π[k]+2

si − lk < dk

π[k−1]+1X
0

si, ∀k.

Proof. To simplify notation, set L(s, π) :=
Pπ[k−1]+1
i=0 si =

minSπ[k−1]+2 andR(s, π) :=
Pn
n−π[k]+2 si−lk = maxSπ[k]−1.

(⇐) Assume that the inequalities hold. Then for all k
there exists an integer mk s.t. dkL(s, π) − lk ≤ mk ≤
dkR(s, π)− 1. Let m = (m1, . . . ,mr). By the above discus-
sion, m yields the configuration for σ := π−1. To see this,
observe that lσ(1) + · · ·+ lσ(k) = π[k], hence it is enough to
show that for all k ∈ [1, r], K2,2+π[k−1] = K−1,−1+π[k] = 0.

If lk ≥ 3, we have L(s, π) ≤ R(s, π), because si ≥ 1, and
the definition of m impliesˆ

L(si, π), R(si, π)
˜
⊆
„
mk

dk
,
mk + lk
dk

–
= Pk (10)

i.e. Sπ[k−1]+2 ∪ Sπ[k]−1 ⊆ Pk and thus K2,2+π[k−1] = 0,
K−1,−1+π[k] = 0 by Prop. 2.4.

If lk ≤ 2, then L(s, π) > R(s, π) and, since #Pk ≤ lk,
the inequalities imply z1 < Pk for z1 ∈ Q2+π[k−1]; similarly,
for z2 ∈ Q−1+π[k], Pk < z2. This leads to q(z1) = π[k] and
q(z2) = π[k − 1]; combined with π[k] = π[k − 1] + lk we get

p− q = (2 + π[k − 1])− π[k] = 2− lσ(k) ∈ [0, 1] (11)

and

p− q = (−1 + π[k])− π[k − 1] = −1 + lσ(k) ∈ [0, 1] (12)

respectively, as desired.
(⇒) Suppose that m ∈ Zr is determinantal, following

some configuration σ. By Lem. 3.6, we can assume that
the corresponding Pk sets are pairwise disjoint. Now look at
the neighbourhood of Pk; The set Sπ[k−1]+2∪Sπ[k]−1 cannot
be coverd by ∪r1Pk \ Pk, thus we can distinguish two cases
as above, leading to (10) or (11,12).

Corollary 3.8. For any permutation π : [1, r] → [1, r],
the vectors m ∈ Zr contained in the box

dk

nX
n−π[k]+2

si − lk ≤ mk ≤ dk
π[k−1]+1X

0

si − 1

for k = 1, . . . , r are determinantal.

It would be good to have a characterization that does
not depend on the permutations of [1, r]; this would fur-
ther reduce the time needed to check if some given data is
determinantal. One can see that if r ≤ 2 an equivalent con-

dition is dk

nX
n−lk+2

si−lk < dk(s0 +s1) for all k ∈ [1, r](cf. [5,

Lem. 5.3] for the case r = 1). It turns out that for any r ∈ N
this condition is necessary for the existence of determinantal
vectors, but not always sufficient: the smallest counterexam-
ple is l = (1, 2, 2), d = (1, 1, 1), s = (1, 1, 1, 1, 2, 3): this data
is not determinantal, although the condition holds. In our
implementation this condition is used as a filter when check-
ing if some data is determinantal. Also, [5, Cor. 5.5] applies
coordinate-wise: if for some k, lk ≥ 7 then a determinantal
formula cannot possibly exist unless dk = 1 and all the si’s
equal 1, or at most, sn−1 = sn = 2, or all of them equal 1
except sn = 3.

We deduce that there exist at most r! boxes, defined by
the above inequalities that consist of determinantal vectors,
or at most r!/2 matrices up to transpose. One can find
examples of data with any even number of nonempty boxes,
but by Th. 3.7 there exists at least one that is nonempty.

If r = 1 then a minimum dimension formula lies in the
center of an interval [5]. We conjecture that a similar explicit
choice also exists for r > 1. Experimental results indicate
that minimum dimension formulae tend to appear near the
center of the nonempty boxes:

Conjecture 3.9. If the data l, d, s is determinantal then
determinantal formulae of minimum dimension lie close to
the center of the nonempty boxes of Cor. 3.8.

