FL under heterogeneous and correlated client availability

<u>Angelo</u> <u>Rodio</u>

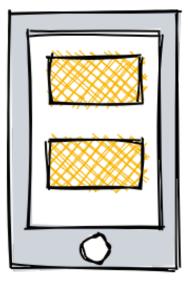
Francescomaria Faticanti

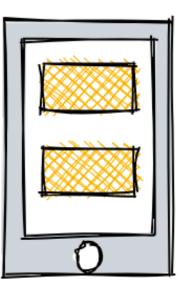
Othmane Marfoq

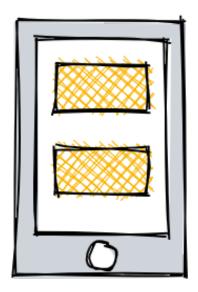
Giovanni Neglia

Emilio Leonardi

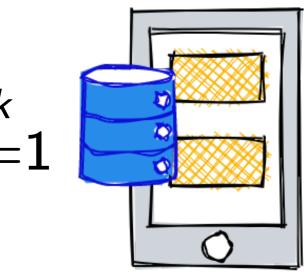
Clients $k = 1, \ldots, K$

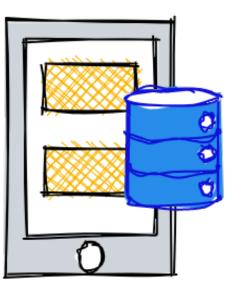


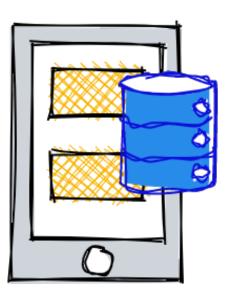




Dataset $D_k = \{\xi_{kl}\}_{l=1}^{n_k}$

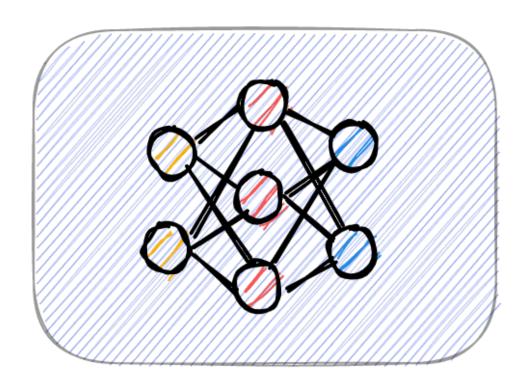




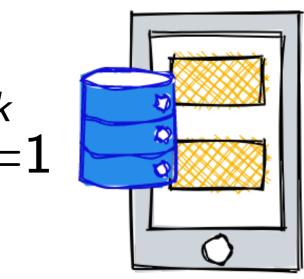


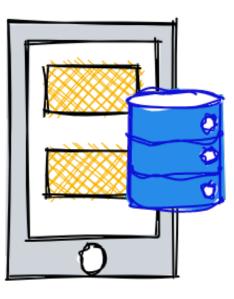
Clients $k = 1, \ldots, K$

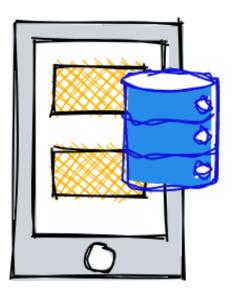
Dataset $D_k = \{\xi_{kl}\}_{l=1}^{n_k}$



Global model $oldsymbol{w} \in \mathbb{R}^d$





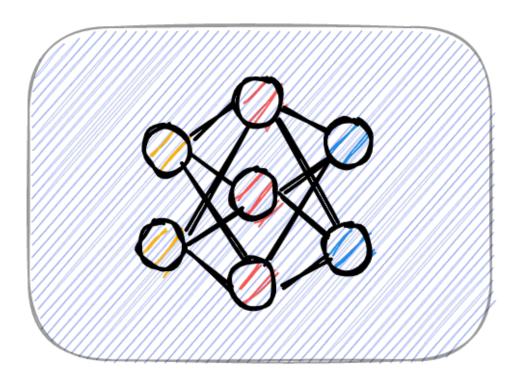


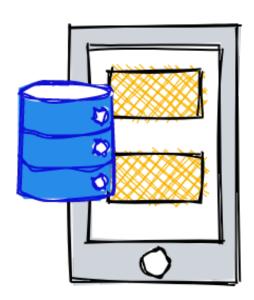
Clients $k = 1, \ldots, K$

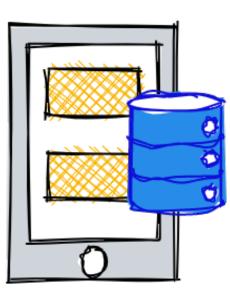
Solve the optimization problem $\min_{\boldsymbol{w}} F(\boldsymbol{w}) = \sum_{k=1}^{K} \alpha_k F_k(\boldsymbol{w})$

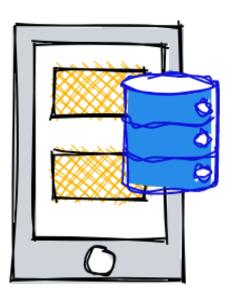
where

$$F_k(\boldsymbol{w}) = rac{1}{n_k} \sum_{l=1}^{n_k} \ell(\boldsymbol{w}, \xi_{kl})$$









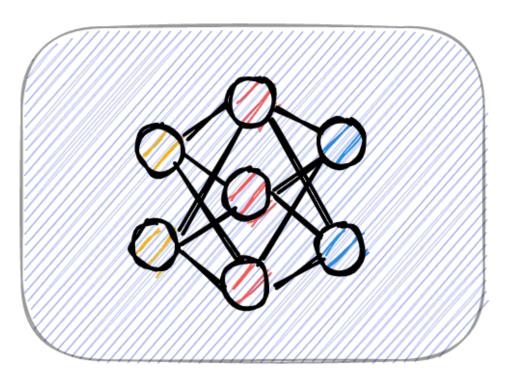
Solve the optimization problem

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}) = \sum_{k=1}^{K} \alpha_k F_k(\boldsymbol{w})$$

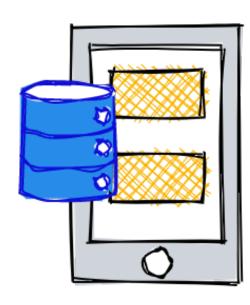
$$\uparrow \alpha : \text{target import}$$

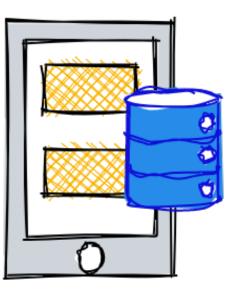
where

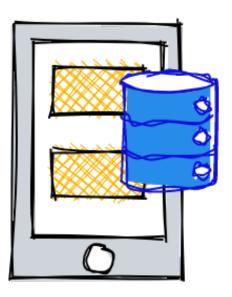
$$F_k(\boldsymbol{w}) = \frac{1}{n_k} \sum_{l=1}^{n_k} \ell(\boldsymbol{w}, \xi_{kl})$$



rtance

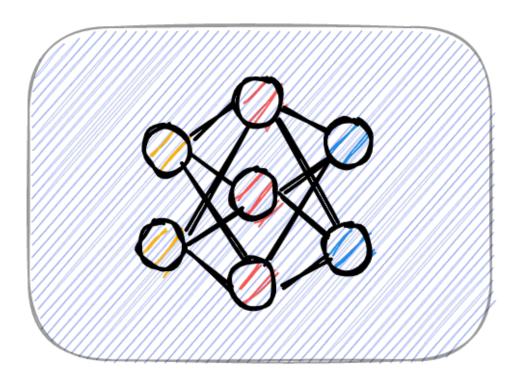


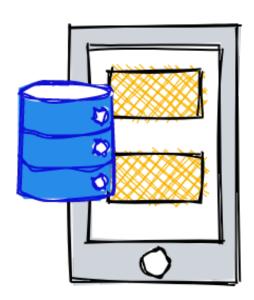


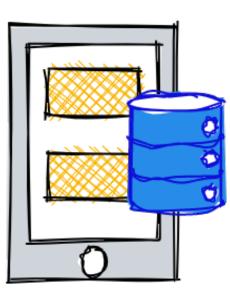


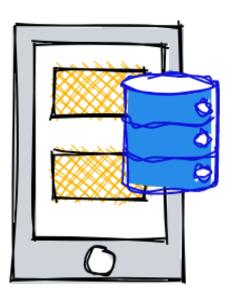
for $t \in \{0, ..., T - 1\}$ do:

A_t: set of active clients at time t





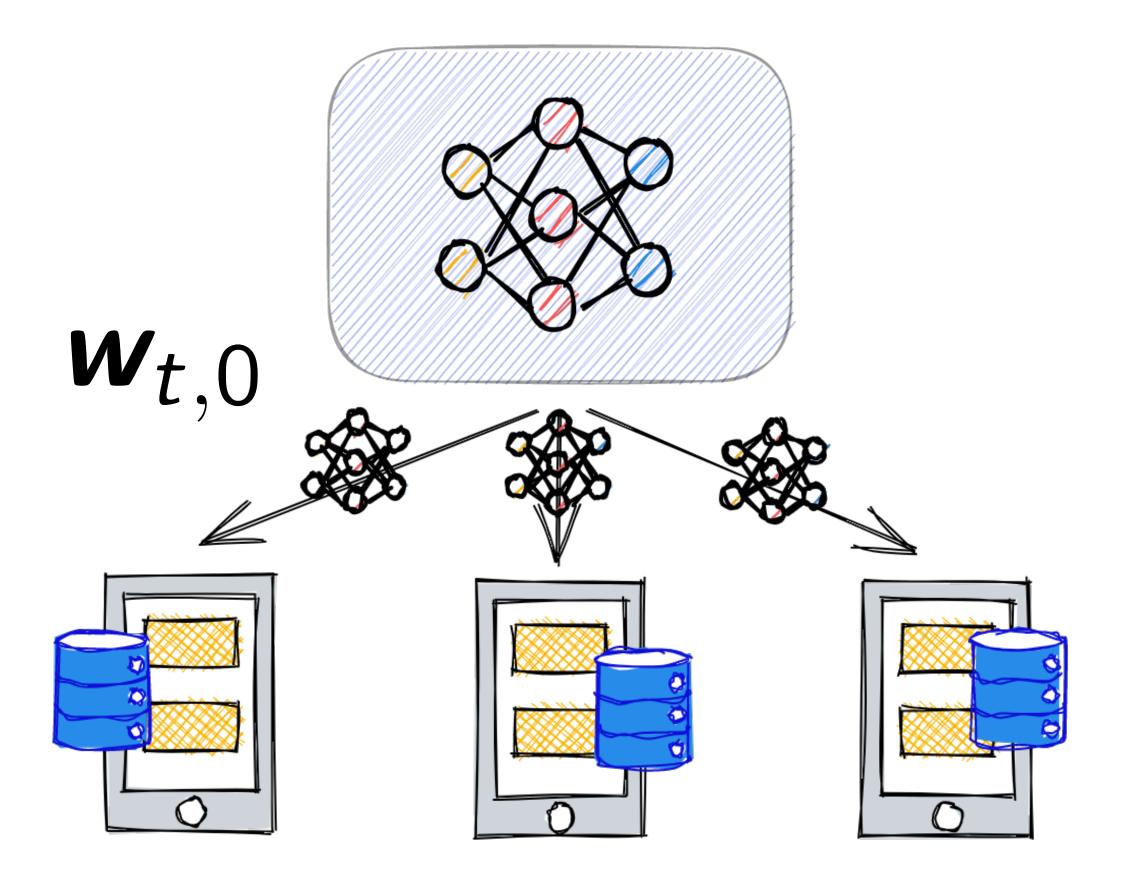




for $t \in \{0, ..., T - 1\}$ do:

 A_t : set of active clients at time t

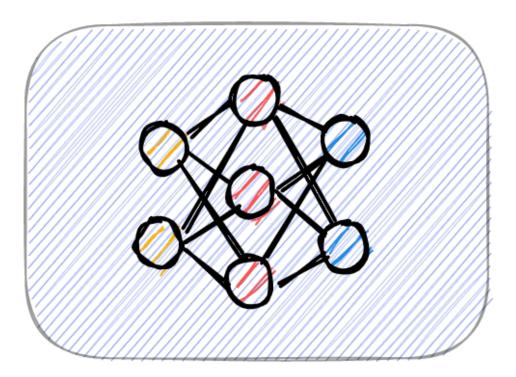
(1)

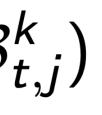


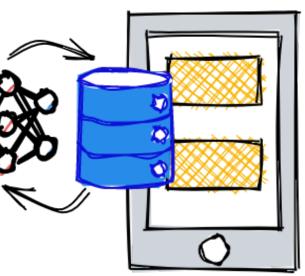
for $t \in \{0, ..., T - 1\}$ do:

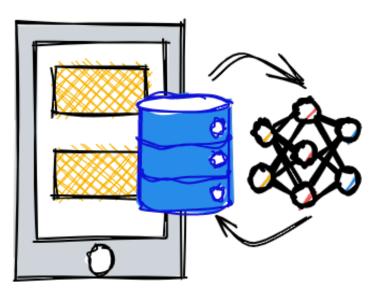
 A_t : set of active clients at time t

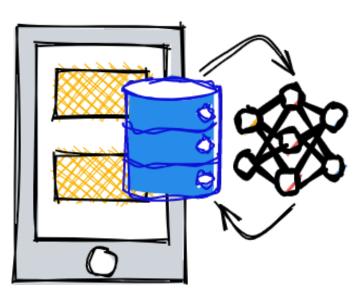
(2) For $j = 0, \ldots, E - 1$ do : $\boldsymbol{w}_{t,j+1}^{k} = \boldsymbol{w}_{t,j}^{k} - \eta_t \nabla F_k(\boldsymbol{w}_{t,j}^{k}, \mathcal{B}_{t,j}^{k})$







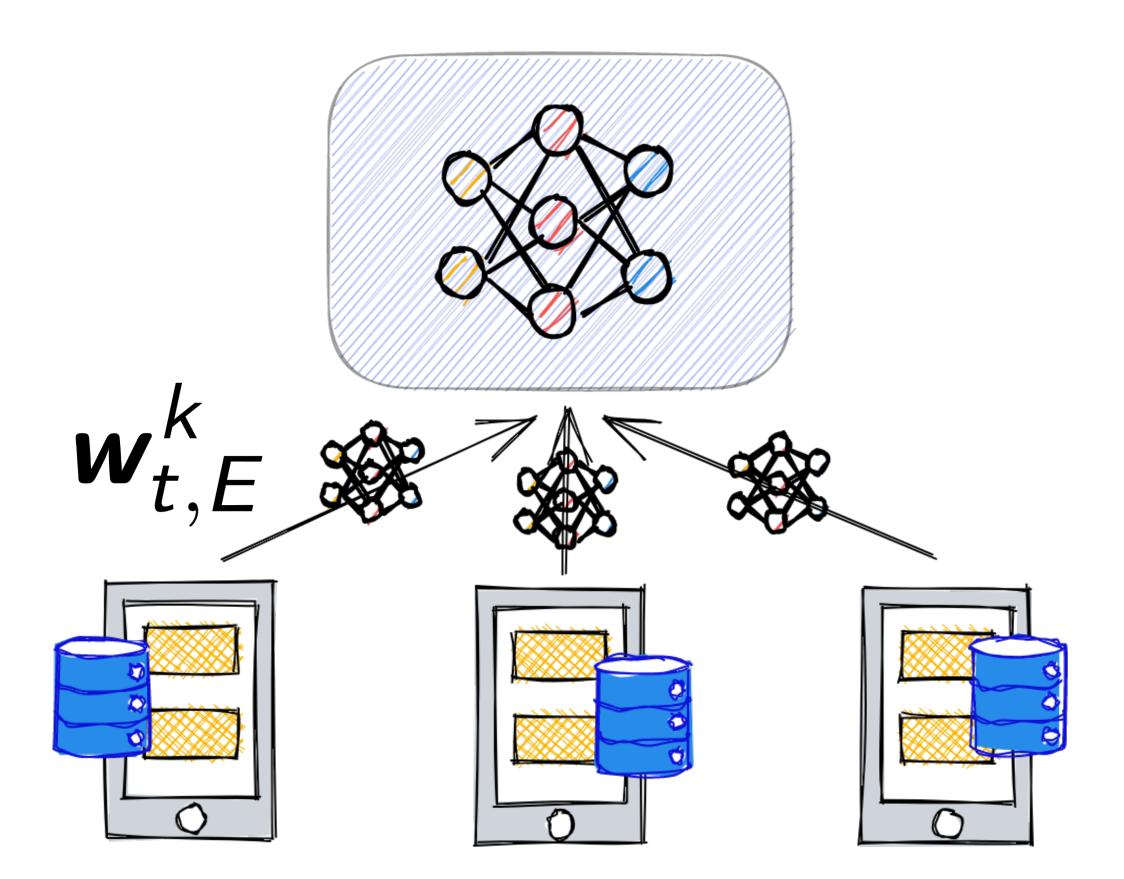




for $t \in \{0, ..., T - 1\}$ do:

 A_t : set of active clients at time t

(3)

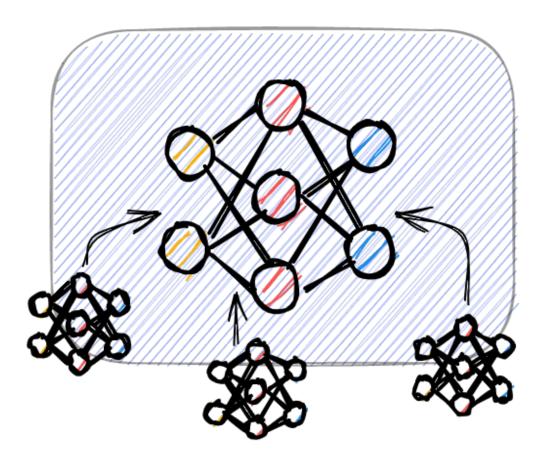


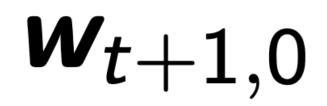
for $t \in \{0, ..., T - 1\}$ do:

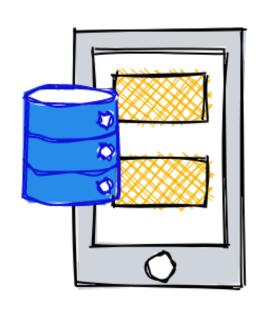
 A_t : set of active clients at time t

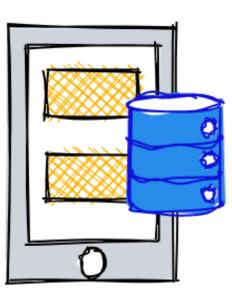
(4)
$$\boldsymbol{w}_{t+1,0} = \boldsymbol{w}_{t,0} + \sum_{k \in A_t} q_k (\boldsymbol{w}_{t,E}^k - \boldsymbol{w}_{t,0})$$

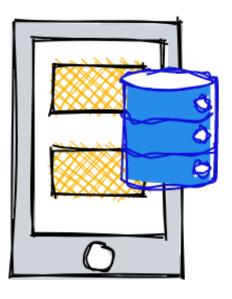
 \boldsymbol{q} : aggregation weights









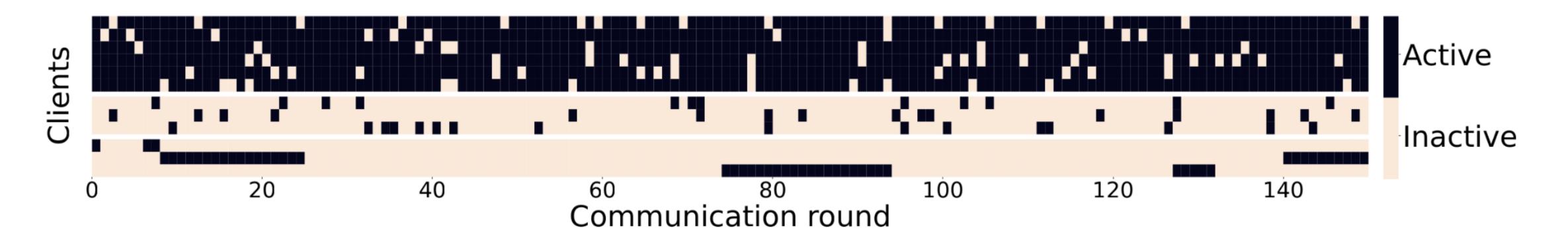


Previous work in FL commonly assumed:

Clients are always active or have uniform availability

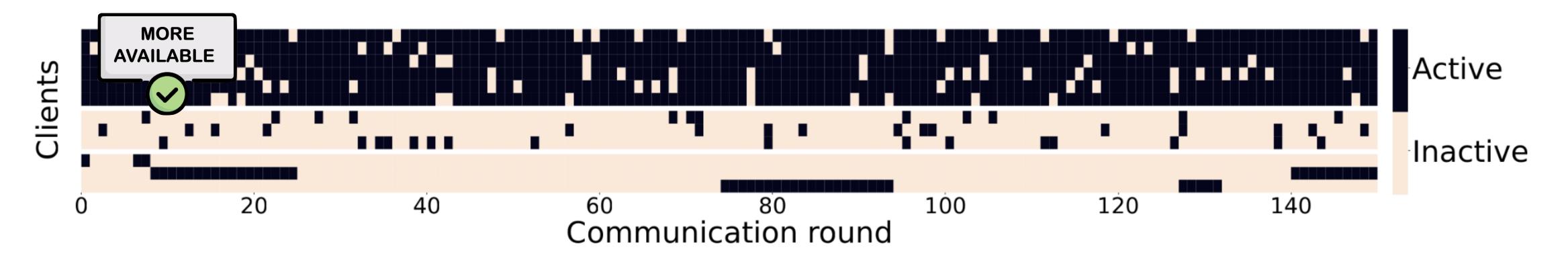
Previous work in FL commonly assumed:

