

<u>A. Rodio</u>, G. Neglia, F. Busacca, S. Mangione, S. Palazzo, F. Restuccia, I. Tinnirello

Tampa, 19 November 2023

Federated Learning with Packet Losses

D_k Dataset

D_k Dataset

Global model $oldsymbol{w} \in \mathbb{R}^d$

Global model $oldsymbol{w} \in \mathbb{R}^d$

Solve the optimization problem

$$\min_{\boldsymbol{w}} \frac{1}{|D|} \sum_{d \in D} \ell(\boldsymbol{w}, d)$$

Global model $oldsymbol{w} \in \mathbb{R}^d$

Solve the optimization problem

$$\min_{\boldsymbol{w}} \frac{1}{|D|} \sum_{d \in D} \ell(\boldsymbol{w}, d)$$

Data transfer

- **Communication cost** 1.
- Privacy 2.

Global model $oldsymbol{w} \in \mathbb{R}^{d}$

Solve the optimization problem

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}) = \frac{1}{N} \sum_{k=1}^{N} F_k(\boldsymbol{w})$$

where

$$F_k(\boldsymbol{w}) = rac{1}{|D_k|} \sum_{d_k \in D} \ell(\boldsymbol{w}, d_k)$$

 D_k Dataset

Global model $oldsymbol{w} \in \mathbb{R}^d$

for $t \in \{1, ..., T\}$ do:

(1) Server broadcasts the initial model

for $t \in \{1, ..., T\}$ do:

(2) Each client updates its local model for j = 0, ..., E - 1 do:

$$\boldsymbol{w}_{t,j+1}^{k} = \boldsymbol{w}_{t,j}^{k} - \eta_t \nabla F_k(\boldsymbol{w}_{t,j}^{k}, \mathcal{B}_{t,j}^{k})$$

for $t \in \{1, ..., T\}$ do:

(3) Each client transmits

for $t \in \{1, ..., T\}$ do:

(4) Server aggregates

 $\boldsymbol{w}_{t+1}^{\mathsf{DMA}} = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{w}_{t,E}^{k} \qquad \boldsymbol{w}_{t+1}^{\mathsf{PGA}} = \boldsymbol{w}_{t} + \frac{1}{N} \sum_{k=1}^{N} \Delta_{t}^{k}$ **Direct Model** OR **Pseudo-Gradient** Aggregation (PGA) Aggregation (DMA)

for $t \in \{1, ..., T\}$ do:

(4) Server aggregates

 $\boldsymbol{w}_{t+1}^{\mathsf{DMA}} = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{w}_{t,E}^{k} \qquad \boldsymbol{w}_{t+1}^{\mathsf{PGA}} = \boldsymbol{w}_{t} + \frac{1}{N} \sum_{k=1}^{N} \Delta_{t}^{k}$ **Direct Model** OR | Pseudo-Gradient Aggregation (DMA) Aggregation (PGA)

(In lossless scenarios: DMA = PGA)

Centralized vs Federated

Centralized

Share data

Share models / gradients

Federated

Pros:1. Communication2. Privacy

Centralized vs Federated

Centralized

Share data

Federated

Share models / gradients

Pros:

1. Communication

2. Privacy

Share data

Common assumption: clients are always available or uniform participation

Share models / gradients

Lossy Communication Channels Previous works: loss mitigation

- Automatic Repeat Request (ARQ) •
- Forward Error Correction (FEQ)

Our motivations

- Inevitable packet losses (e.g., retransmission failure)
- Larger training time and resource costs
- Robustness of gradient methods against limited errors

Can FL algorithms achieve optimal convergence despite packet losses?