3.3 Pure formulae
A determinantal formula is pure if it is of the form K1,a →

K0,b for a, b ∈ [0, n+1] with a > b. These formulae are either
Sylvester or Bézout type, named after the matrices for the
resultant of two univariate polynomials.

In the unmixed case both kinds of pure formulae exist ex-
actly when for all k ∈ [1, r] it holds that min{lk, dk} = 1 [14,
7]. The following theorem extends this characterization to
the scaled case, by showing that only pure Sylvester formu-
lae are possible and the only data that admit such formulae
are univariate and bivariate-bihomogeneous systems.

Theorem 3.10. If s 6= 1 a pure Sylvester formula exists
iff r ≤ 2 and l = (1) or l = (1, 1). If l1 = n = 1 the degree
vectors are given by

m = d1

1X
0

si − 1 and m = −1

whereas if l = (1, 1) the vectors are given by

m =

 
−1, d2

2X
0

si − 1

!
and m =

 
d1

2X
0

si − 1,−1

!
.

Pure Bézout determinantal formulae cannot exist.



Notice the duality m+m′ = ρ.

Proof. It is enough to see that if a pure formula is de-
terminantal the following inequalities hold

n ≤ #
[
p 6=a,b

Sp ≤ # ∪r1 Pk ≤ n

which implies that equalities hold. The inequality on the left
follows from the fact that every Sp, p ∈ [0, n + 1] contains
at least one distinct integer since the sequence 0, s0, s0 +
s1, . . . ,

Pn
0 si is strictly increasing. For the right inequality,

note that the vanishing of all Kν,p with p 6= a, b implies
Qp = ∅ (cf. Lem. 2.7). Thus ∪p6=a,bSp ⊆ ∪rk=1Pk so the
cardinality is bounded by # ∪r1 Pk ≤

Pr
1 #Pk ≤

Pr
1 lk = n.

Consequently # ∪p 6=a,b Sp = n. This implies there are at
most n+ 2 sums overall hence n ≤ 2.

Take n = 2. Since #(Si ∪ Sj) > 2, except from #(S0 ∪
Sn+1) = 2, the above condition is satisfied for a = 2, b = 1:
it is enough to set ∪r1Pk = S0 ∪ S3 = {0,

P2
0 si}, thus the

integers of ∪r1Pk are not consecutive, so r > 1 and l =
(1, 1). Similarly, if n = l = 1 two formulae are possible; for
∪r1Pk = S0 = {0} (a = 2, b = 1) or ∪r1Pk = S2 = {s0 + s1}
(a = 1, b = 0).

All stated m-vectors follow easily in both cases from (mk+
lk)/dk = 0 and (mk + lk)/dk =

Pn
0 si. A pure Bézout

determinantal formula comes from K1,n+1 → K0,0. Now
∪kPk contains S1 ∪ · · · ∪ Sn hence # ∪k Pk > n. Thus it
cannot exist for s 6= 1.

All pure formulae above are of Sylvester-type, made ex-
plicit in Sect. 4. If n = 1, both formulae correspond to the
classical Sylvester matrix.

If s = 1 pure determinantal formulae are possible for ar-
bitrary n, r and a pure formula exists iff for all k, lk = 1
or dk = 1 [7, Th. 4.5]; if a pure Sylvester formula exists
for a, b = a − 1 then another exists for a = 1, b = 0 [7,
p. 15]. Observe in the proof above that this is not the case
if s 6= 1, n = 2, thus the construction of the correspond-
ing matrices for a 6= 1 now becomes important and highly
nontrivial, in contrast to [7].

4. EXPLICIT MATRIX CONSTRUCTION
In this section we provide algorithms for the construction

of the resultant matrix expressed as the matrix of the dif-
ferential δ1 in the natural monomial basis and we clarify
all the different morphisms that may be encountered. The
matrices constructed are unique up to row and column op-
erations, reflecting the fact that monomial bases may be
considered with a variety of different orderings. The cases
of pure Sylvester or pure Bézout matrix can be seen as a
special case of the (generally hybrid, consisting of several
blocks) matrix we construct in this section.