Clients are always active or have uniform availability



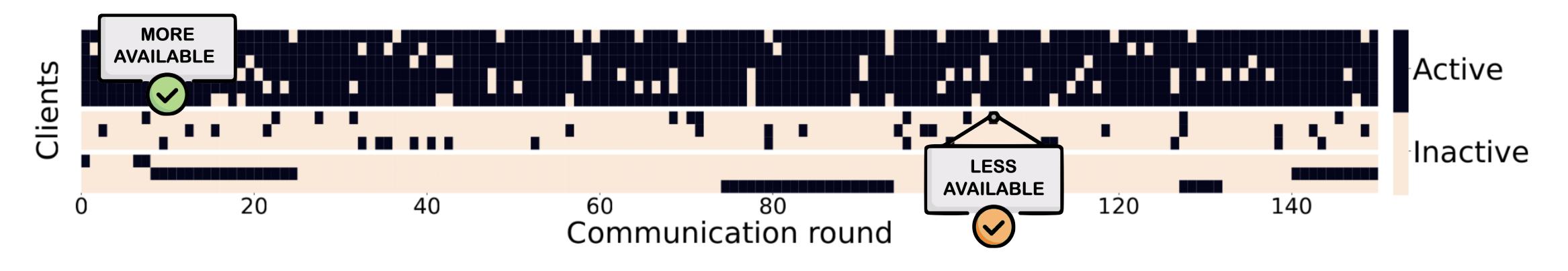
Previous work in FL commonly assumed:

Clients are always active or have uniform availability



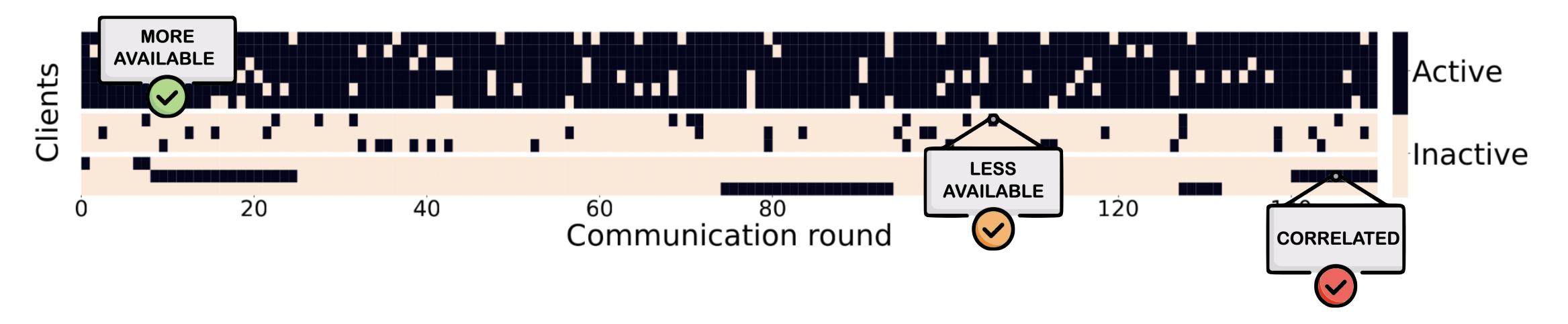
Previous work in FL commonly assumed:

Clients are always active or have uniform availability



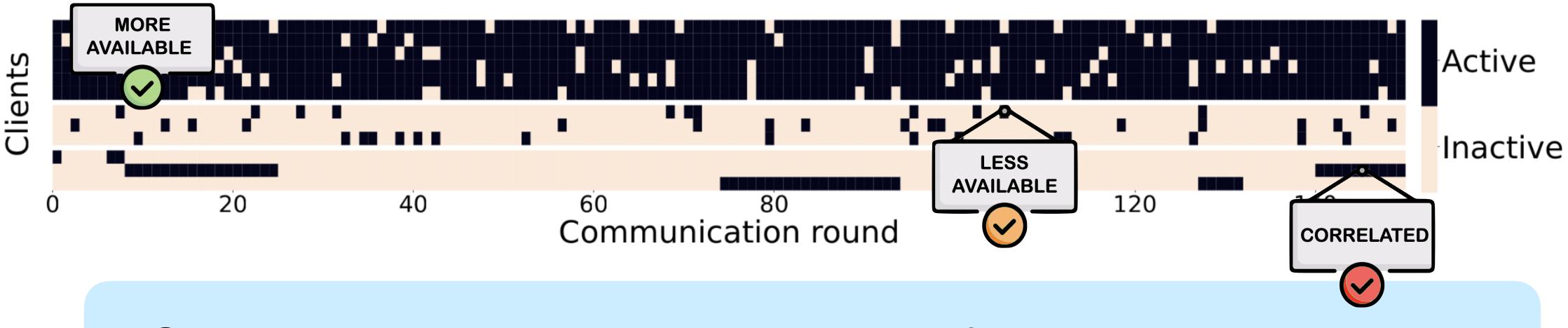
Previous work in FL commonly assumed:

Clients are always active or have uniform availability



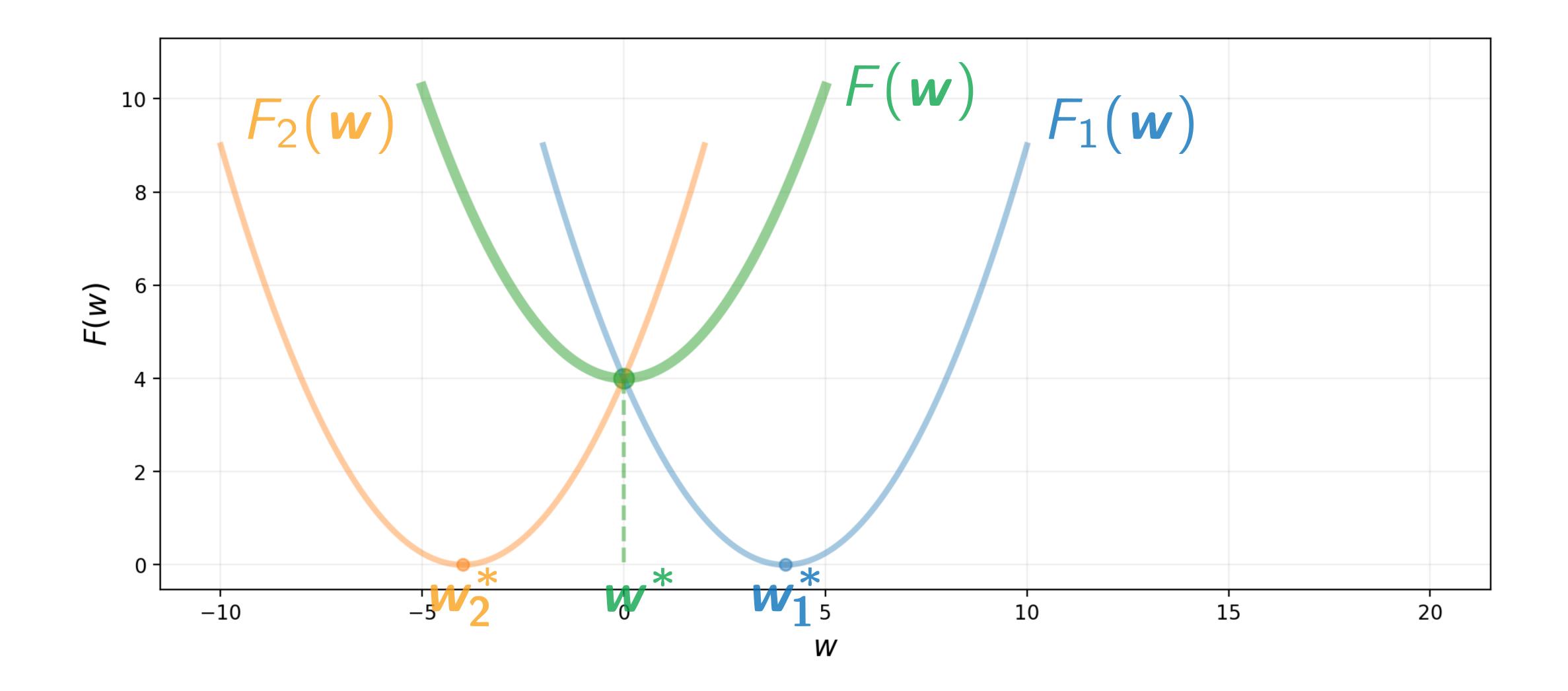
Previous work in FL commonly assumed:

Clients are always active or have uniform availability

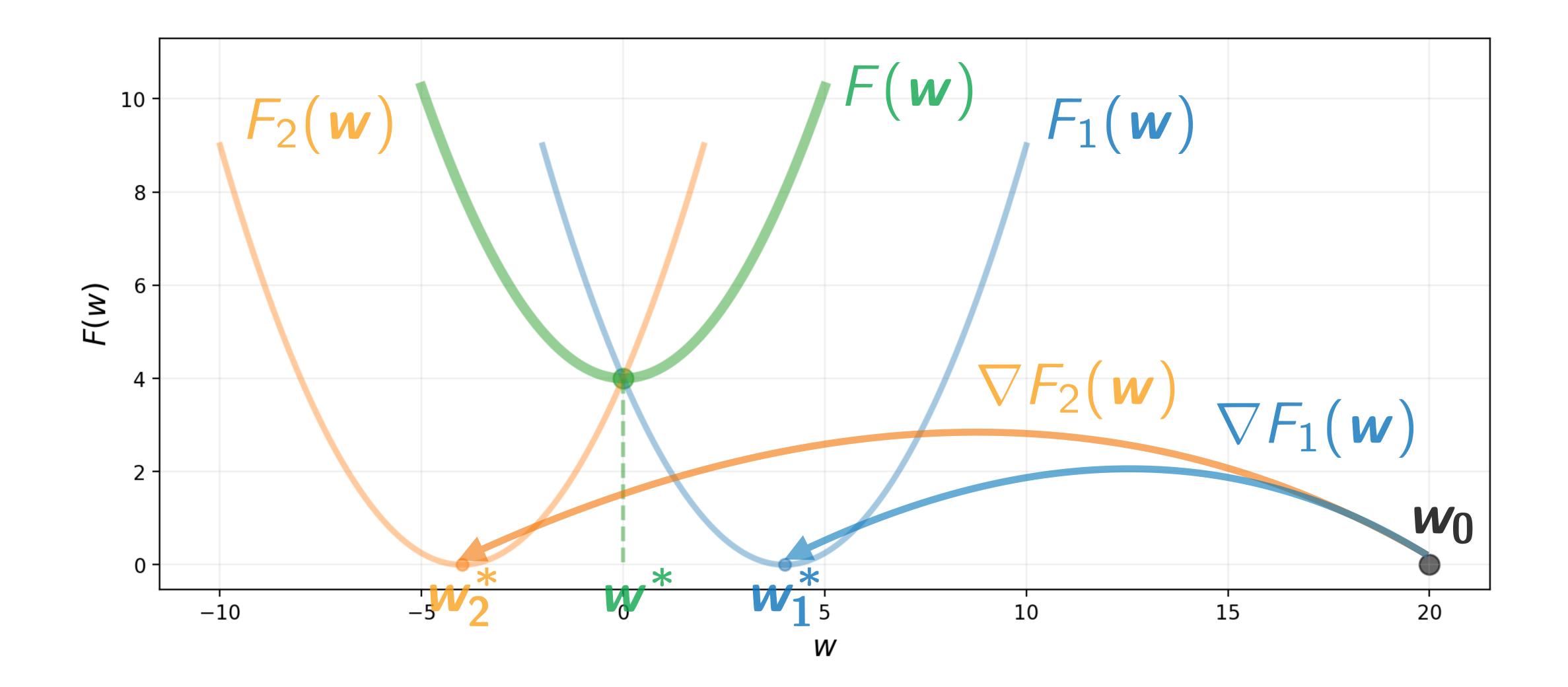


- Optimize training to make the best use of available client resources
- Minimize the impact of less available and correlated clients