Convergence to the optimal model 🕑

 W_1

$F(\boldsymbol{w}) = \frac{1}{2}F_1(\boldsymbol{w}) + \frac{1}{2}F_2(\boldsymbol{w})$ Client 1 loses W_2^* 1/3 packets

 W_1

Packet losses harm convergence 🕞

Packet losses harm convergence 🕞

 W_1

 W_1

Yes, if 1) Aggregate Pseudo-Gradients 2) Compensate for Packet Losses

Aggregation for lossy channels

Direct Model Aggregation (DMA)

$oldsymbol{w}_{t+1}^{\mathsf{DMA-PL}} = rac{1}{|\mathcal{P}_t|} \sum_{k \in \mathcal{P}_t} oldsymbol{w}_{t,E}^k$

Unbiased DMA

$$oldsymbol{w}_{t+1}^{ extsf{UDMA-PL}} = rac{1}{N} \sum_{k \in \mathcal{P}_t} rac{oldsymbol{w}_{t,E}^k}{1-p_k}$$

Pseudo-Gradient Aggregation (PGA) $\boldsymbol{w}_{t+1}^{\mathsf{PGA-PL}} = \boldsymbol{w}_t + \frac{1}{|\mathcal{P}_t|} \sum_{k \in \mathcal{D}} \Delta_t^k$ **Unbiased PGA (Ours)** $\boldsymbol{w}_{t+1}^{\text{UPGA-PL}} = \boldsymbol{w}_t + \frac{1}{N} \sum_{k \in \mathcal{P}_t} \frac{\Delta_t^k}{1 - p_k}$ **Aggregate Pseudo-Gradients** 2) Compensate for Packet Losses

Assumptions to model lossy channels

- Loss probabilities pk differ among clients
- Independent losses among clients
- For each client, IID losses over time
- Asymmetric channels (downlink/uplink)
- If ARQ or FEQ, *p_k* is the residual probability

Convergence Analysis **Direct Model Aggregation** $\boldsymbol{w}_{t+1}^{\mathsf{DMA-PL}}$ $\mathbb{E}[F(w_{t+1}^{\mathsf{DMA-PL}})] - F^* \leq$ $A^t(F(w_1) - F$ vanishing term for small statistical heterogeneity non-vanishing error due to stat. het. and packet loss

A joint learning and communications framework for federated learning over wireless networks. Chen, Mingzhe, et al. IEEE Transactions on Wireless Communications, 2021.

Unbiased Pseudo-Gradient Aggregation

$$\mathbf{w}_{t+1}^{\mathsf{UPGA-PL}} = \mathbf{w}_t + \frac{1}{N} \sum_{k \in \mathcal{P}_t} \frac{\Delta_t^k}{1 - p_k} \quad \text{(OURS)}$$
$$\mathbb{E}[F(\mathbf{w}_{t+1}^{\mathsf{UPGA-PL}})] - F^* \leq \underbrace{\frac{\kappa}{8\kappa + t} \left(\frac{2EC}{\mu} + 4L \|\mathbf{w}_1 - \mathbf{w}^*\|^2}{asymptotically \text{ vanishing term}}}$$
$$C \coloneqq \frac{1}{N^2} \sum_{k=1}^N \sigma_k^2 + 2(E-1)^2 G^2 + 6L\Gamma + \underbrace{\frac{EG^2}{N^2} \sum_{k=1}^N \frac{p_k}{1 - p_k}}_{effect of packet loss}$$

UPGA-PL converges to the optimal model (:)

Experimental Evaluation

UPGA-PL matches lossless performance in < 100 rounds

Experimental Evaluation N = 10 clients equally split in two groups, with $p_1 = \frac{1}{10}$, $p_2 = \frac{9}{10}$, MNIST dataset, CNN

UPGA-PL improves MNIST performance by 6% over SOTA

Experimental Evaluation N = 10 clients equally split in two groups, with $p_1 = \frac{1}{10}$, $p_2 = \frac{9}{10}$, MNIST dataset, CNN

DMA-PL and UDMA-PL exhibit non-vanishing errors

Conclusions

- UPGA-PL has **optimal convergence** under asymmetric lossy channels
- UPGA-PL outperforms SOTA by filtering out losses
- UPGA-PL approaches ideal lossless channels with slightly slower convergence

Thank you for your attention!

Code