In order to construct a resultant matrix we must find the
matrix of the linear map δ1 : K1 → K0 in some basis, ty-
pically the natural monomial basis, provided that K−1 = 0.
In this case we have a generically surjective map with a ma-
ximal minor divisible by the sparse resultant. If additionally
K2 = 0 then dimK1 = dimK0 and the determinant of the
square matrix is equal to the resultant, i.e. the formula is
determinantal. We consider restrictions δa,b : K1,a → K0,b

for any direct summand K1,a, K0,b of K1, K0 respectively.
Every such restriction yields a block of the final matrix of
size defined by the corresponding dimensions. Throughout
this section the symbols a and b will refer to these indices.

4.1 Sylvester blocks
The Sylvester-type formulae we consider generalize the

classical univariate Sylvester matrix and the multigrated
Sylvester matrices of [14] by introducing multiplication ma-
trices with block structure. Even though these Koszul mor-
phisms are known to correspond to some Sylvester blocks
since [16] (see Th. 4.1 below), the exact interpretation of
the morphisms into matrix formulae has not been made ex-
plicit until now. We shall also correct the Sylvester-type
matrix presented in [7, Sect. 7.1].

By [16, Prop. 2.5, Prop. 2.6] we have the following

Proposition 4.1. If a − 1 < b then δa,b = 0. Moreover,
if a− 1 = b then δa,b is a Sylvester map.

If a = 1 and b = 0 then every coordinate of m is non-
negative and there are only zero cohomologies involved in
K1,1 =

L
iH

0(m − sid) and K0,0 = H0(m). This map
is a well known Sylvester map expressing the multiplica-
tion (g0, . . . , gn) 7−→

Pn
i=0 gifi. The entries of the ma-

trix are indexed by the exponents of the basis monomials
of
L

i S(m − sid) and S(m) as well as the chosen polyno-
mial fi. Also, by Serre Duality a block K1,n+1 → K0,n

corresponds to the dual of K1,1 → K0,0 and yields the same
matrix transposed.

The following theorem constructs the matrix in general
case.

Theorem 4.2. The entry of the transposed matrix of δ :
K1,a → K0,a−1 in row (I, α) and column (J, β) is

0, if J 6⊂ I,
(−1)k+1coef (fik , x

u) , if I \ J = {ik},

where I = {i1 < i2 < · · · < ia} and J = {j1 < j2 < · · · <
ja−1}, I, J ⊆ {0, . . . , n}. Moreover, α, β ∈ Nn run through
the exponents of monomial bases of Ha−1(m− d

Pa
θ=1 siθ ),

Ha−1(m− d
Pa−1
θ=1 sjθ ), and u ∈ Nr, with uk = |βk − αk|.

Proof. Consider a basis of
VaV , {ei1,i2,...,ia : 0 ≤ i1 <

i2 < · · · < ia ≤ n} and similarly for
Va−1V , where e0, . . . , en

is a basis for V . This differential expresses a classic Koszul
map

∂a(ei1 , . . . , eia) =

nX
k=0

(−1)k+1fikei1,...,ik−1,ik+1,...,ia

and by [16, Prop. 2.6], this is identified to multiplication by
fik , when passing to the complex of modules.

Now fix two sets I ⊆ J with I \ J = {ik}, corresponing
to a choice of basis elements eI , eJ of the exterior algebra;
then the part of the Koszul map from eI to eJ gives

(−1)k+1M(fik ) : Ha−1(m− d
X
θ∈I

sθ)→ Ha−1(m− d
X
θ∈J

sθ)

This multiplication map is a product of homogeneous mul-
tiplication operators in the symmetric powers; this includes
operators between negative symmetric powers, where mul-
tiplication is expressed by applying the element of the dual
space to fik .