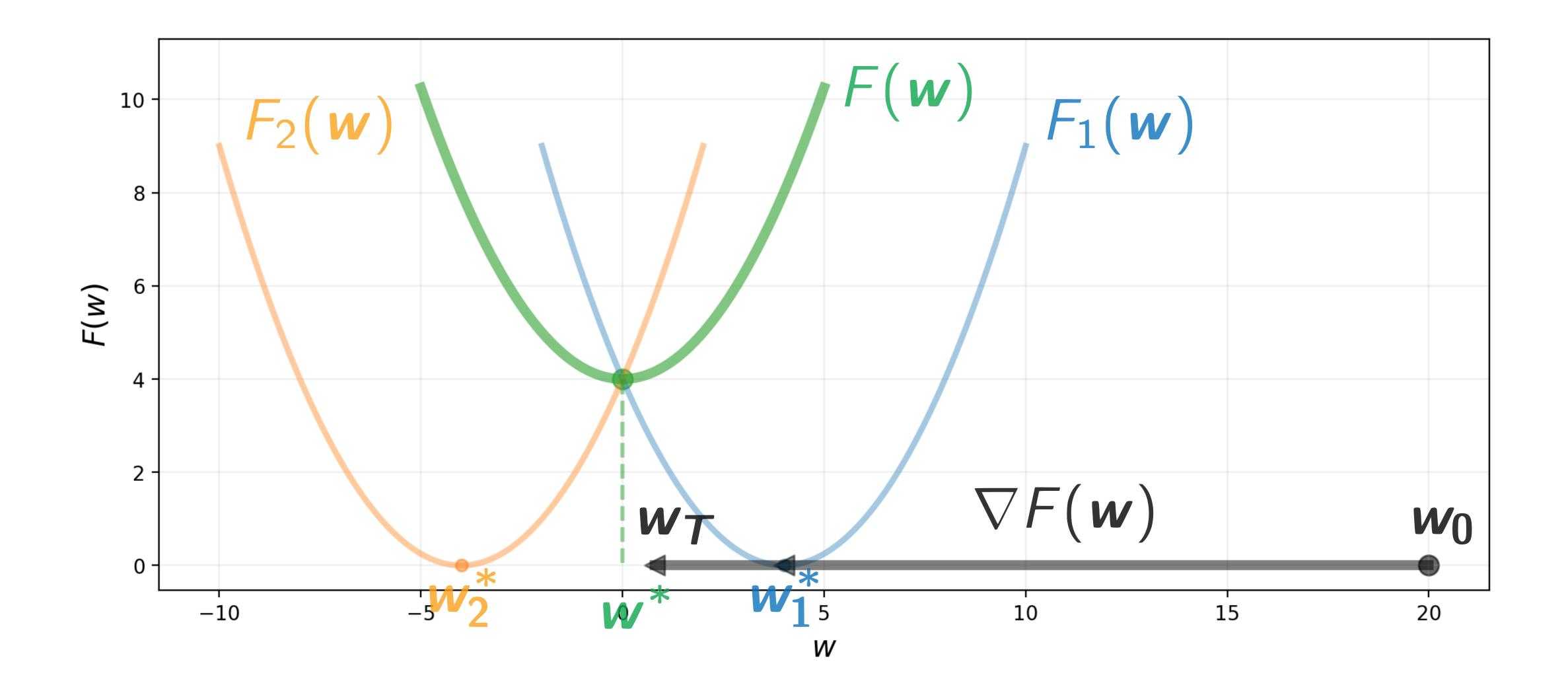
Quadratic Example

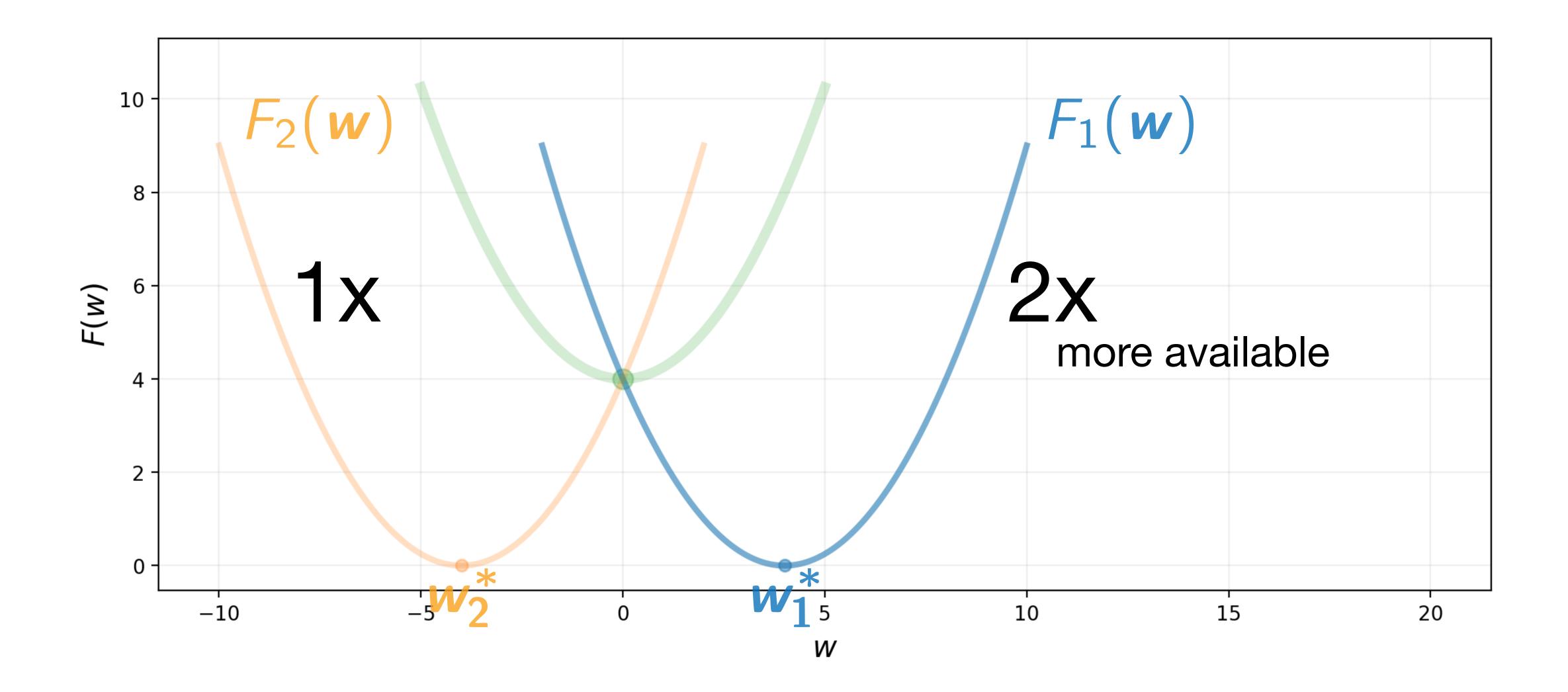


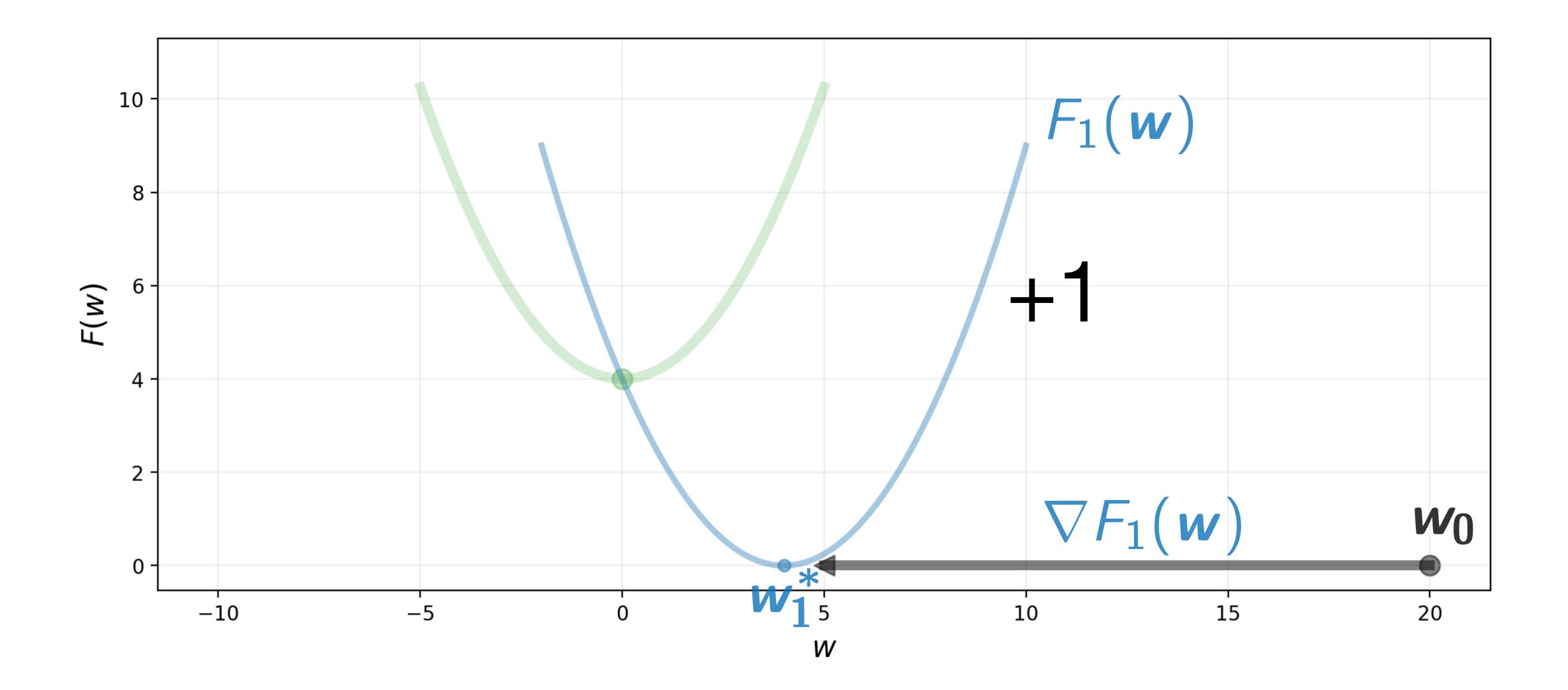
1) All Clients Available

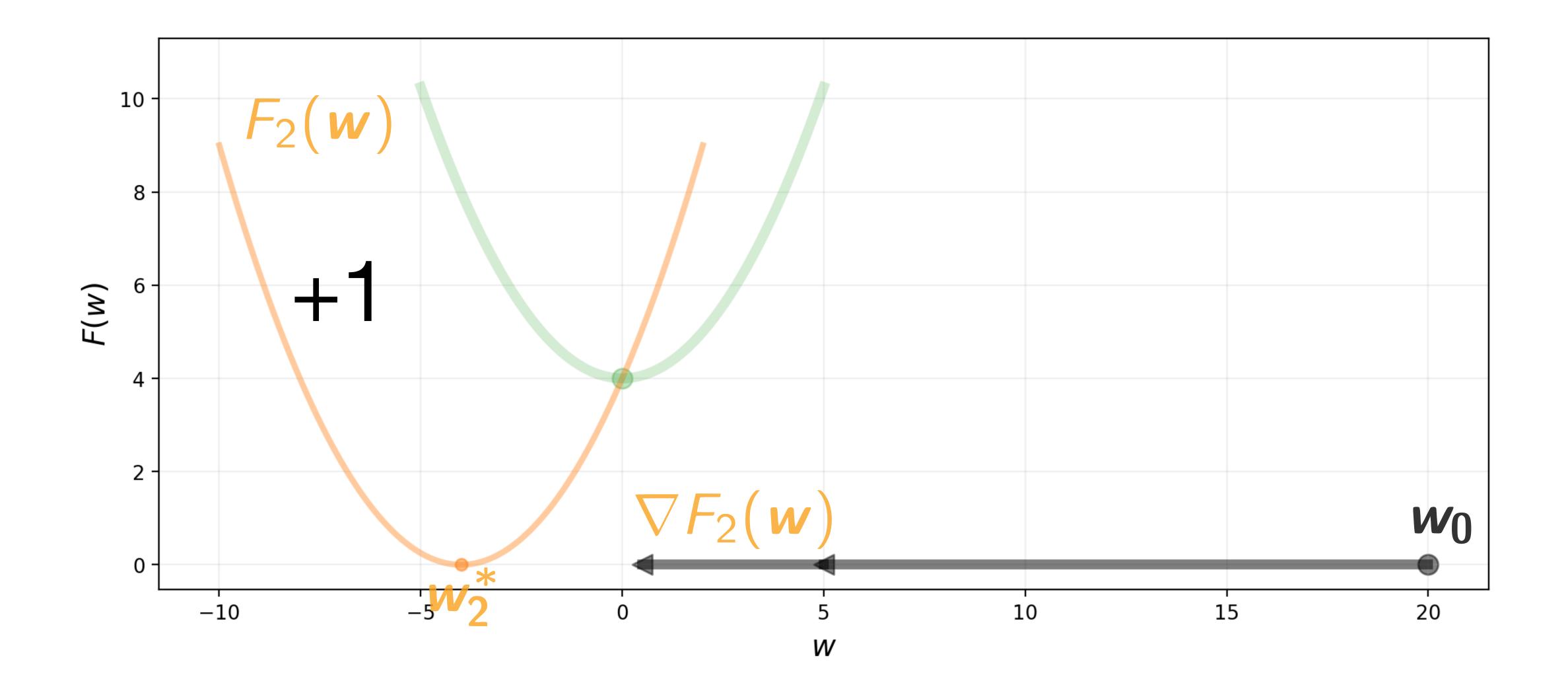


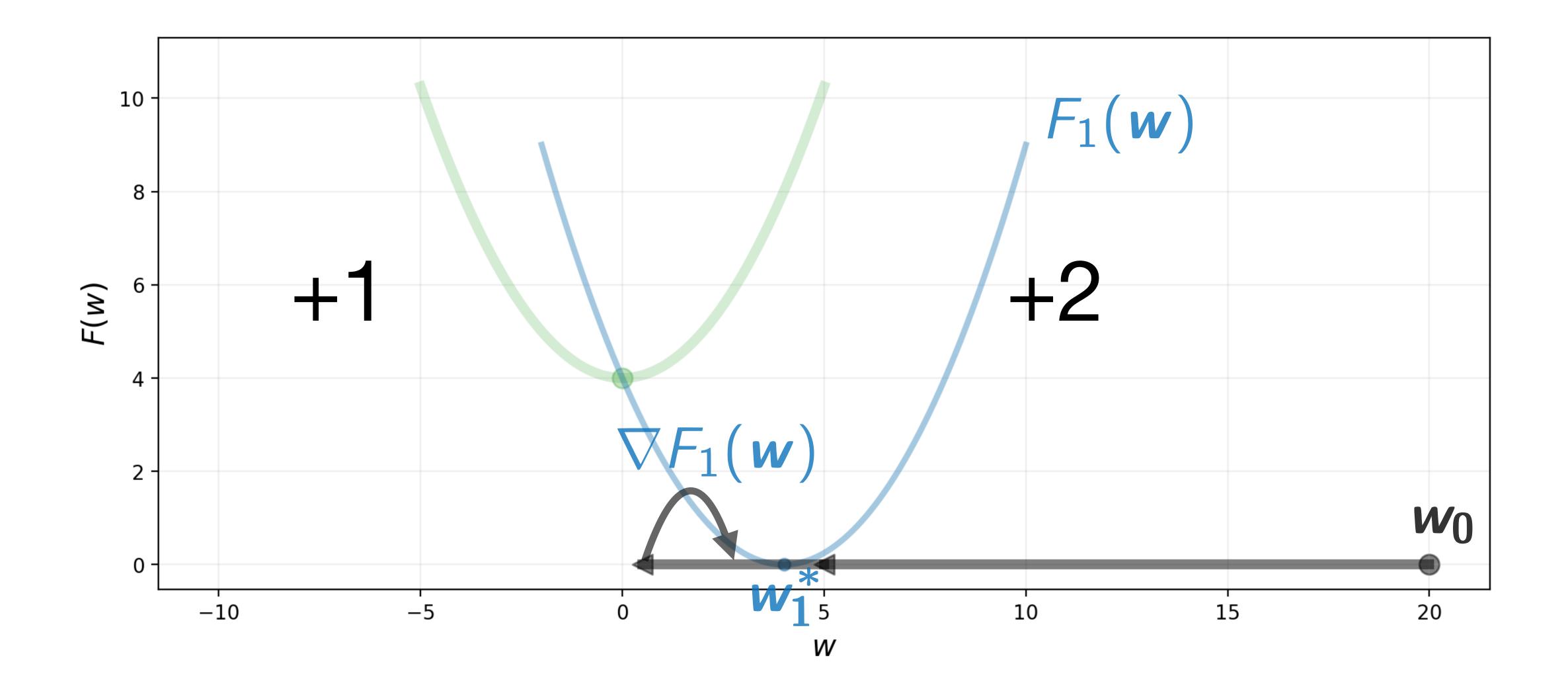
1) All Clients Available

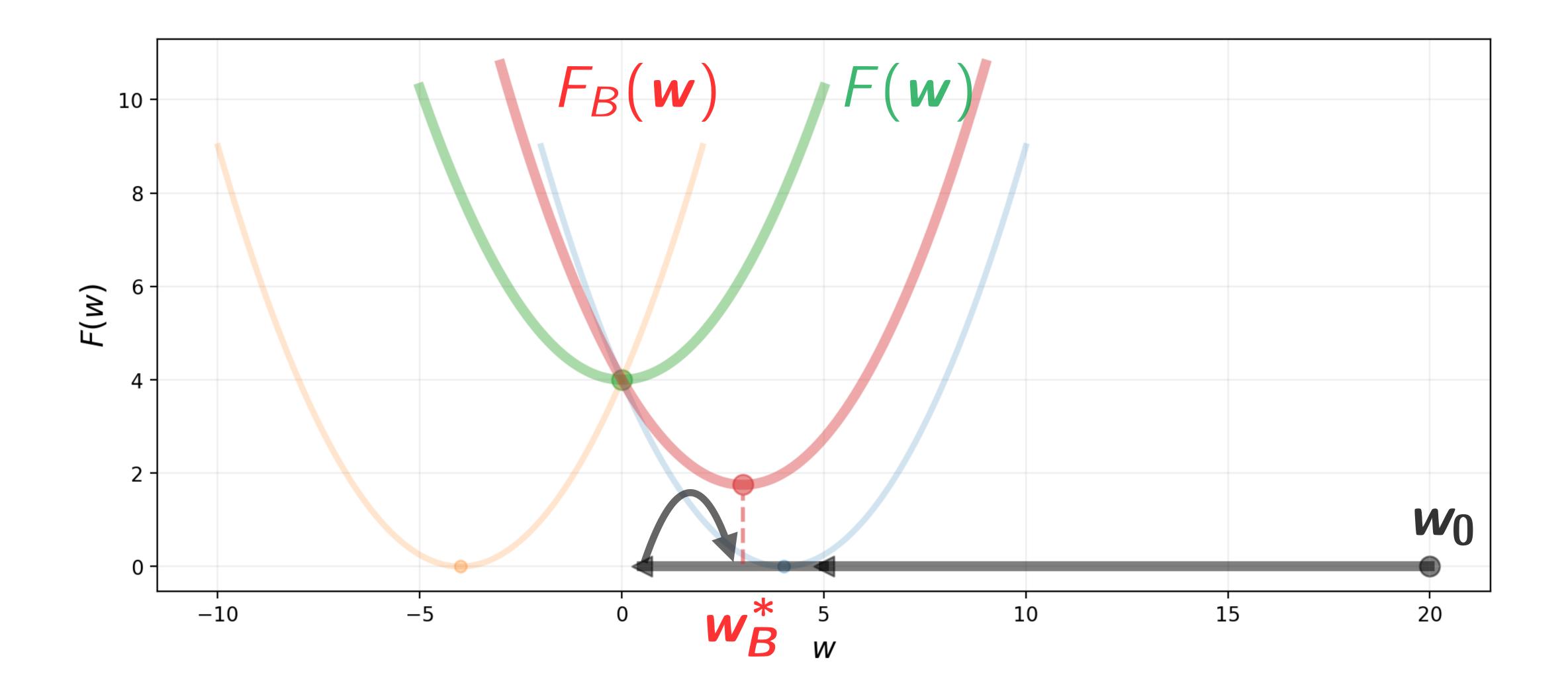


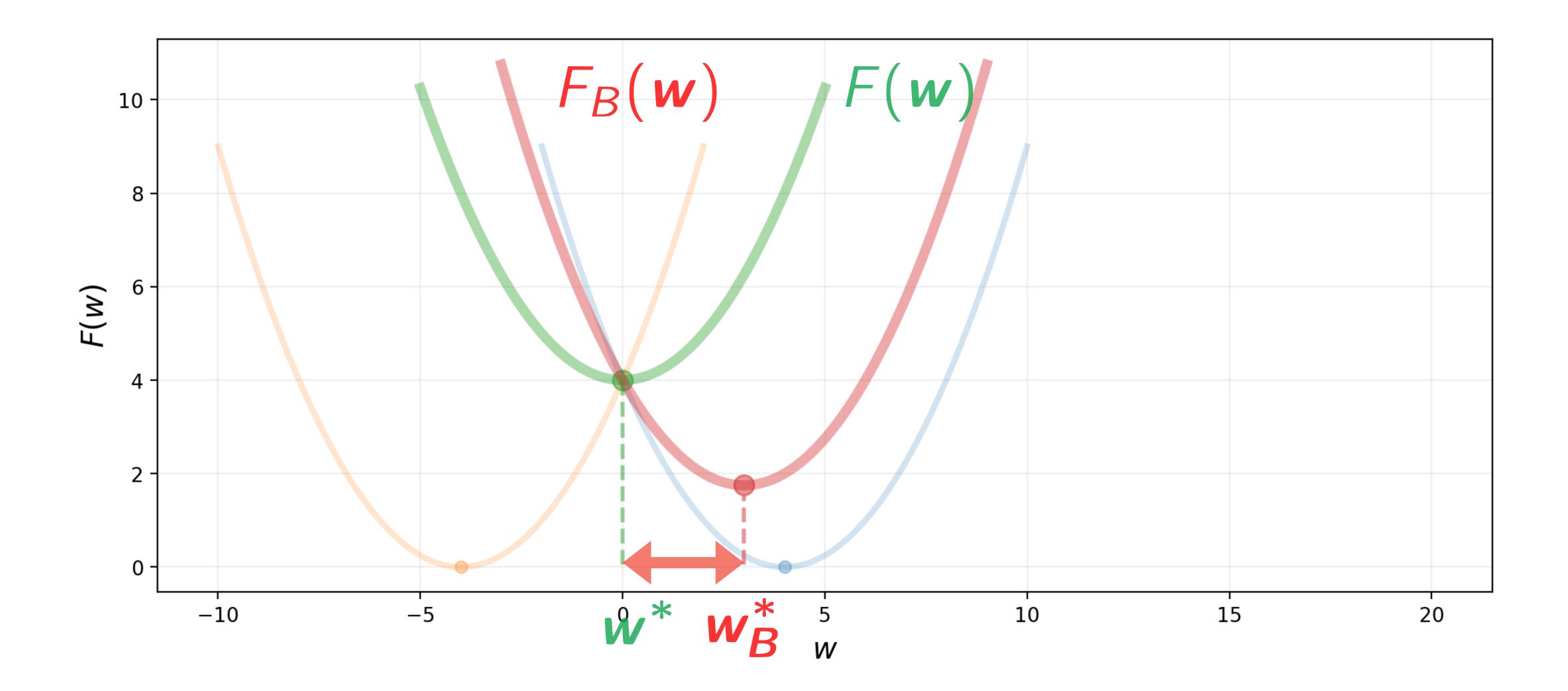


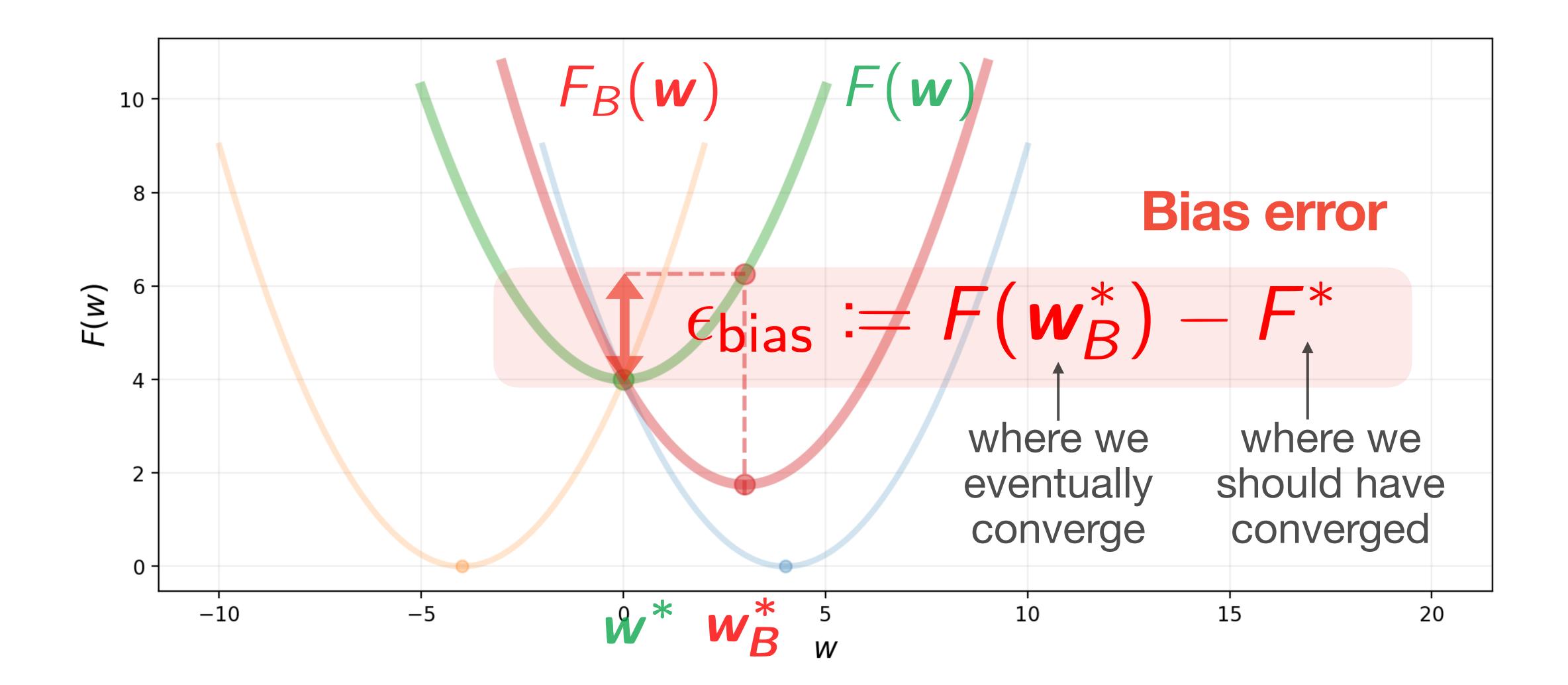


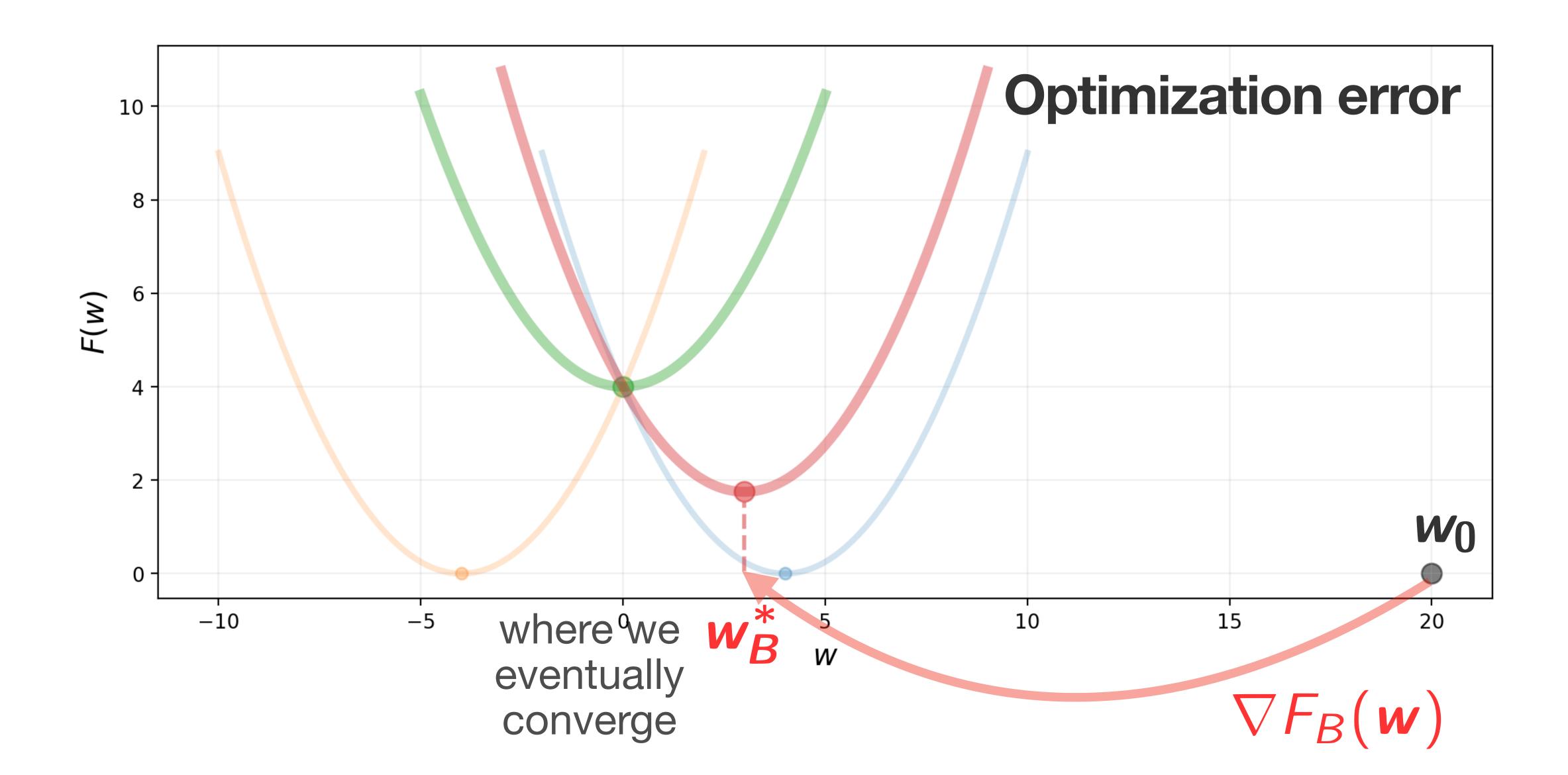