To see this, consider basis elements wα, wβ that index a
row and column resp. of the matrix of M(fik ). Here the
part wk of w assosiated with the k-th variable group is ei-
ther x

αk
k or a dual element indexed by αk. We identify dual

elements with the negative symmetric powers, thus this can



be thought as x
−αk
k . This defines α̃, β̃ ∈ Zr; the general-

ized multihomogeneous multiplication by fik as in [16, p.577]

is, in terms of degrees, incrementing α̃ by sid to obtain β̃,
and hence the corresponding matrix has entry coef (fik , x

u),
where uk = |βk − αk|. The absolute value is needed be-
cause for multiplication in dual spaces, the degrees satisfy
−αk + sidk = −βk ⇒ sidk = αk − βk = −(βk − αk).

In [7, Sect. 7.1], an example is studied that admits a
Sylvester formula with a = 2, b = 1. The matrix derived
by such a complex is described by Th. 4.1 above and does
not coincide with the matrix given there. The following ex-
ample is taken from there and presents the correct formula.

Example 4.3. Consider the unmixed case l = (1, 1), d =
(1, 1), as in [7, Sect.7.1]. This is a system of three bi-linear
forms in two affine variables. The vector m = (2,−1) gives

K1 = K1,2 = H1(0,−3)(
3
2) and K0 = K0,1 = H1(1,−2)(

3
1).

The Sylvester map represented here is

δ1 : (g0, g1, g2) 7→ (−g0f1 − g1f2, g0f0 − g2f2, g1f0 + g2f1)

and is similar to the one described in [6, Sect. 3]. By Th. 4.1
it yields the following (transposed) matrix, given in 2 × 2
block format 24 −M(f1) M(f0) 0

−M(f2) 0 M(f0)
0 −M(f2) M(f1)

35
If g = c0 + c1x1 + c2x2 + c3x1x2 the matrix of the multipli-
cation map

M(g) : S(0)⊗ S(1)∗ 3 w 7−→ wg ∈ S(1)⊗ S(0)

in the natural monomial basis is

»
c2 c3
c0 c1

–
as one can easily

verify by hand calculations or using procedure multmap of
our Maple package presented in Sect. 5. 2

4.2 Bézout blocks
A Bézout type block comes from a map of the form δa,b :

K1,a → K0,b with a − 1 > b. In the case a = n + 1, b = 0
this is a map corresponding to the Bezoutian of the system,
whereas in other cases some Bézout like matrices occur, from
square subsystems obtained by hiding certain variables.

Consider the Bézoutian, or Morlay form(cf. [11]), of f0, . . . ,
fn. This is a polynomial of multidegree (ρ, ρ) in F[x̄, ȳ] and
can be decomposed as

∆ :=

ρ1X
u1=0

· · ·
ρrX

ur=0

∆u(x̄) · ȳu

where ∆u(x̄) ∈ S has deg ∆u(x̄) = ρ − u. Here (x̄) =
(x̄1, . . . , x̄r) is the set of homogeneous variable groups and
ȳ = (ȳ1, . . . , ȳr) a set of new variables with the same cardi-
nalities.

The Bézoutian gives a linear mapVn+1V →
M

mk≤ρk

S(ρ−m)⊗ S(m).

where the space on the left is the (n+ 1)-th exterior algebra
of V = S(s0d) ⊕ · · · ⊕ S(snd) and the direct sum runs over
all vectors m ∈ Zr with mk ≤ ρk for all k ∈ [1, r].

In particular, the graded piece of ∆ in degree (ρ−m,m)
in (x̄, ȳ) is

∆ρ−m,m :=
X

uk=mk

∆u(x̄) · ȳu

for all monomials ȳu of degree m and coefficients in F[x̄] of
degree ρ−m. It yields a map

S(ρ−m)∗ −→ S(m)

known as the Bézoutian in degree m of f0, . . . , fn. The dif-
ferential of K1,n+1 → K0,0 can be chosen to be exactly this
map, since evidently K0,0 = H0(m) ' S(m) and

K1,n+1 = Hn

 
m−

nX
0

sid

!
' S

 
−m+

nX
0

sid+ l + 1

!∗
according to Serre duality recalled in Sect. 2.1, thusK1,n+1 =
S(ρ−m)∗.

The polynomial ∆ defined above has n + r homogeneous
variables, hence it is not clear how it can be computed by
matrix constructions. We show one construction of some
part ∆ρ−m,m using an affine Bézoutian.

Denote xk = (xk1, . . . , xk,lk ) the (dehomogenized) k-th
variable group, and yk = (yk1, . . . , yk,lk ). As a result the
totality of variables is x = (x1, . . . , xr) and y = (y1, . . . , yr).

We set wt, t = 1, . . . n − 1 the conjunction of the first t
variables of y and the last n− t variables of x.

If a = n+1, b = 0 the affine Bézoutian construction follows
from the expansion of˛̨̨̨
˛̨̨ f0(x) f0(w1) · · · f0(wn−1) f0(y)

...
...

...
...

fn(x) fn(w1) · · · fn(wn−1) fn(y)

˛̨̨̨
˛̨̨ / rY

k=1

lkY
j=1

(xkj−ykj)

as a polynomial in F[y] with coefficients in F[x]. Hence the
entry indexed α, β of the Bézoutian in some degree can be
computed as the coefficient of xαyβ of this polynomial.

We propose generalizations of this construction for arbi-
trary a, b that are called partial Bezoutians, as in [7].

It is clear that a − 1 = q(z1) and b = q(z2), for z1 ∈ Qa
and z2 ∈ Qb. The difference a − b − 1 =

Pt
θ=1 lkθ where

k1, . . . , kt is a subsequence of [1, r], since if Pk < b then
Pk < a thus

q(a)− q(b) =
X
Pk<a

lk −
X
Pk<b

lk =
X

b<Pk<a

lk.

These indices suggest the variable groups that we should
substitute in the partial Bezoutian. Note that in the case of
Bezoutian blocks, it holds a − b − 1 > 0 thus some substi-
tutions will actually take place. Let i1, . . . , ia−b be a subse-
quence of [0, n]. We can define a partial Bezoutian polyno-
mial with respect to fi1 , . . . , fia−b and yk1 , . . . , ykt as˛̨̨̨
˛̨̨ fi1(x) · · · fi1(w)

...
...

fia−b(x) · · · fia−b(w)

˛̨̨̨
˛̨̨ / tY

θ=1

liθY
j=1

(xiθj − yiθj) (13)

In this Bezoutian, only the indicated y-variable substitu-
tions take place, in successive columns: The variable vector
w differs from x at xk1 , . . . , xkt , these have been substituted
gradually with yk1 , . . . , ykt . The total number of substituted
variables is a− b− 1, so this is indeed a Bézout type deter-
minant.



routine function

Makesystem output polynomials of type (l, d, s)
mBezout compute the m-Bezout bound
allDetVecs enumerate all determinantal m−vectors
detboxes output the vector boxes of Cor. 3.8

MakeComplex Compute the complex of an m−vector
printBlocks print complex as ⊕aK1,a → ⊕bK0,b

printCohs print complex as ⊕Hq(u)→ ⊕Hq(v)

multmap construct matrix M(fi) : S(u)→ S(v)
Sylvmat construct Sylv. matrix K1,p → K0,p−1

Bezoutmat construct Bézout matrix K1,a → K0,b

makeMatrix construct matrix K1 → K0

Table 1: The main routines of our software.

For given a and b, there exist
`
n+1
a−b

´
partial Bezoutian

polynomials. The columns of the final matrix are indexed
by the x-part of their support, and the rows are indexed by
the y-part as well as the chosen polynomials fi1 , . . . , fia−b .

5. IMPLEMENTATION
We have implemented the search for formulae and con-

struction of the corresponding resultant matrices in Maple.
Our code is based on that of [7, Sect. 8] and extends it to the
scaled case. We also introduce new features, including the
construction of the matrices of Sect. 4; hence we deliver a full
package for multihomogeneous resultants, publicly available
at www-sop.inria.fr/galaad/amantzaf/soft.html.

Our implementation has three main parts; given data
(l, d, s) it discovers all possible determinantal formula; this
part had been implemented for the unmixed case in [7].
Moreover, for a specific m−vector the corresponding resul-
tant complex is computed and saved in memory in an effi-
cient representation. As a final step the results of Sect. 4 are
being used to output the resultant matrix coming from this
complex. The main routines of our software are illustrated
in Table 1.