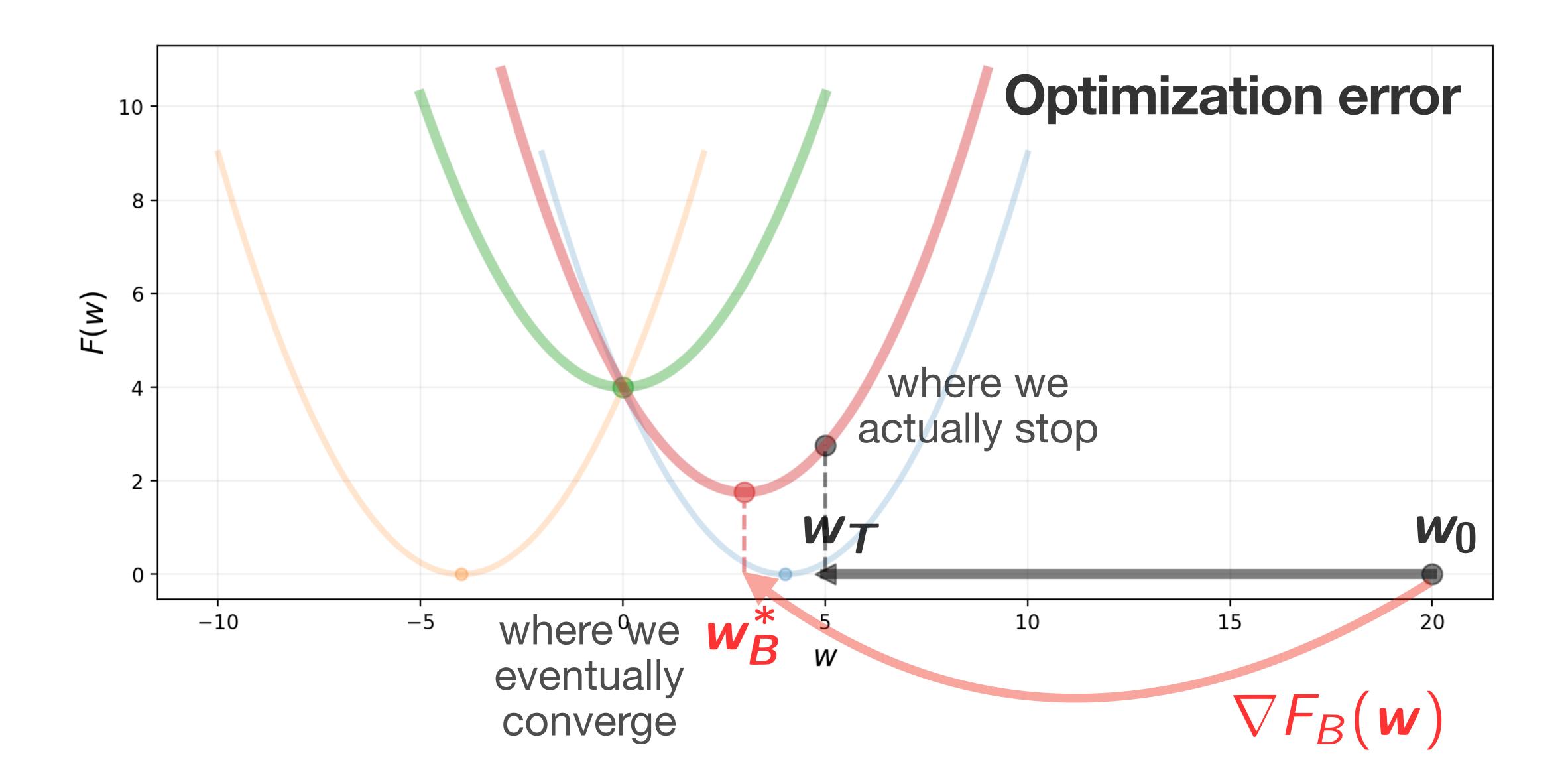


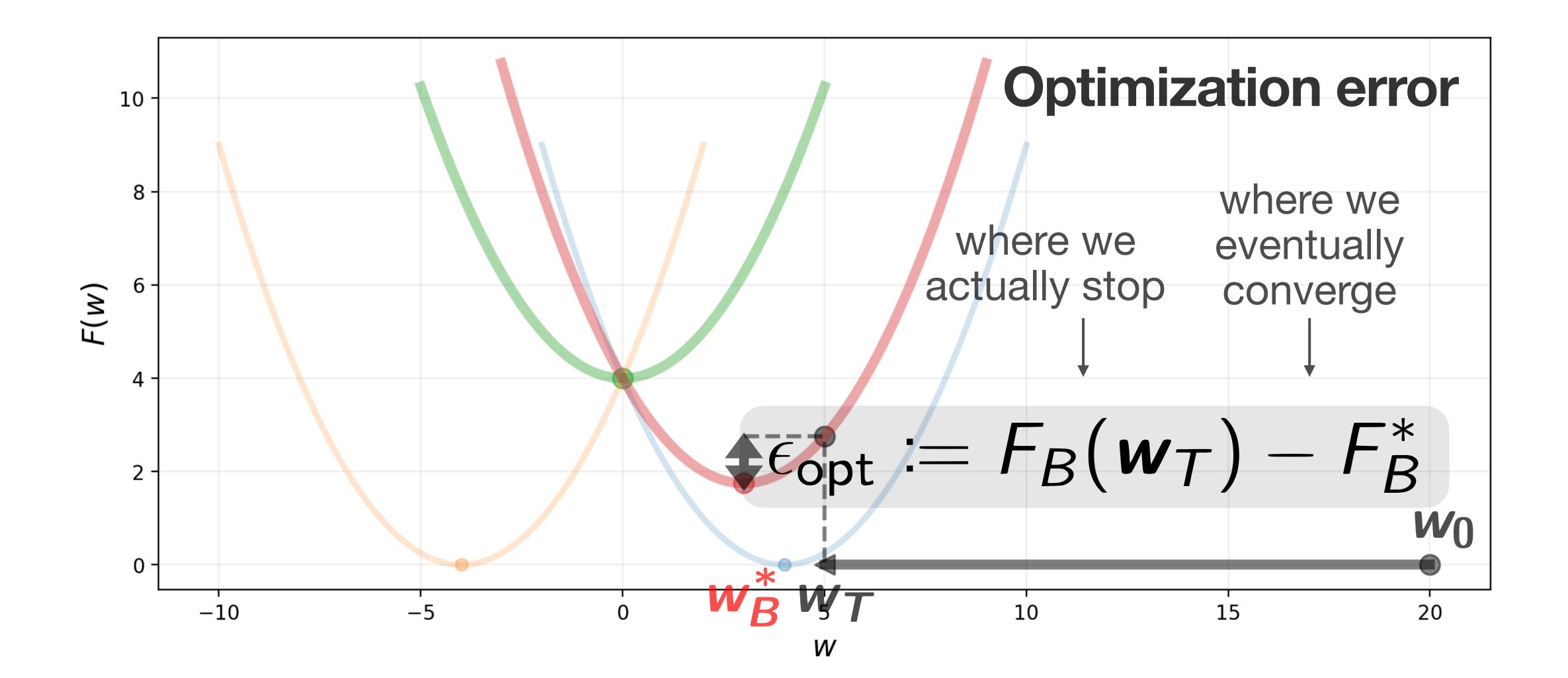


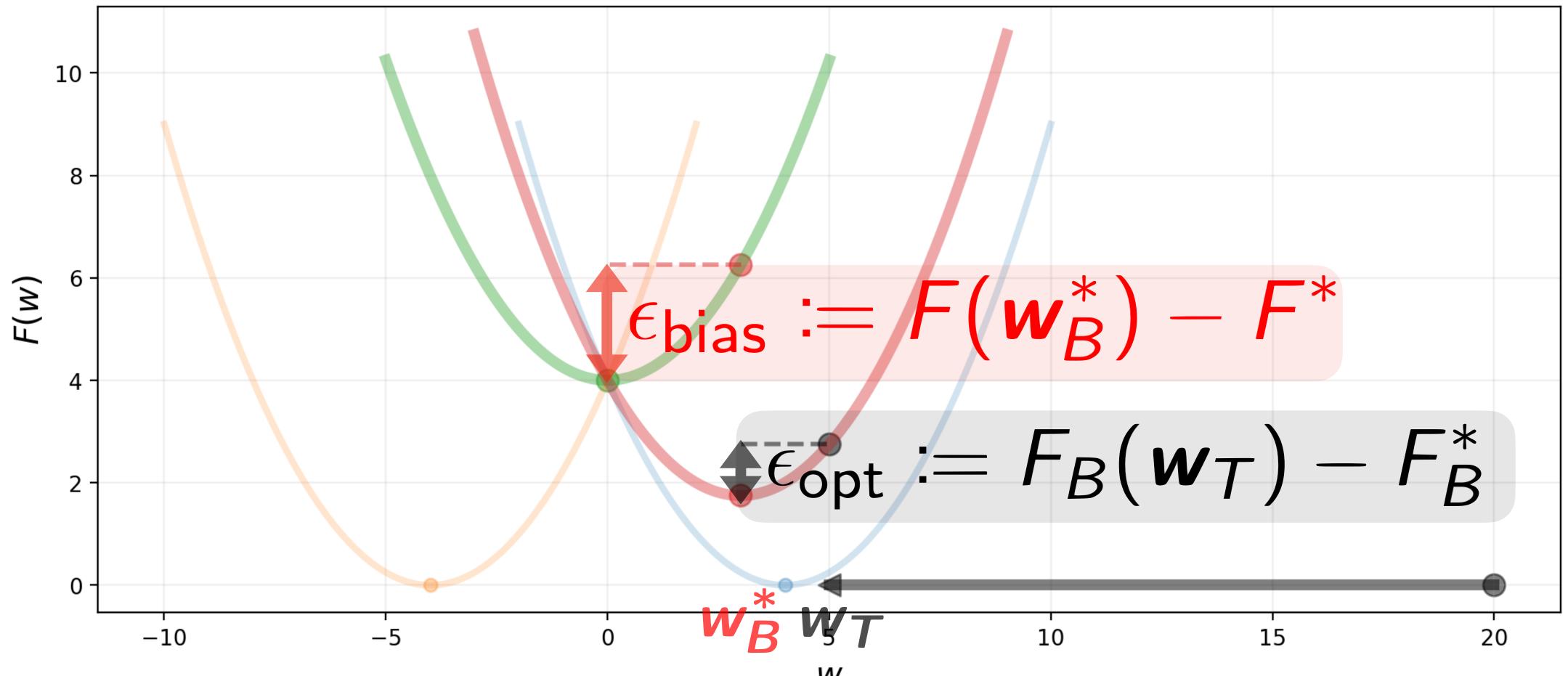




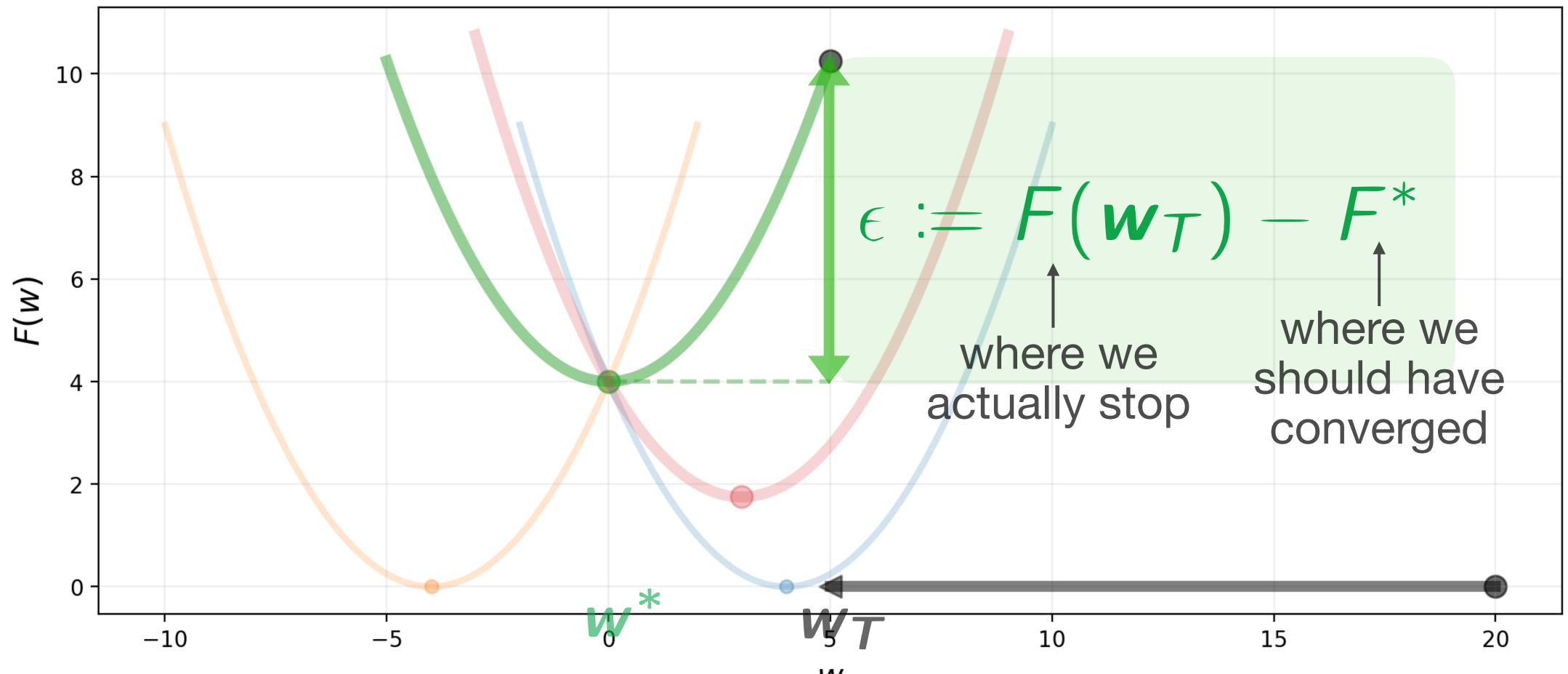






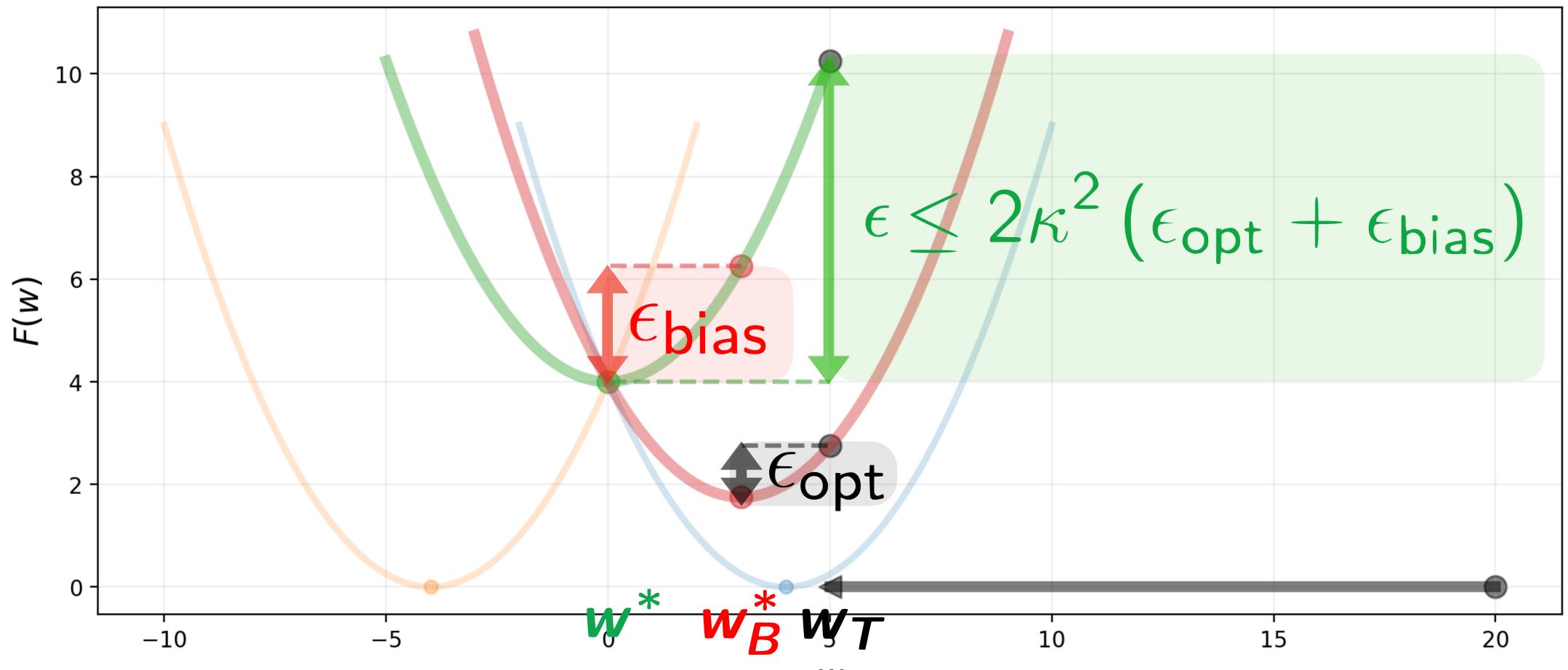


W



Total error

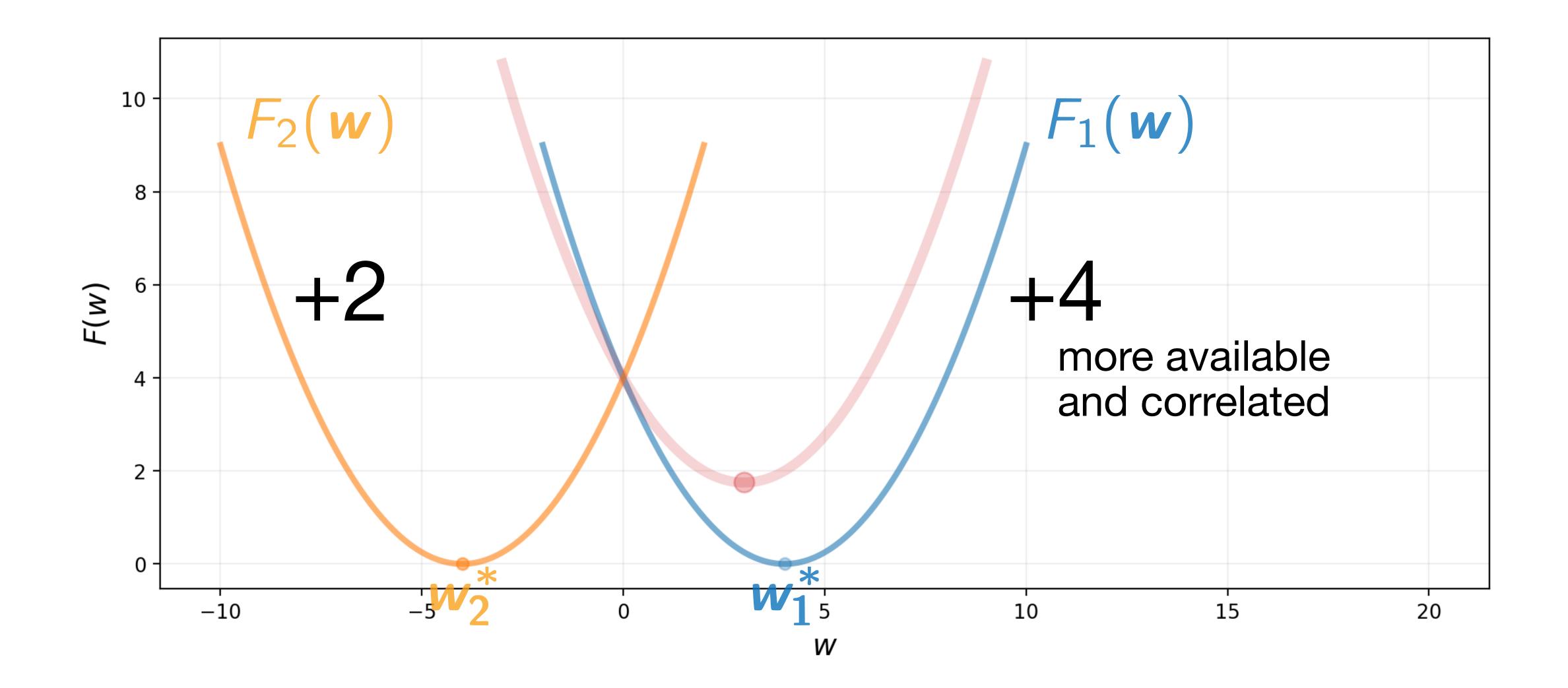
W



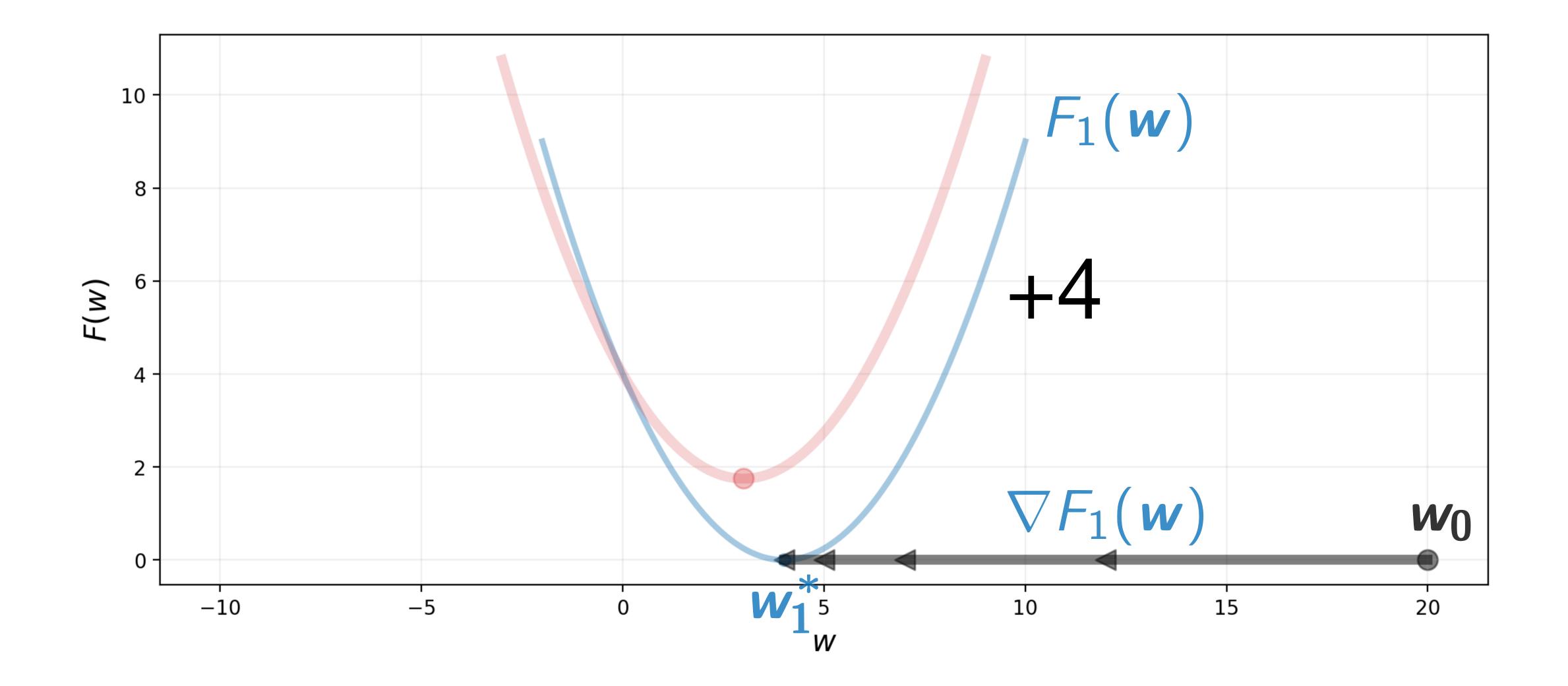
Total error

W

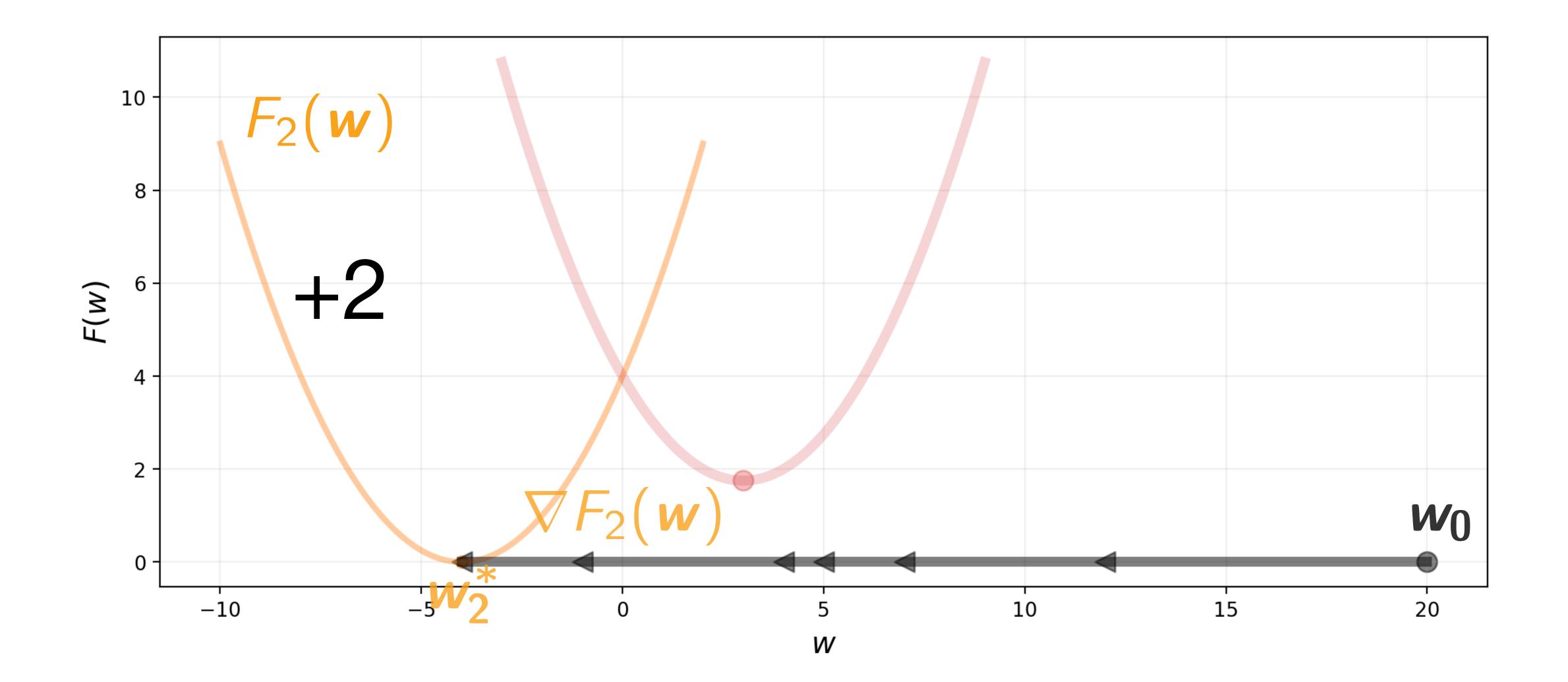
3) Heterogeneous and Correlated Client Availability