The computation of all the m−vectors can be done by
searching the box defined in Th. 3.4 and using the filter in
Lem. 3.5. For every candidate, we check whether the terms
K2 and K−1 vanish to decide if it is determinantal.

For a vector m, the resultant complex can be computed
in an efficient data structure that captures its combinato-
rial information and allows us to compute the correspond-
ing matrix. More specifically, a nonzero cohomology sum-
mand Kν,p is represented as a list of pairs (cq, ep) where
cq = {k1, . . . , kq} ⊆ [1, r] such that

P
lki = p − ν and

ep ⊆ [0, n] with #ep = p denotes a collection of polynomials
(or a basis element in the exterior algebra). Furthermore, a
term Kν is a list of Kν,p’s and a complex is a list of terms
Kν .

The construction takes place block by block. We iterate
over all morphisms δa,b and after identifying each of them
the corresponding routine constructs a Sylvester or Bézout
block. Note that these morphisms are not contained in the
representation of the complex, since they can be retrieved
by from the terms K1,a and K0,b.
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Birkhäuser, Boston, 1994.

[10] G. Jeronimo and J. Sabia. Computing
multihomogeneous resultants using straight-line
programs. J. Symb. Comput., 42(1-2):218–235, 2007.

[11] J.P. Jouanolou An explicit duality for quasi-
homogeneous ideals. E-print arXiv:math/0607626,
2008

[12] R. D. McKelvey and A. McLennan. The maximal
number of regular totally mixed Nash equilibria. J.
Economic Theory, 72(2):411–425, 1997.

[13] H. Schenck, D. Cox, and A. Dickenstein. A case study
in bigraded commutative algebra, In Syzygies &
Hilbert Functions,vol.254, Lec.Notes
Pur.App.Math,pp.67-112,2007.

[14] B. Sturmfels and A. Zelevinsky. Multigraded
resultants of Sylvester type. J. of Algebra,
163(1):115–127, 1994.

[15] J. Weyman. Calculating discriminants by higher direct
images. Trans. AMS., 343(1):367–389, 1994.

[16] J. Weyman and A. Zelevinsky. Multigraded formulae
for multigraded resultants. J. Alg. Geom.,
3(4):569–597, 1994.

[17] M. Zhang. Topics in Resultants and Implicitization.
PhD thesis, Dept. Comp. Science, Rice U., Houston,
Texas, 2000.



APPENDIX
A. OMITTED PROOFS

Proof of L.2.2. The degree degfi R of R(f) with re-

spect to fi is the coefficient of yl11 · · · ylrr in the new polyno-
mial:Y
j 6=i

sj(d1y1 + · · ·+ dryr) =
s0s1 · · · sn

si
(d1y1 + · · ·+ dryr)

n.

The n−th power yields the Bézout bound for the unmixed
case [7]:

`
n

l1,...,lr

´
dl11 · · · dlrr , hence our formula follows.

Proof of L. 3.3. Let z1, z2 as in the proof of Lem. 3.1.
If z1 < Pk < z2 it is clear that 0 ≤ z1 < Pk < z2 ≤

Pn
0 si ⇒

Pk ⊆
ˆ
0,
Pn

0 si
˜
.

If z2 < Pk, Cor. 3.2 implies #
S
Pk>z2

Pk = #R, where

R := {sn + · · ·+ s0, . . . , sn + · · ·+ sn−p2}. By the definition
of z2, R ⊆

S
Pk>z2

Pk, thus
S
Pk>z2

Pk = R ⊆
ˆ
0,
Pn

0 si
˜
.

Similarly,
S
Pk<z1

Pk = {0, s0, s0+s1, . . . , s0+· · ·+sp1−2} ⊆ˆ
0,
Pn

0 si
˜
, which proves the lemma for Pk < z1.

Proof of L. 3.6. Suppose mi/di ≤ mj/dj . Let Pi(m)∩
Pj(m) = [u, v] ⊂ Z. Set m′j = mj + tdj where t ∈ Z is
the minimum shift so that Pi(m

′)∩Pj(m′) = ∅ and Pj(m
′)

satisfies Th. 3.4. For all k 6= j, let m′k = mk.
Any vector in Zr defines a nontrivial complex, since Q 6=

∅. In particular, m′ is determinantal because P (m) ⊆
P (m′), i.e. no new terms are introduced, but possibly some
terms vanish. Repeat until all Pk ∩ Pk′ = ∅.

B. EXAMPLES

Example B.1. The case r = 1, arbitrary degree, has
been studied in [5]. Let n, d ∈ Z, s ∈ Zn+1

>0 . This data
define a scaled homogeneous system in Pn; given m ∈ Z, we
obtain P =

`
m
d
, m+n

d

˜
∩Z. In this case there exist only zero

and nth cohomologies; zero cohomologies can exist only for
ν ≥ 0 and nth cohomologies can exist only for ν ≤ 1. Thus
in principle both of them exist for ν ∈ {0, 1}. Hence

Kν =

8<: Kν,ν , 1 < ν ≤ n+ 1
Kν,ν ⊕Kν,n+ν , 0 ≤ ν ≤ 1
Kν,n+ν , −n ≤ ν < 0

By direct computation, a determinantal formula exists iff
d
Pn

2 si − n < (s0 + s1)d, also verified by Thm. 3.7. In this
case the integers contained in the interval (d

Pn
i=2 si−n−1,

d(s0 +s1)) are the only determinantal vectors, in accordance
with Cor. 3.8. Notice that the sum of the two endpoints is
exactly the critical degree ρ.

In [5, Cor.4.2, Prop.5.6] it is proved that the minimum-
dimension determinantal formula is attained at m = bρ/2c
and m = dρ/2e, ie. the center(s) of this interval. For an
illustration see Ex. B.2. 2

Example B.2. Consider the unmixed data l = 2, d =
2, s = (1, 1, 1). Determinantal formulae are m ∈ [0, 3],
which is just m = 0, m = 1 and their transposes. Notice
how these formulae correspond to the decompositions of ρ =
3 = 3 + 0 = 2 + 1. In both cases the complex is of block
type K1,3 → K0,0 ⊕K0,2. The Sylvester part K1,3 → K0,2

can be retrieved as in Ex. 4.3. For m = 0 the Bézout part

is H2(−6) ' S(3)∗ → H0(0) ' S(0), whose 5 × 1 matrix is
in terms of bracketsˆ

[142] [234] + [152] [235] [042] [052]
˜T
.

Form = 1 we have Bézout partH2(−5) ' S(2)∗ → H0(1) '
S(1), which yields the 5× 3 matrix24 [142] [152] + [234] [235] [042] [052]

[152] [154] + [235] [354] [052] [054]
[132] + [042] [052] + [134] [135] [041] + [032] [051]

35T .
The bracket [ijk] := det

24 ai aj ak
bi bj bk
ci cj ck

35, where ai, bi, ci de-

note coefficients of f0, f1, f2 respectively, for instance f2 =
c0 + c1x2 + c2x2

2 + c3x1 + c4x1x2 + c5x1
2. 2

Example B.3. We show how our results apply to a con-
crete example and demonstrate the use of the Maple pack-
age on it.

Let l = d = (1, 1) and s = (1, 1, 2). This data defines the
system
> l:=vector([1,1]): d:=l: s:= vector(1,1,2):

> f:= makesystem(l,d,s);

f0 = a0 + a1x1 + a2x2 + a3x1x2

f1 = b0 + b1x1 + b2x2 + b3x1x2

f2 = c0 + c1x1 + c2x2 + c3x1x2 + c4x1
2 + c5x1

2x2+

+ c6x2
2 + c7x1x2

2 + c8x1
2x2

2

of two bilinear and one biquadratic equation. We check that
this data is determinantal:
> has_deter( l, d, s);

true
We apply a search for all possible determinantal vector:
> allDetVecs( l, d, s) ;

[[2, 0, 4], [0, 2, 4], [3, 0, 6], [2, 1, 6], [2,−1, 6], [1, 2, 6], [1, 1, 6],
[1, 0, 6], [0, 3, 6], [0, 1, 6], [−1, 2, 6], [3, 1, 8], [1, 3, 8], [1,−1, 8],

[−1, 1, 8], [3,−1, 10], [−1, 3, 10]]
The vectors are listed with matrix dimension, as the third
coordinate. The search returned 17 vectors; the fact that the
number of vectors is odd reveals that there exists a selfdual
vector. The critical degree is ρ = (2, 2), thus the vector m =
(1, 1) is selfdual. Since the remaining 16 vectors come in dual
pairs, we only mention one formula for each pair; finally, the
first three formulae listed have a symmetric formula, due to
the symmetries present to our data, so it suffices to list 6
distinct formulae.