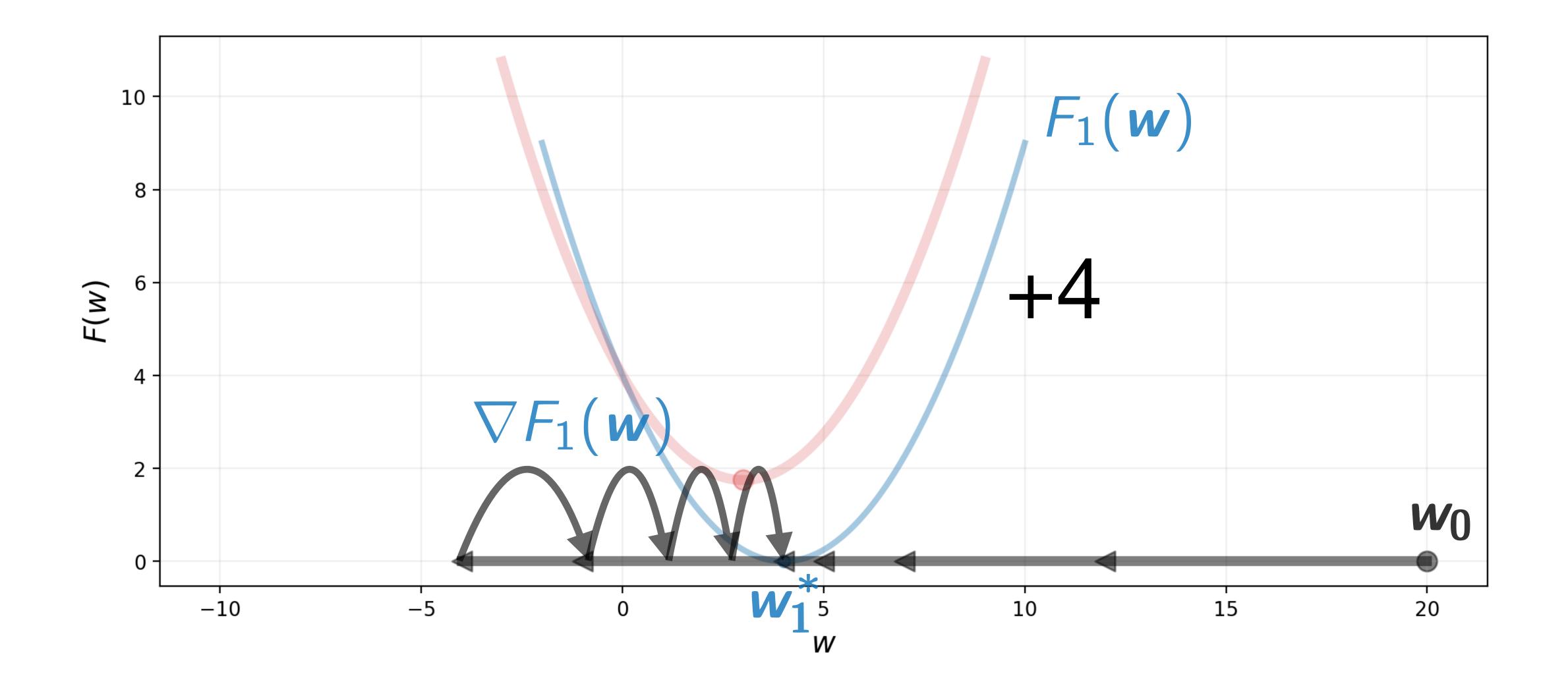
3) Heterogeneous and Correlated Client Availability



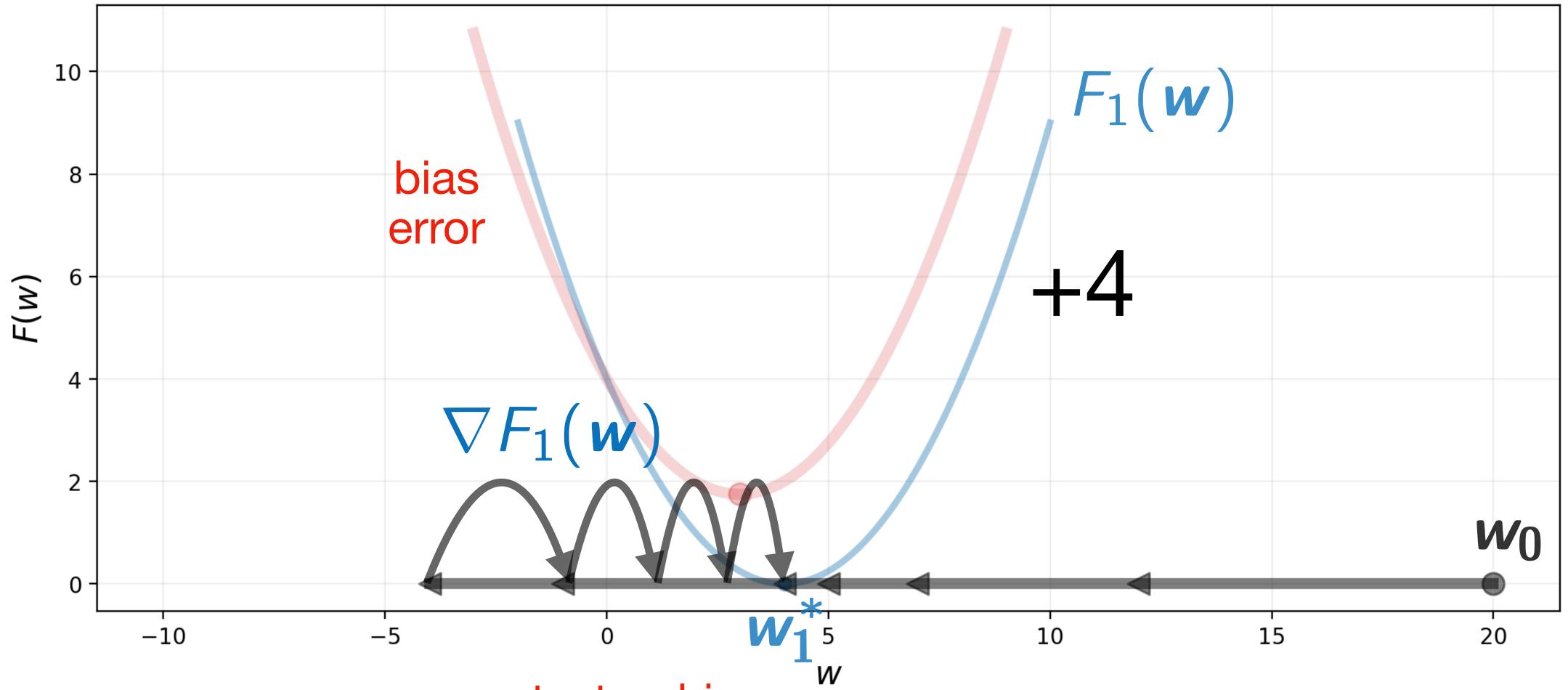
3) Heterogeneous and Correlated Client Availability



3) Heterogeneous and Correlated Client Availability



3) Heterogeneous and Correlated Client Availability



catastrophic forgetting

: forget previously learned models

Assumption to model the heterogeneous and correlated client availability

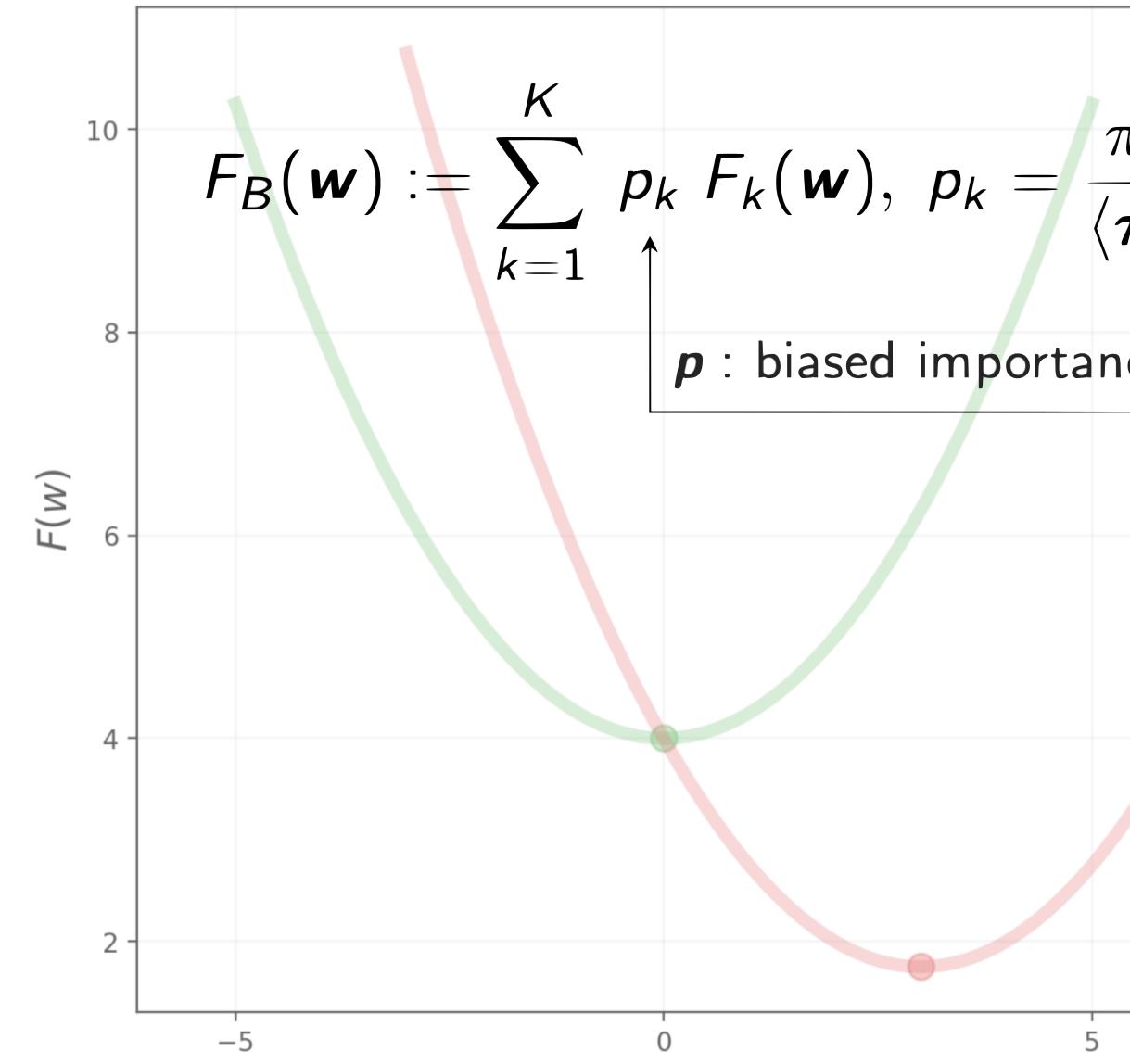
- A_t : set of active clients at time t
- $(A_t)_{t>0}$ is a discrete-time Markov chain \circ transition matrix P
 - \circ stationary distribution $\pi \leftrightarrow$ avg. availability
 - largest 2nd eigenvalue $\lambda(\mathbf{P}) \leftrightarrow$ correlation

Assumption to model the heterogeneous and correlated client availability

- A_t : set of active clients at time t
- $(A_t)_{t>0}$ is a discrete-time Markov chain \circ transition matrix P
 - \circ stationary distribution $\pi \leftrightarrow$ avg. availability
 - largest 2nd eigenvalue $\lambda(\mathbf{P}) \leftrightarrow$ correlation

 $\lambda(\boldsymbol{P}) = \max_{k \in [K]} \lambda(\boldsymbol{P_k})$ If clients' availabilities are independent:

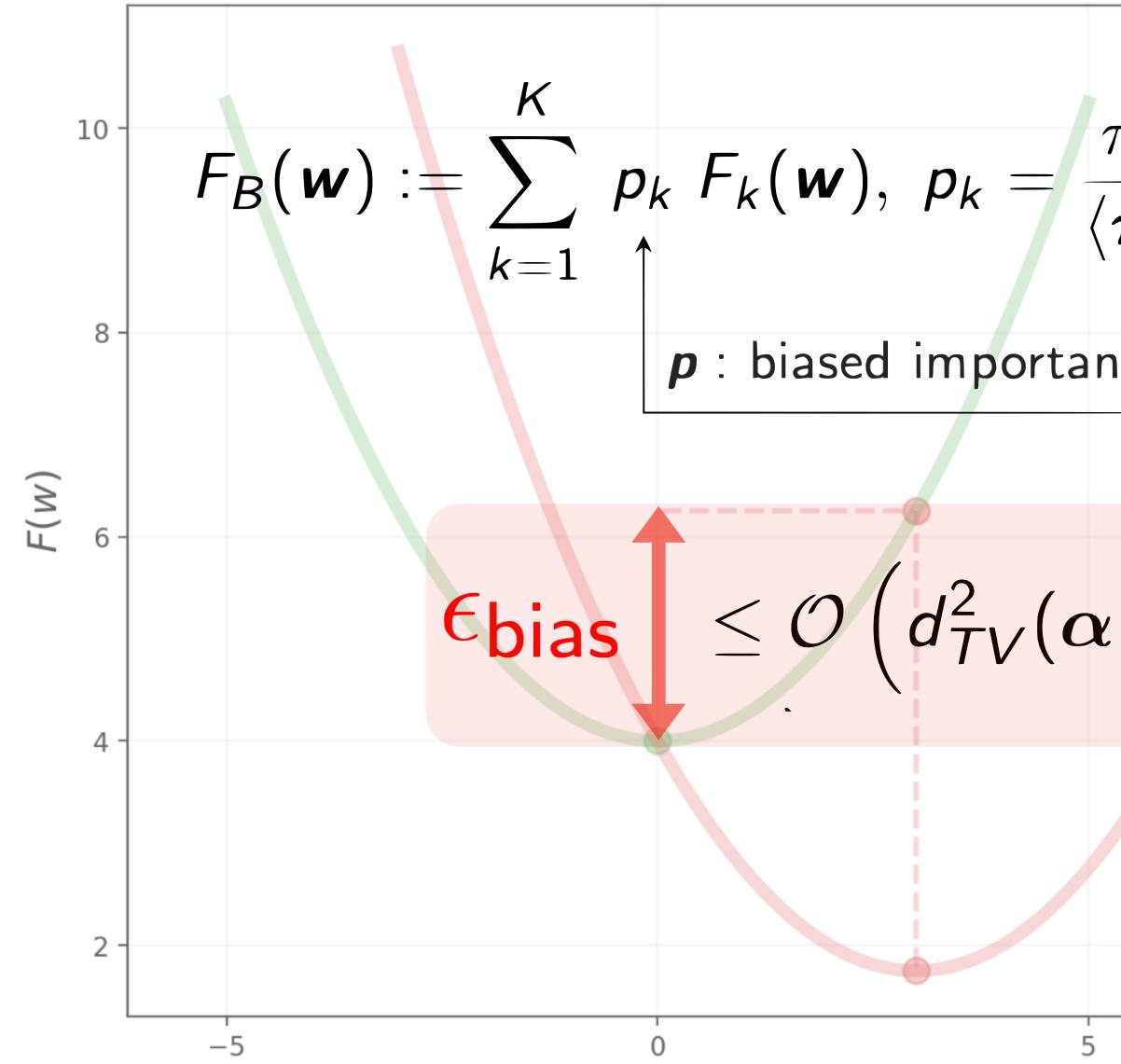
Bias error



$$\frac{\pi_k q_k}{\pi, q} \neq F(w) := \sum_{k=1}^K \alpha_k F_k(w)$$

$$\frac{\alpha : \text{target importance}}{10}$$

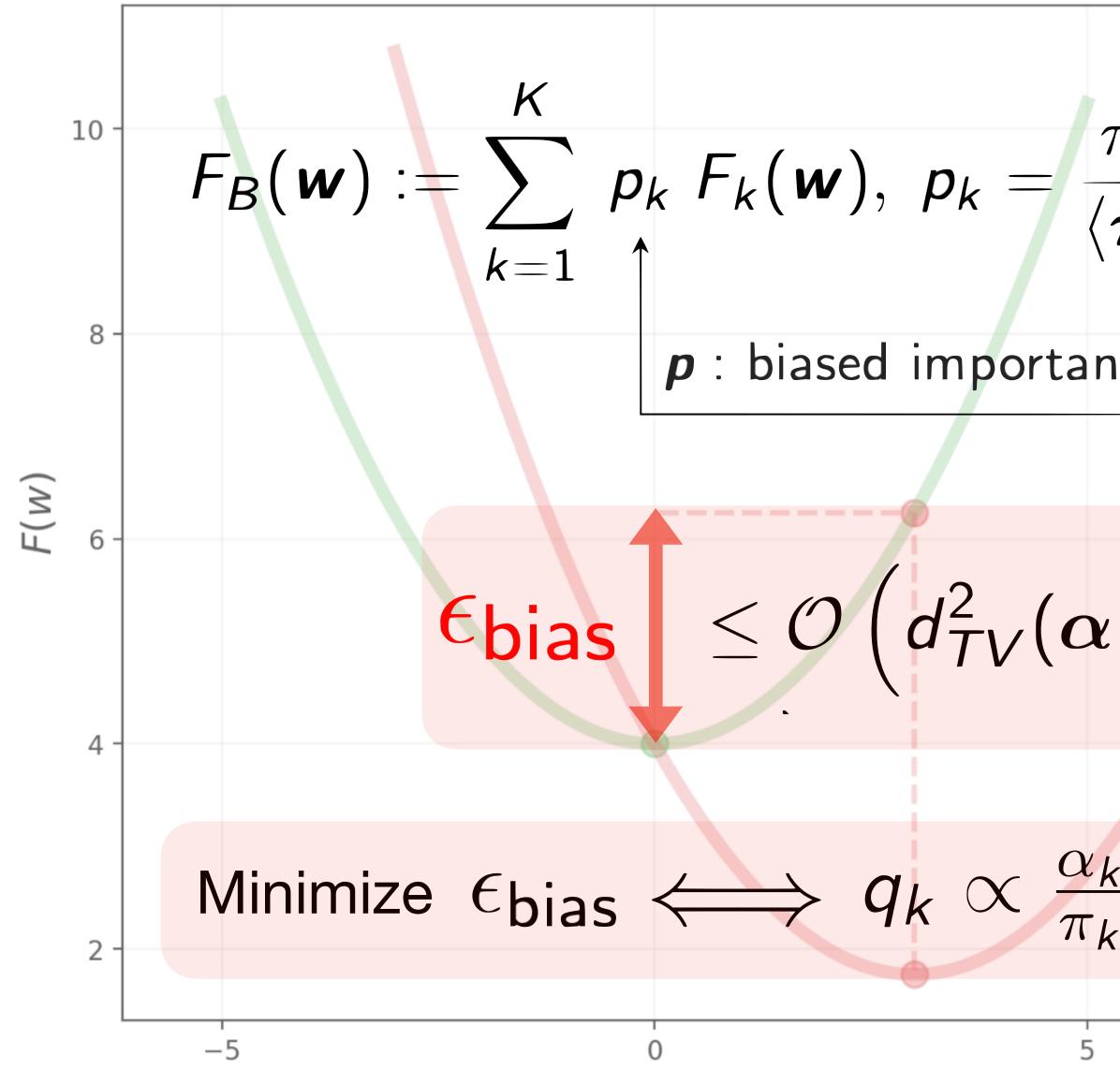
Bias error



$$\frac{\pi_{k}q_{k}}{(\pi, q)} \neq F(w) := \sum_{k=1}^{K} \alpha_{k} F_{k}(w)$$

$$\frac{\alpha : \text{target importance}}{(\pi, p) \cdot \max_{k \in \mathcal{K}} \{F_{k}(w_{B}^{*}) - F_{k}^{*}\})}.$$

Bias error



$$\frac{\pi_{k}q_{k}}{\langle \pi, q \rangle} \neq F(\mathbf{w}) := \sum_{k=1}^{K} \alpha_{k} F_{k}(\mathbf{w})$$

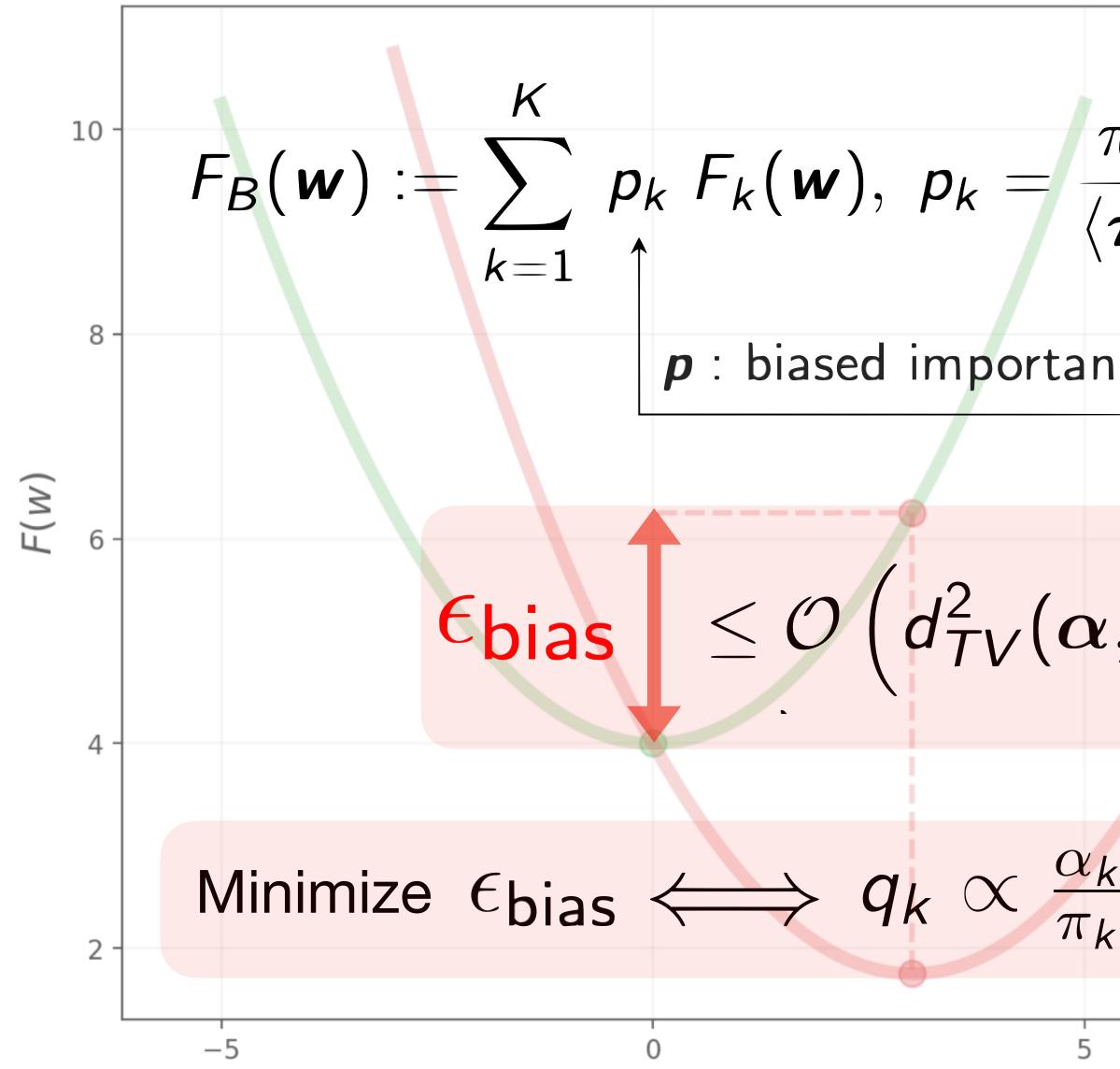
$$\frac{\alpha : \text{target importance}}{\langle x, \mathbf{p} \rangle \cdot \max_{k \in \mathcal{K}} \{F_{k}(\mathbf{w}_{B}^{*}) - F_{k}^{*}\})}$$

$$\frac{k}{k}, \forall k \in \mathcal{K}$$

$$10$$

$$15$$

Bias error

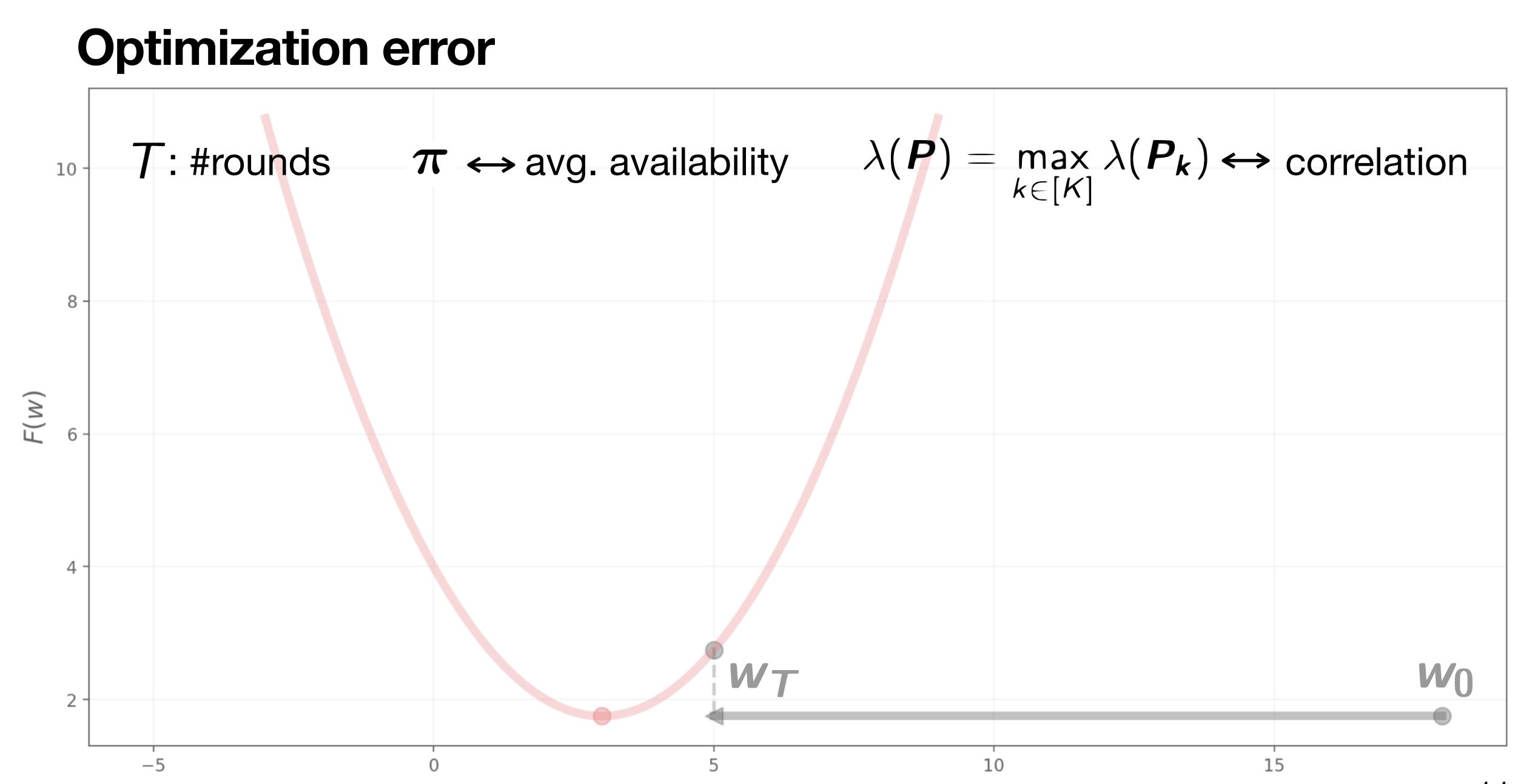


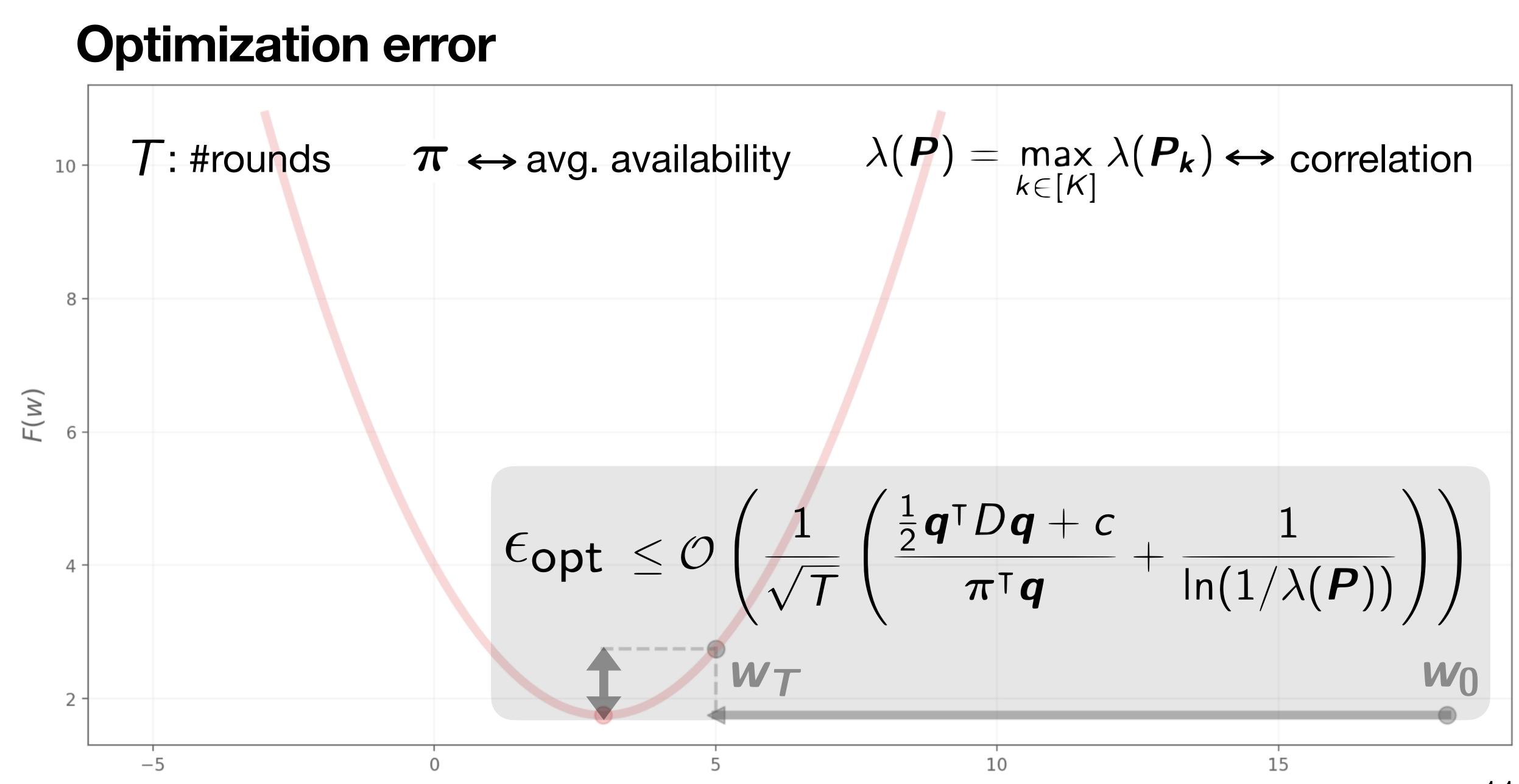
$$\frac{\pi_{k}q_{k}}{(\pi, q)} \neq F(w) := \sum_{k=1}^{K} \alpha_{k} F_{k}(w)$$

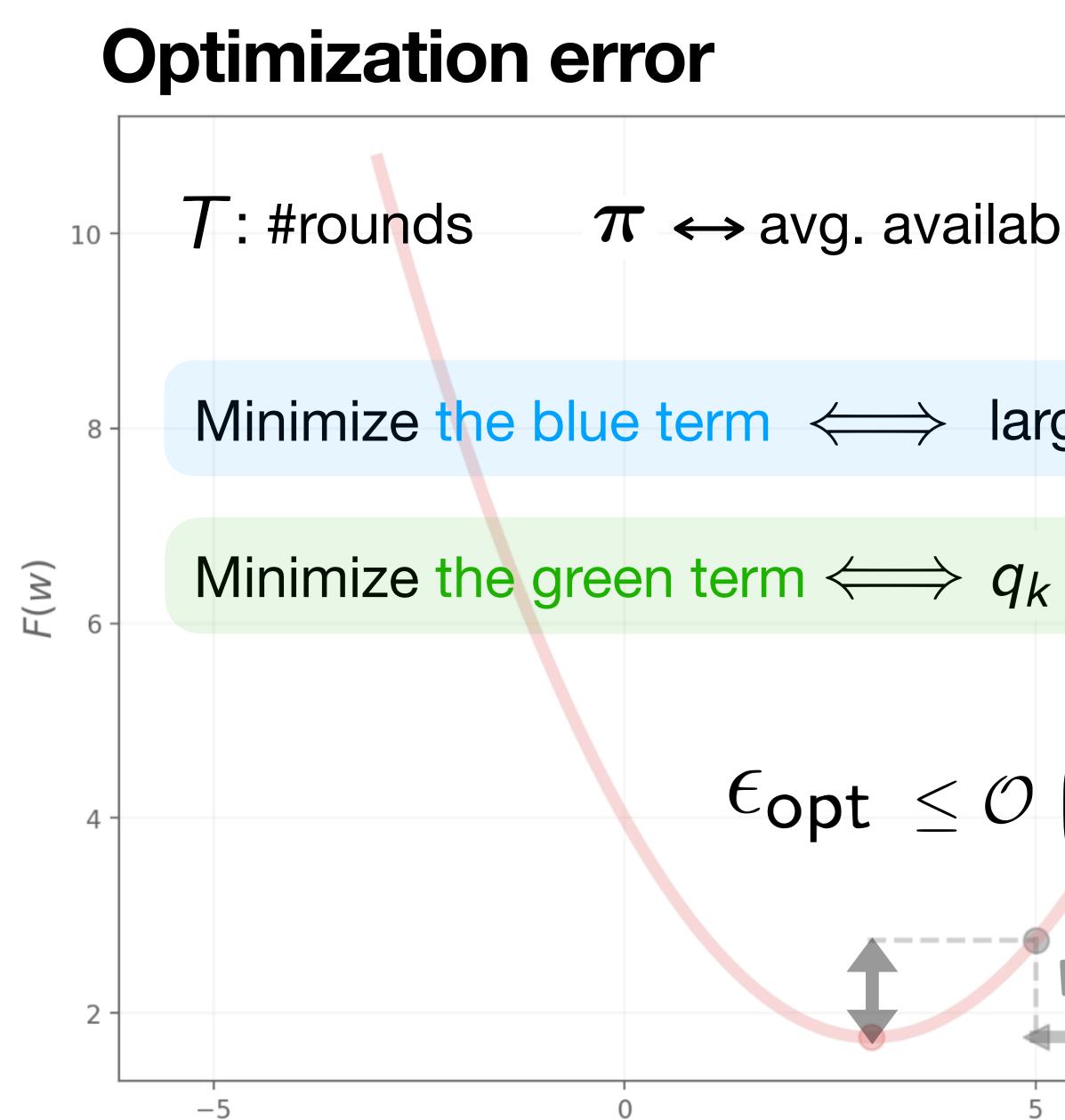
$$\frac{\alpha : \text{target importance}}{(\pi, p) \cdot \max_{k \in \mathcal{K}} \{F_{k}(w_{B}^{*}) - F_{k}^{*}\})}$$

$$\frac{k}{k}, \forall k \in \mathcal{K} \qquad \textbf{Unbiased Strategy}$$

$$10 \qquad 15$$



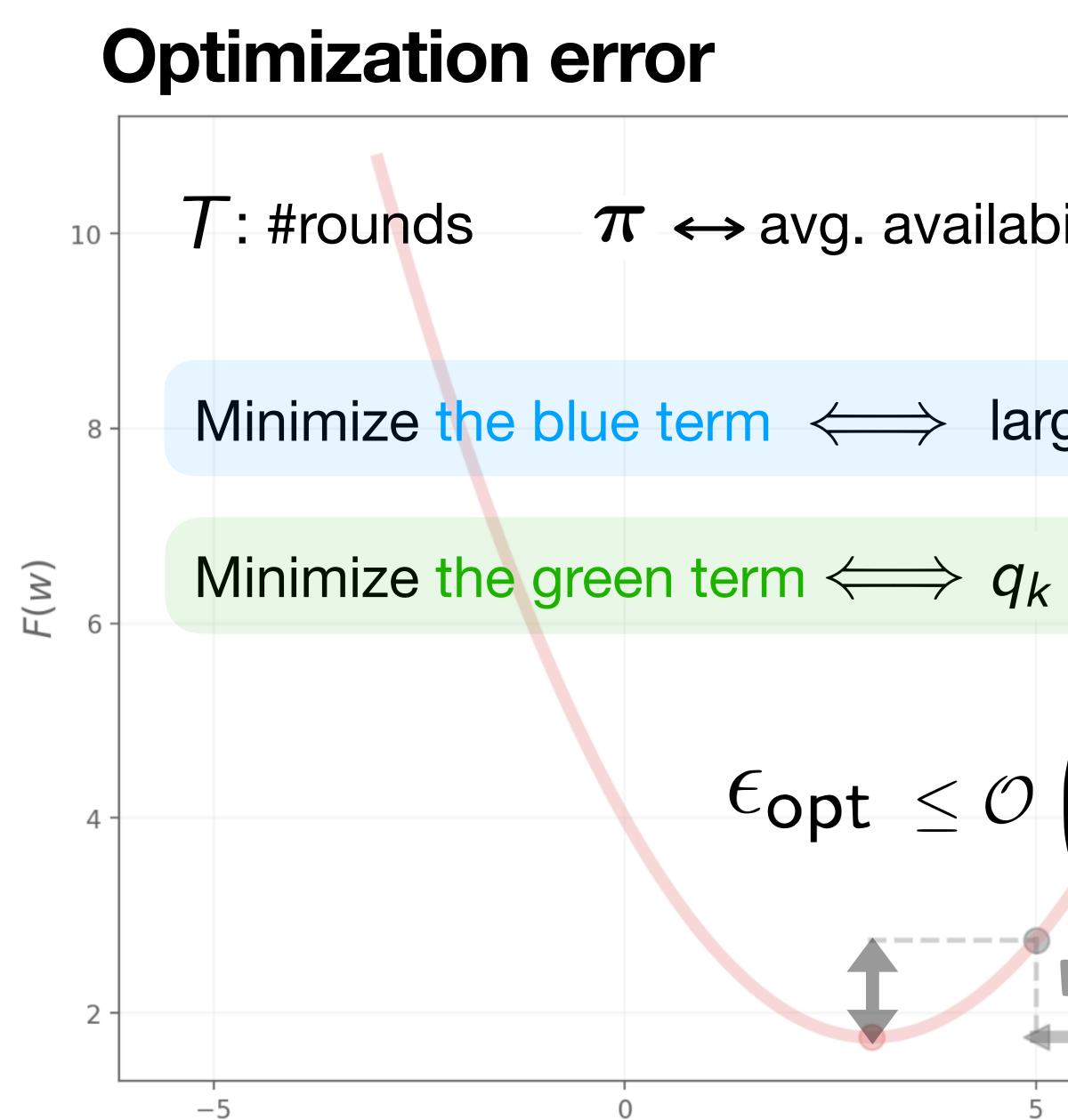




bility
$$\lambda(\mathbf{P}) = \max_{k \in [K]} \lambda(\mathbf{P}_k) \leftrightarrow \text{correlation}$$

ge q_k for large π_k
 $= 0$ for large $\lambda(\mathbf{P}_k)$
 $\left(\frac{1}{\sqrt{T}} \left(\frac{\frac{1}{2}\mathbf{q}^T D \mathbf{q} + c}{\pi^T \mathbf{q}} + \frac{1}{\ln(1/\lambda(\mathbf{P}))}\right)\right)$
 \mathbf{W}_T