Using Th. 3.7 we can compute directly determinantal boxes:
> detboxes( l, d, s) ;

[[−1, 1], [1, 3]], [[1, 3], [−1, 1]]
Note that the determinantal vectors are exactly the vec-
tors in these boxes. These intersect at m = (1, 1) which
yields the self-dual formula. In this example minimum di-
mension formulae correspond to the centers of the intervals,
at m = (2, 0) and m = (0, 2) as noted in Conj. 3.9.

A pure Sylvester matrix comes from the vector
> m:= vector([d[1]*convert(op(s),‘+‘)-1, -1]);

m = (3,−1)
We compute the complex:
> K:= makeComplex(l,d,s,m):
> printBlocks(K); printCohs(K);

K1,2 → K0,1

H1(1,−3)⊕H1(0,−4)2 → H1(2,−2)2 ⊕H1(1,−3)



The block type of the matrix is deduced by the first com-
mand, whereas printCohs returns the full description of the
complex. The dimension is given by the Bézout bound,
Lem. 2.2 which is
> mbezout( l, d, s) ;

10
It corresponds to a “twisted” Sylvester matrix:
> makematrix(l,d,s,m);2666666666666666666666664

−b1 −b3 0 a1 a3 0 0 0 0 0

−b0 −b2 0 a0 a2 0 0 0 0 0

0 −b1 −b3 0 a1 a3 0 0 0 0

0 −b0 −b2 0 a0 a2 0 0 0 0

−c4 −c5 −c8 0 0 0 a1 0 a3 0

−c1 −c3 −c7 0 0 0 a0 a1 a2 a3

−c0 −c2 −c6 0 0 0 0 a0 0 a2

0 0 0 −c4 −c5 −c8 b1 0 b3 0

0 0 0 −c1 −c3 −c7 b0 b1 b2 b3

0 0 0 −c0 −c2 −c6 0 b0 0 b2

3777777777777777777777775
The rest of the matrices are presented in block format; the

same notation is used for both the map and its matrix. Note
that the dimension of these maps depend on m, which we
omit to write. Also, B(xk) stands for the partial Bézoutian
w.r.t. variables xk.

For m = (3, 1) we get K1,1 ⊕K1,2 → K0,0, or
H0(2, 0)2 ⊕H1(0,−2)2 → H0(3, 1)24 M(f0)

M(f1)
B(x2)

35
For m = (3, 0), K1,2 → K0,0 ⊕K0,1:
H1(1,−2)⊕H1(0,−3)2 → H0(3, 0)⊕H1(1,−2)224 0

M(f0)
−M(f1)

B(x2)

35
For m = (2, 1), we compute K1,1 ⊕K1,3 → K0,0, or
H1(1, 0)2 ⊕H2(−2,−3)→ H0(2, 1)»

M(f1)
M(f2)

∆(0,1),(2,1)

–
If m = (1, 1), K1,1 ⊕K1,3 → K0,0 ⊕K0,2, yielding
H0(0, 0)2 ⊕H2(−3,−3)→ H0(1, 1)⊕H2(−2,−2)224 f0

f1
0

∆(1,1),(1,1) M(f0) −M(f1)

35
We write here fi instead of M(fi), since this matrix is just
the 1× 4 vector of coefficients of fi.
For m = (2, 0), we get K1,2 ⊕K1,3 → K0,0 ⊕K0,1, or
H1(0,−2)⊕H2(−2,−4)→ H0(2, 0)⊕H1(0,−2)»

B(x2) 0
∆(2,0),(0,2) B(x1)

–
This is the minimum dimension determinantal complex, yield-
ing a 4× 4 matrix. 2