W



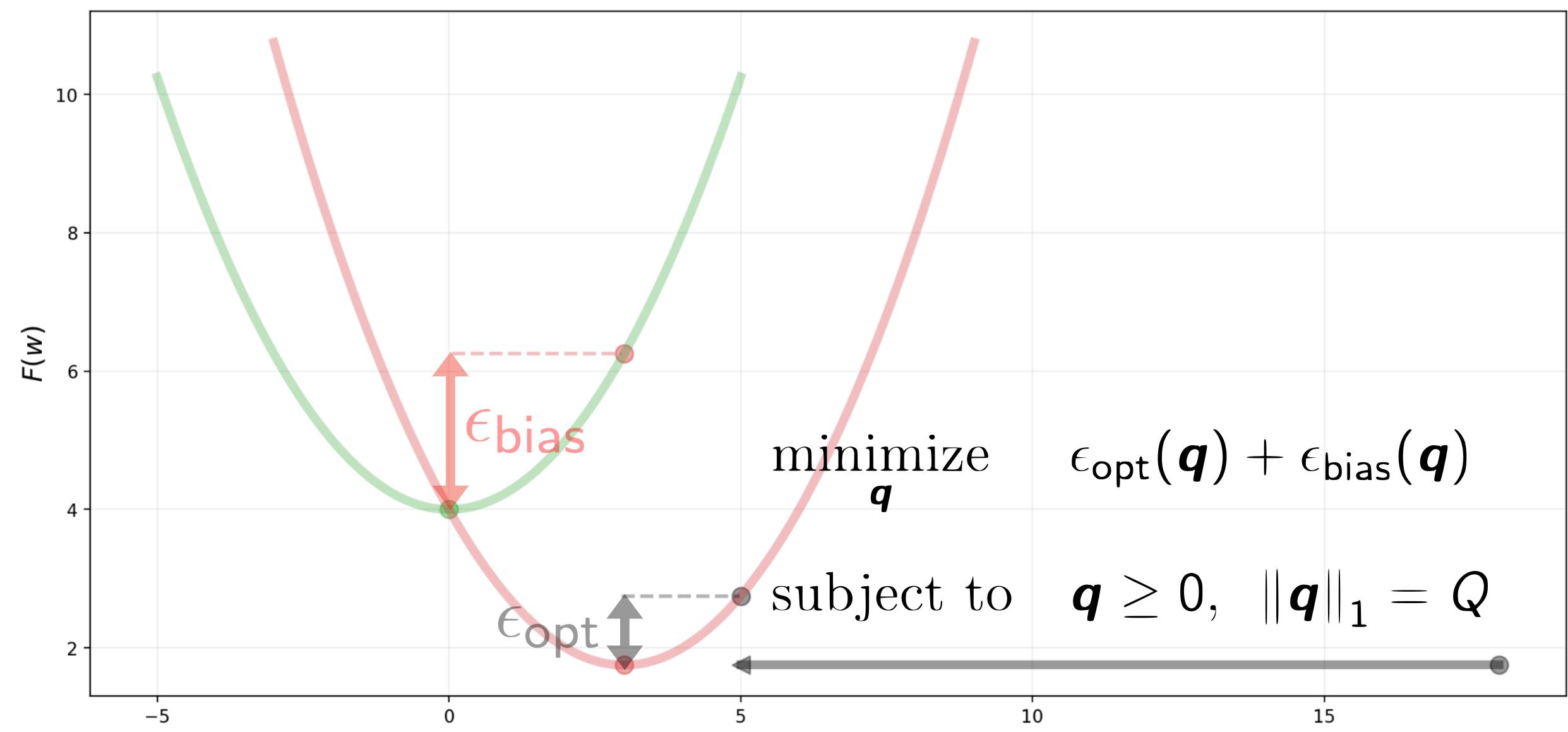
with
$$\lambda(\mathbf{P}) = \max_{k \in [K]} \lambda(\mathbf{P}_k) \Leftrightarrow \text{ correlation}$$

ge q_k for large π_k
 $= 0$ for large $\lambda(\mathbf{P}_k)$

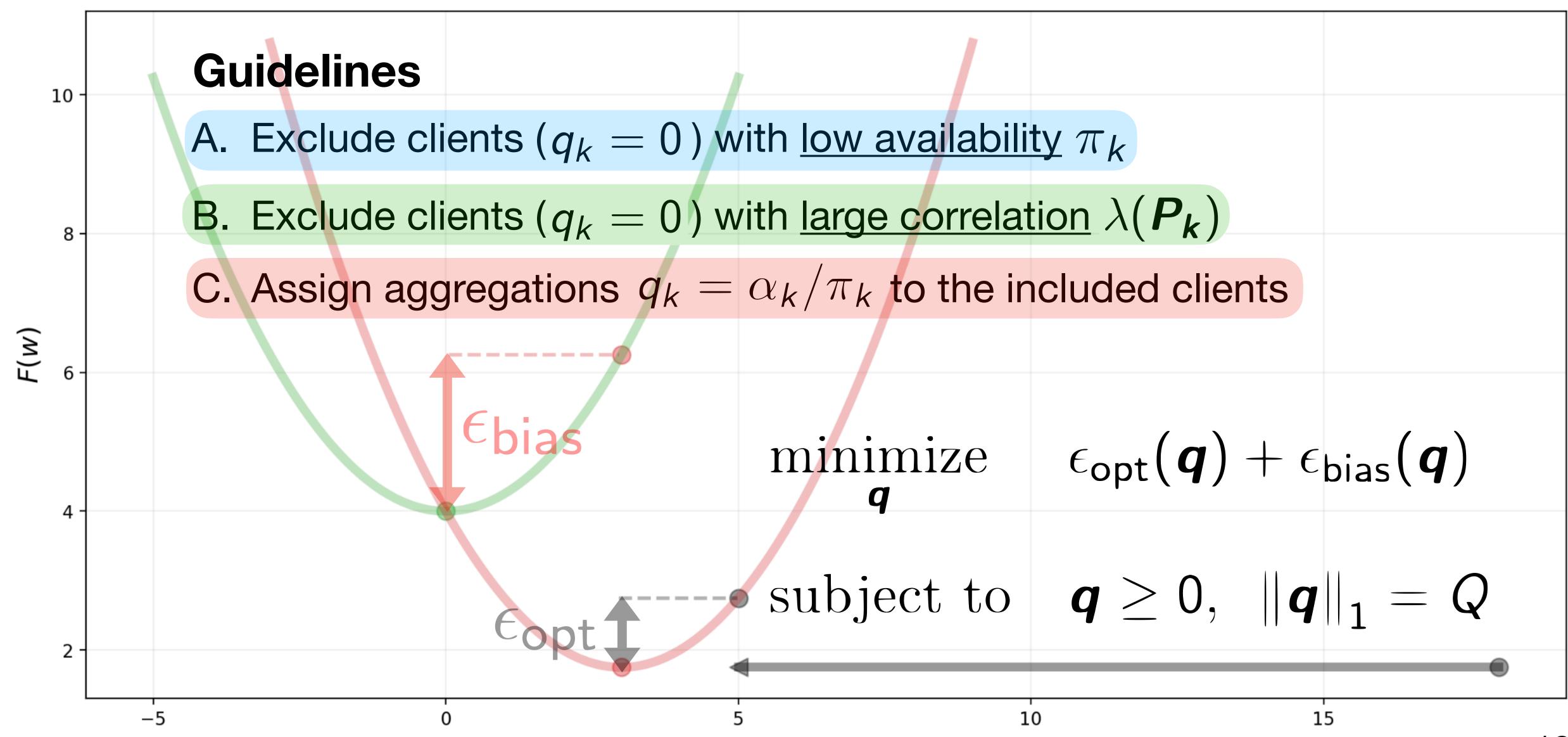
$$\left(\frac{1}{\sqrt{T}} \left(\frac{\frac{1}{2}\mathbf{q}^T D \mathbf{q} + c}{\pi^T \mathbf{q}} + \frac{1}{\ln(1/\lambda(\mathbf{P}))}\right)\right)$$
we have \mathbf{W}_T

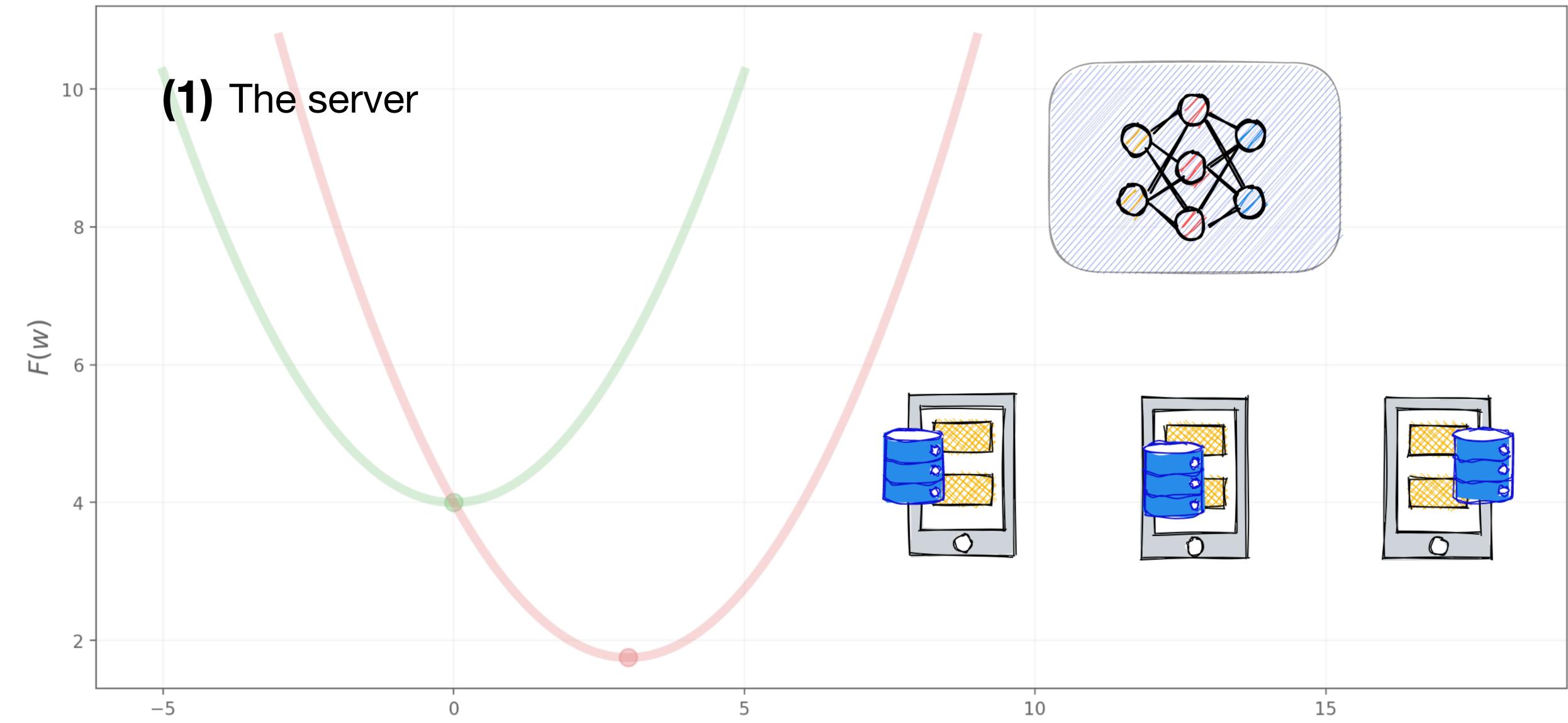
W

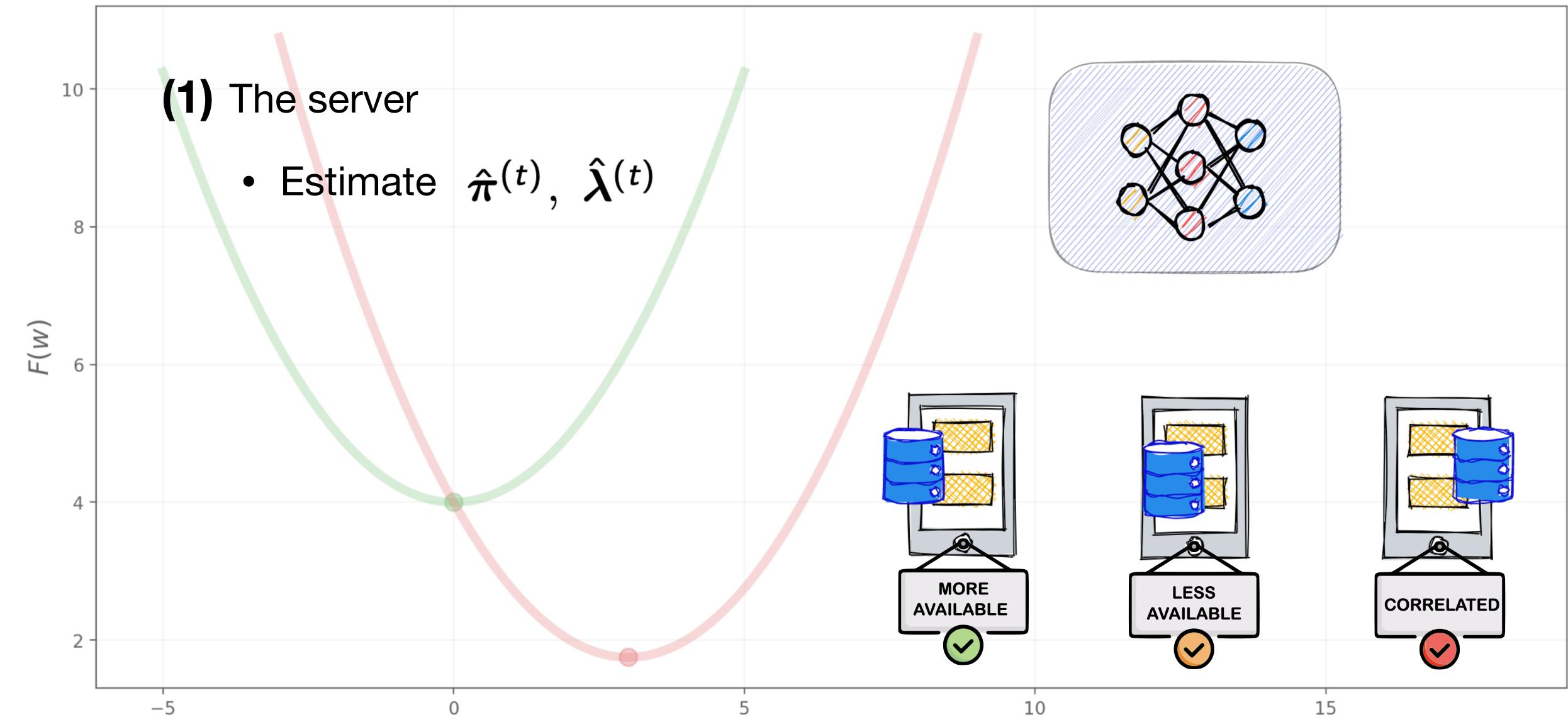
Total error : optimization error + bias error

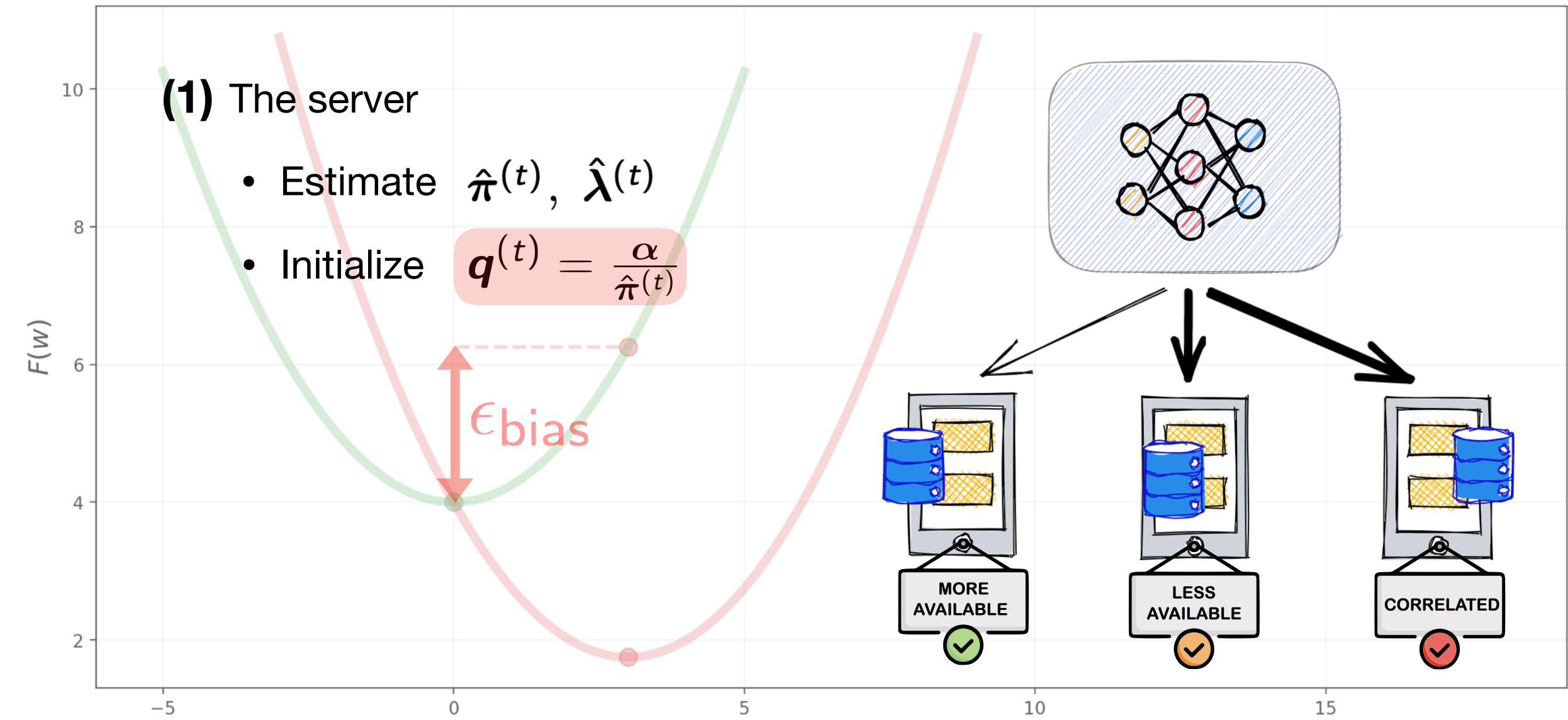


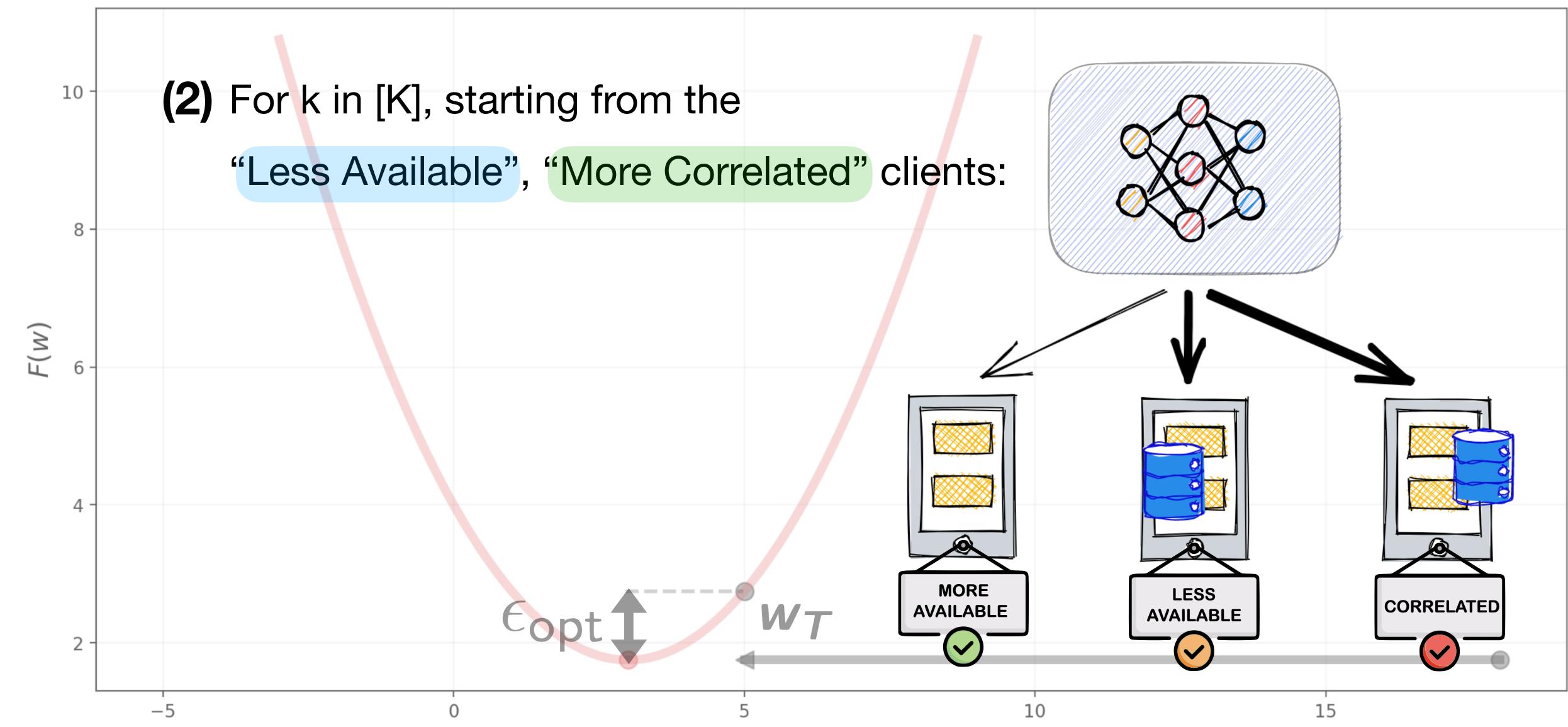
Total error : optimization error + bias error

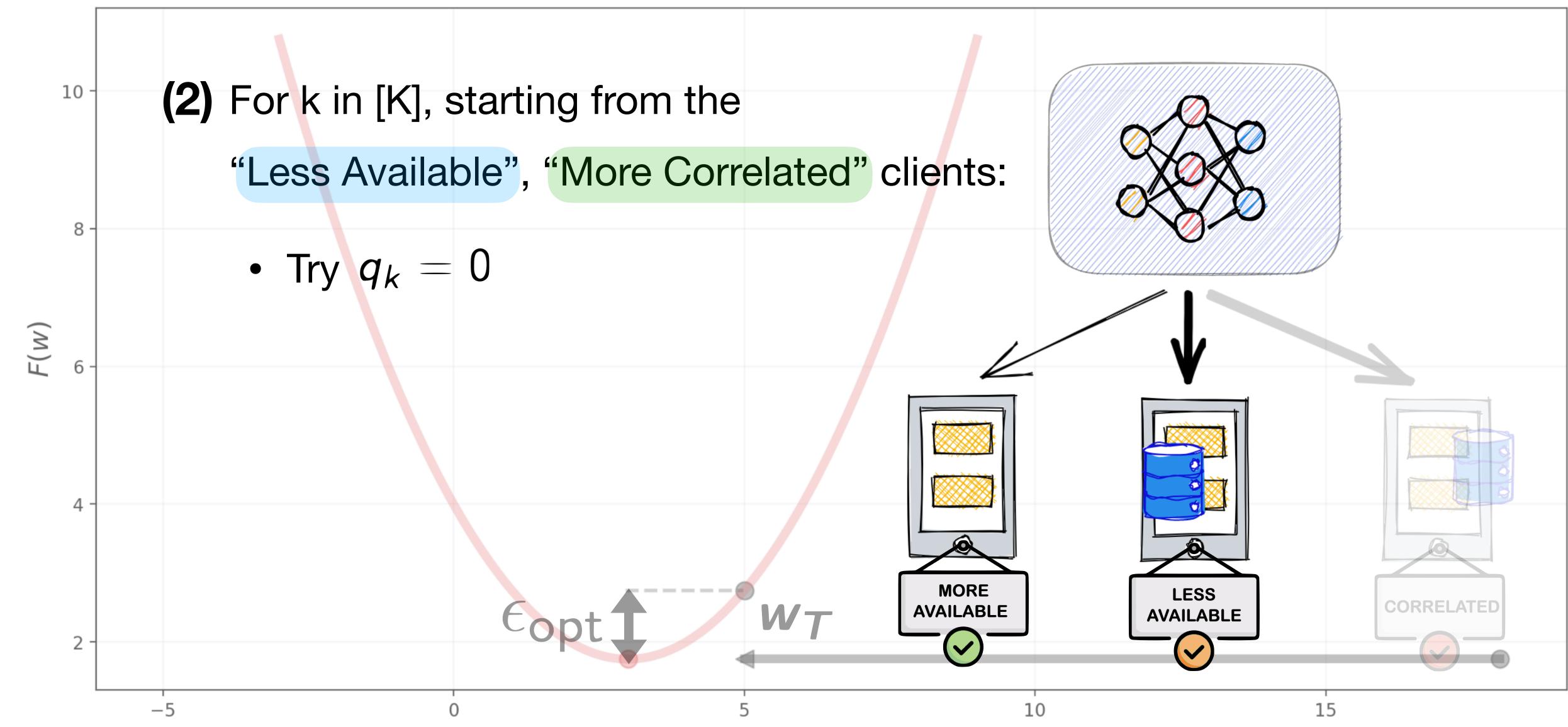


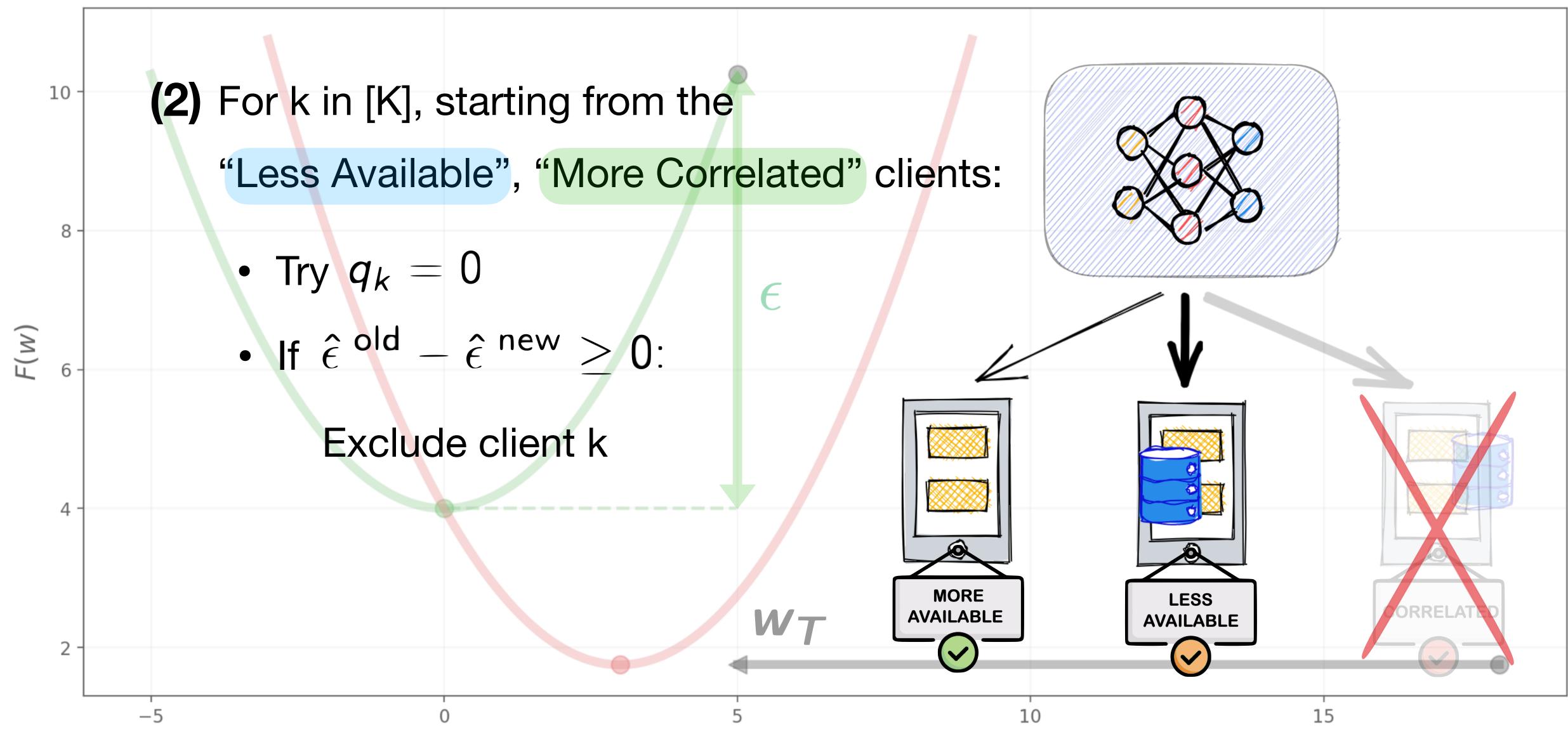


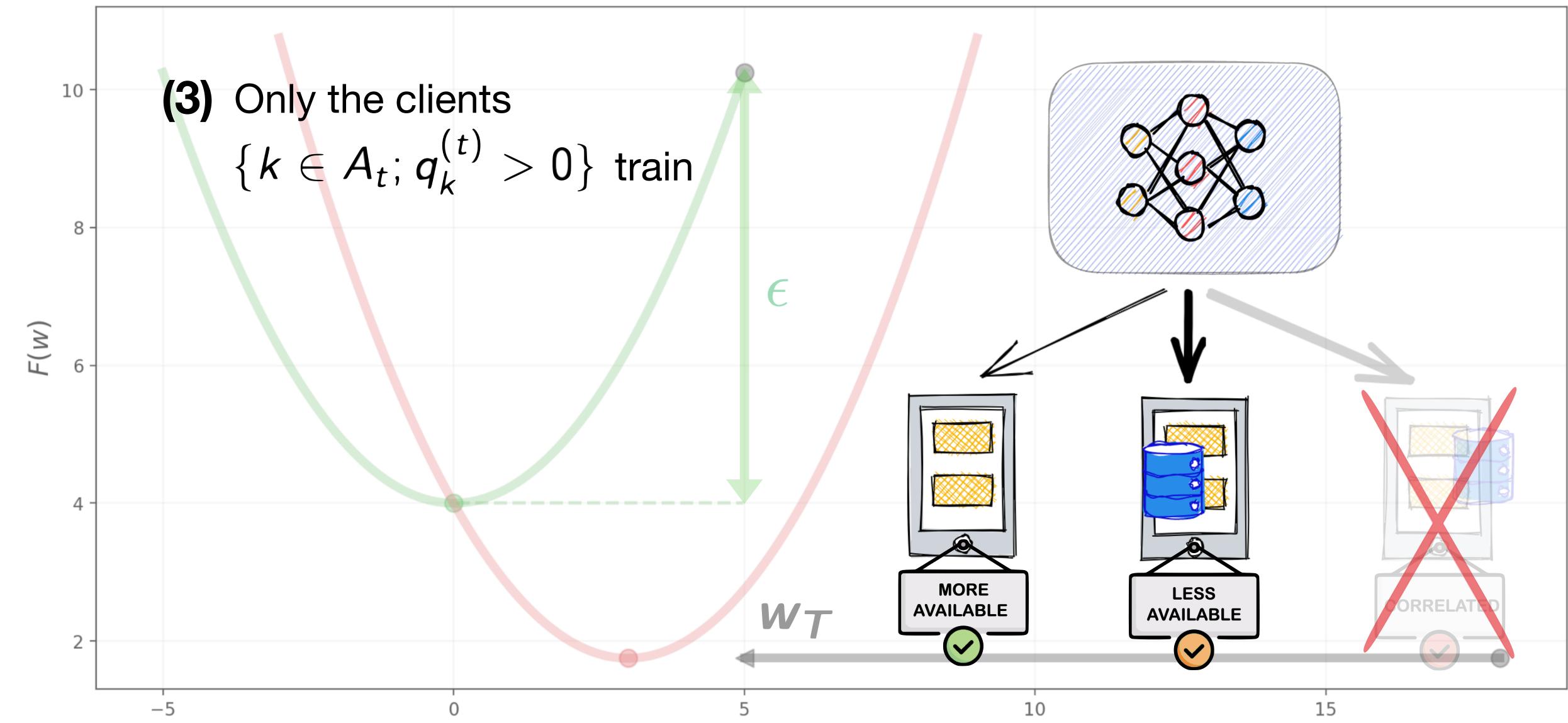






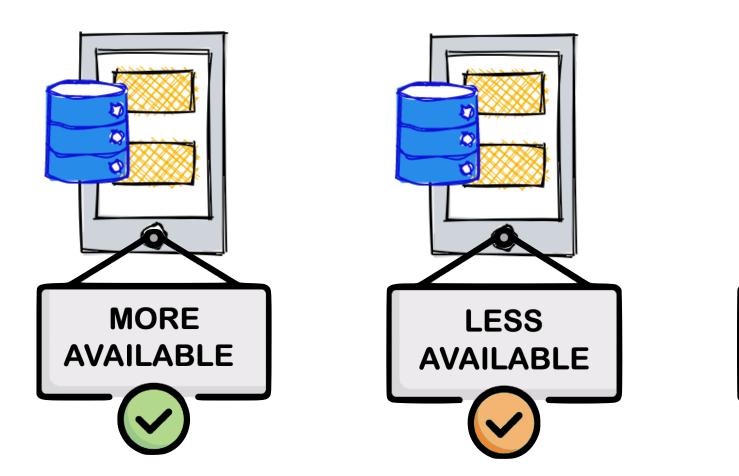


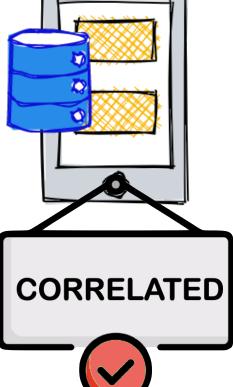




Experimental setting

• Population of K=100 clients, divided in:

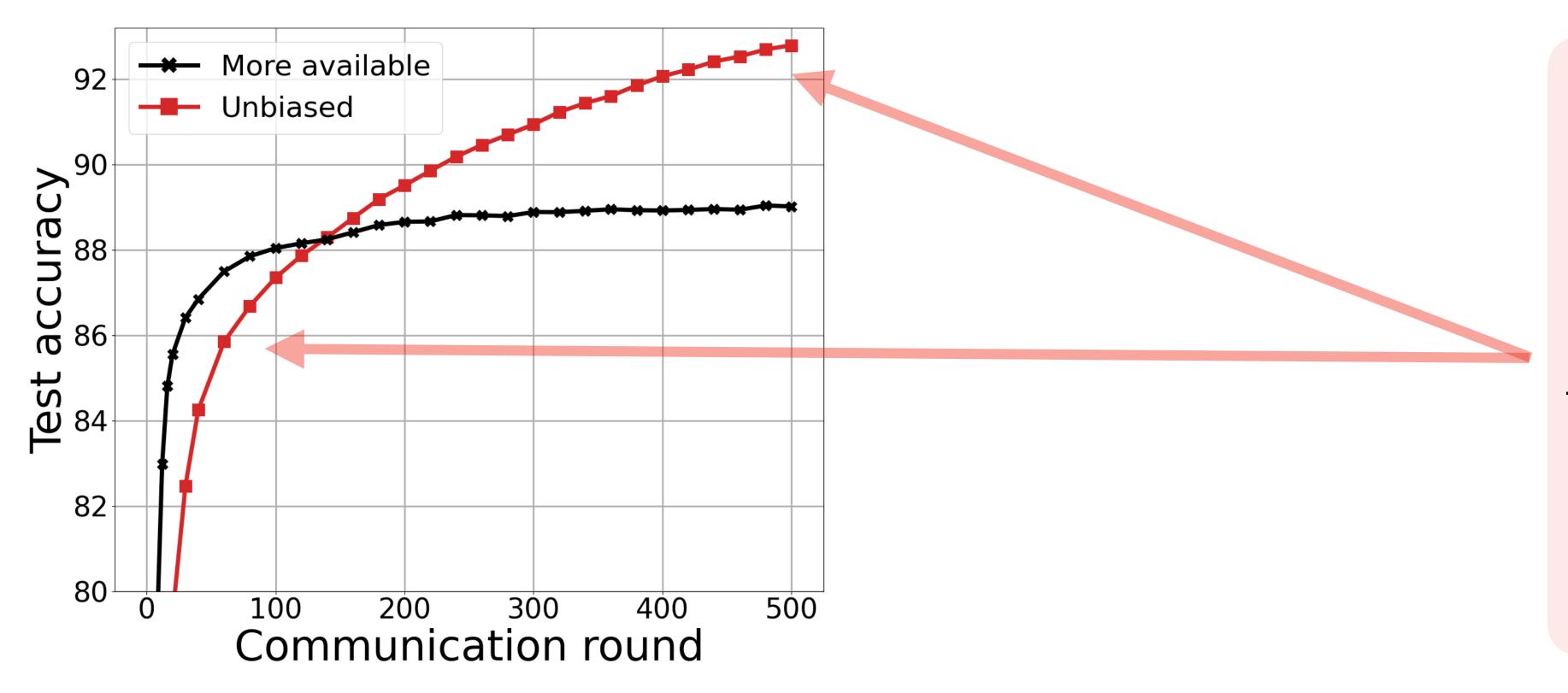


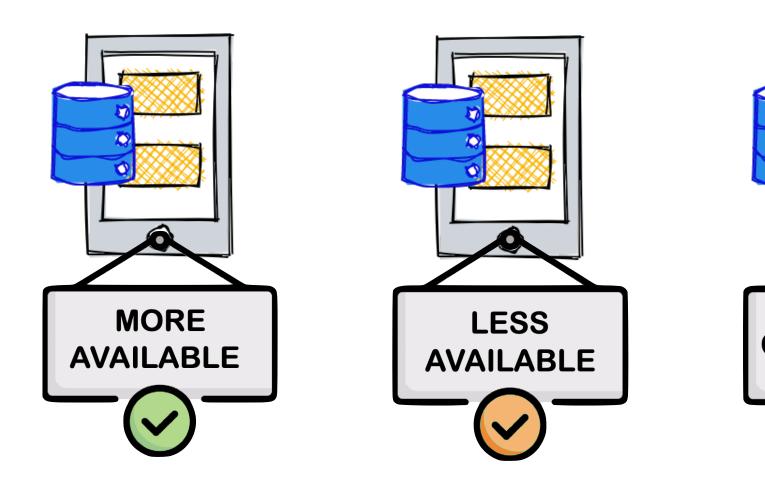


14

Experimental setting

- Population of K=100 clients, divided in:
- Trade-off:

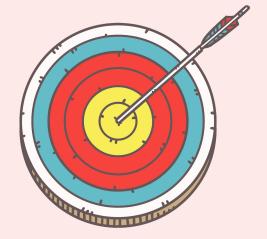




Unbiased

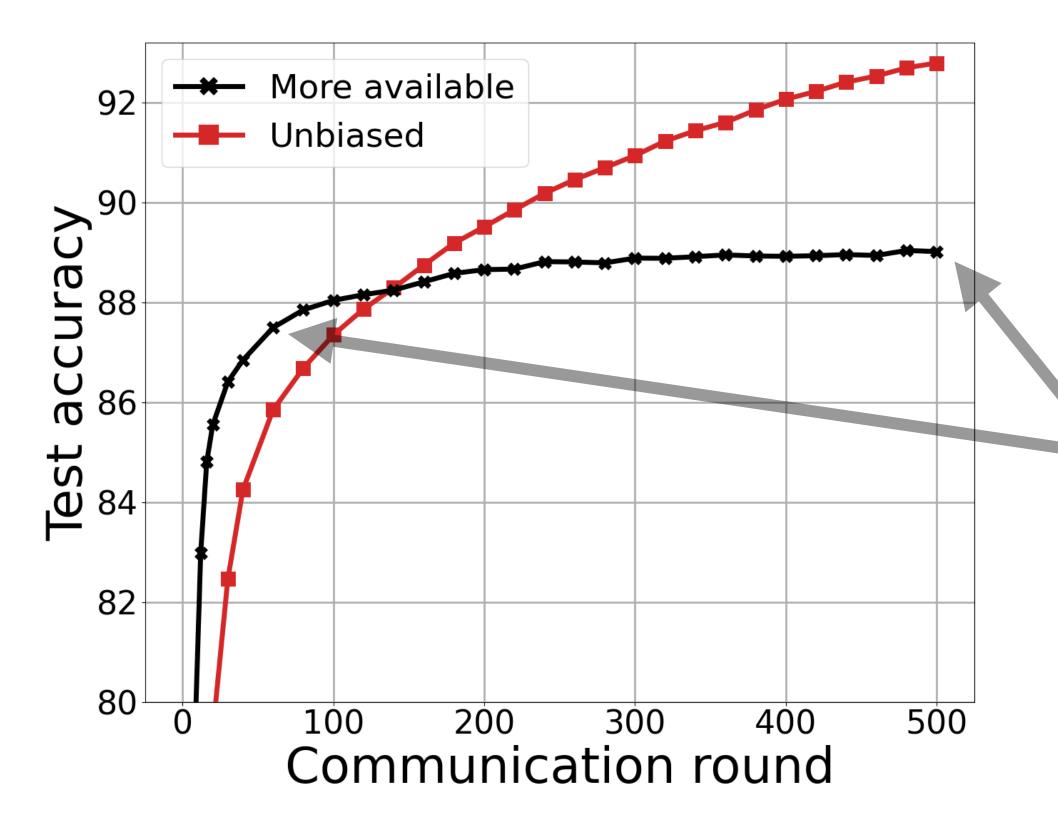
Minimize the bias error

Slower convergence to the target objective



Experimental setting

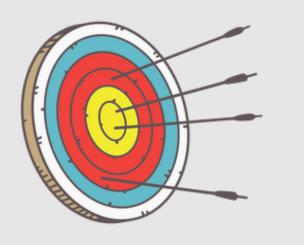
- Population of K=100 clients, divided in:
- Trade-off:



More **Available**

Minimize the optimization error

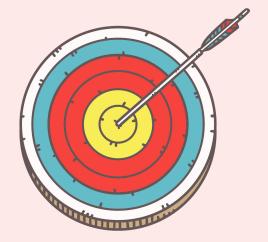
Faster convergence to a biased objective



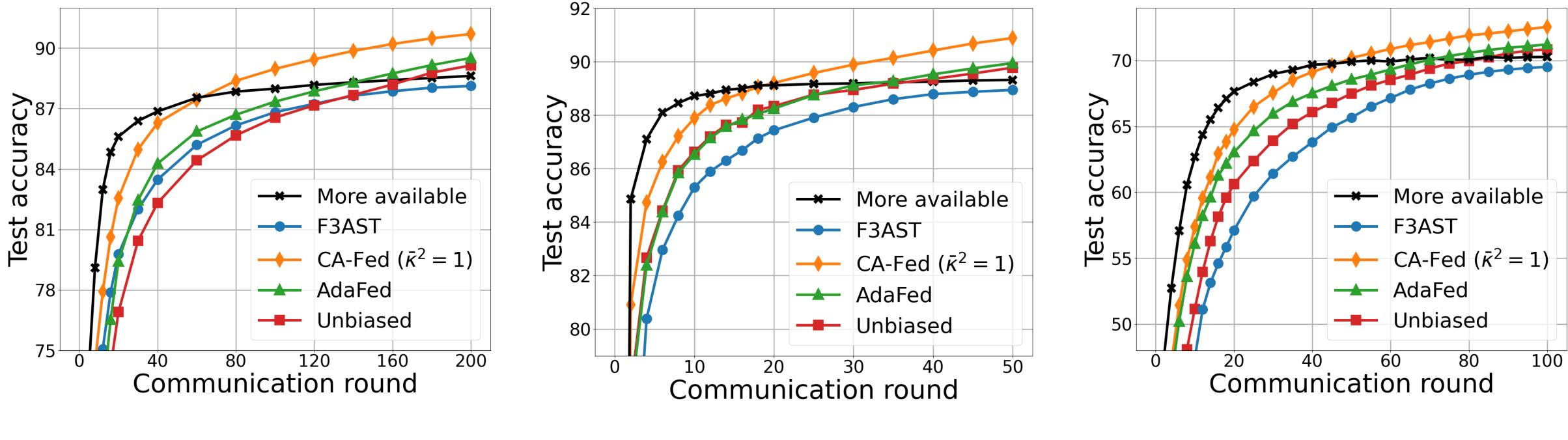
Unbiased

Minimize the bias error

Slower convergence to the target objective



Experimental results



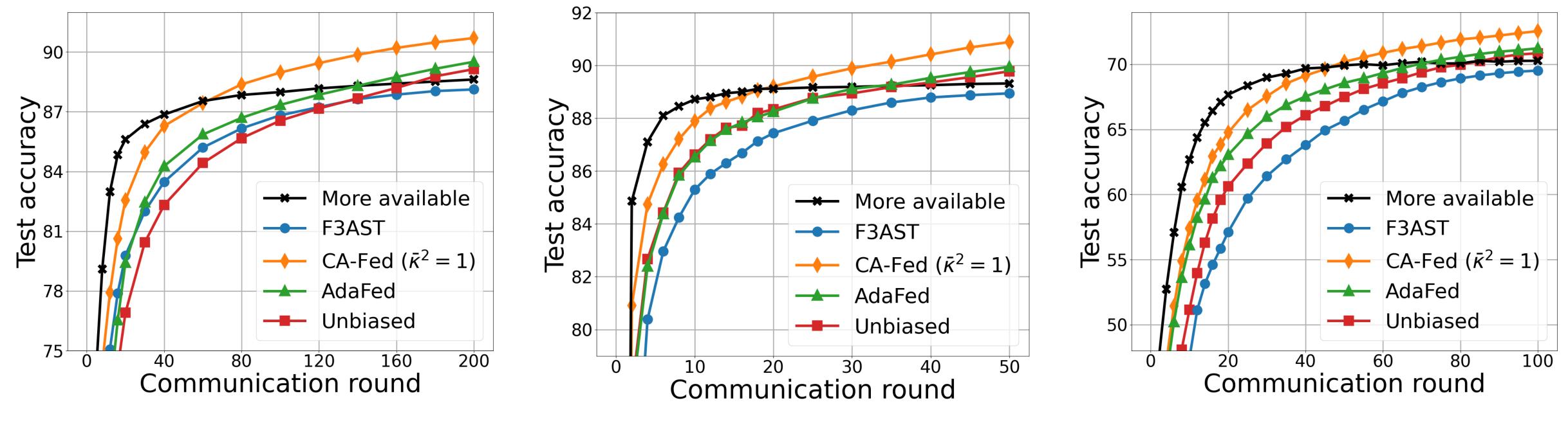
(a) Synthetic LEAF

We compare CA-Fed with More Available, Unbiased, AdaFed, and F3AST

(b) MNIST

(c) CIFAR10

Experimental results



(a) Synthetic LEAF

CA-Fed achieves higher accuracy in a shorter time

We compare CA-Fed with More Available, Unbiased, AdaFed, and F3AST

(b) MNIST

(c) CIFAR10

Conclusions

- First convergence analysis under heterogeneous and correlated client availability
- Adaptively excluding less available and highly correlated clients can be effective
- Further discussions and experiments in our paper!

Thank you for your attention!

