Federated Learning under Intermittent and Correlated Client Availability

Othmane Marfoq ^{1,2,4} Francescomaria Faticanti ^{1,2} Giovanni Neglia ^{1,2,3} Emilio Leonardi ⁵

¹Inria ²Université Côte d'Azur

³3IA Côte d'Azur ⁴Accenture Labs

⁵Politecnico di Torino

Our algorithm: CA-Fed

Problem description

• A population of clients $\mathcal{K} = \{1, \ldots, K\}$

Angelo Rodio 1,2,3

- Each client $k \in \mathcal{K}$ holds a local dataset $D_k = \{\xi_{kl}\}_{l=1}^{n_k}$ of size n_k
- Clients learn the parameters $m{w}$ of a global ML model with loss function $f(m{w};\xi)$
- Client $k \in \mathcal{K}$ has a local objective: $F_k(\boldsymbol{w}) \coloneqq \frac{1}{n_k} \sum_{l=1}^{n_k} f(\boldsymbol{w}; \xi_{kl})$
- In *Federated Learning*, clients solve, under the orchestration of a central server:

$$\underset{\boldsymbol{w} \in W}{\text{minimize}} F(\boldsymbol{w}) \coloneqq \sum_{k=1}^{K} \alpha_k F_k(\boldsymbol{w}), \quad \|\boldsymbol{\alpha}\|_1 = 1$$

$$\alpha : \text{importance weights}$$
(1)

A common algorithm to solve (1) is **FedAvg**. For each training round t > 0:

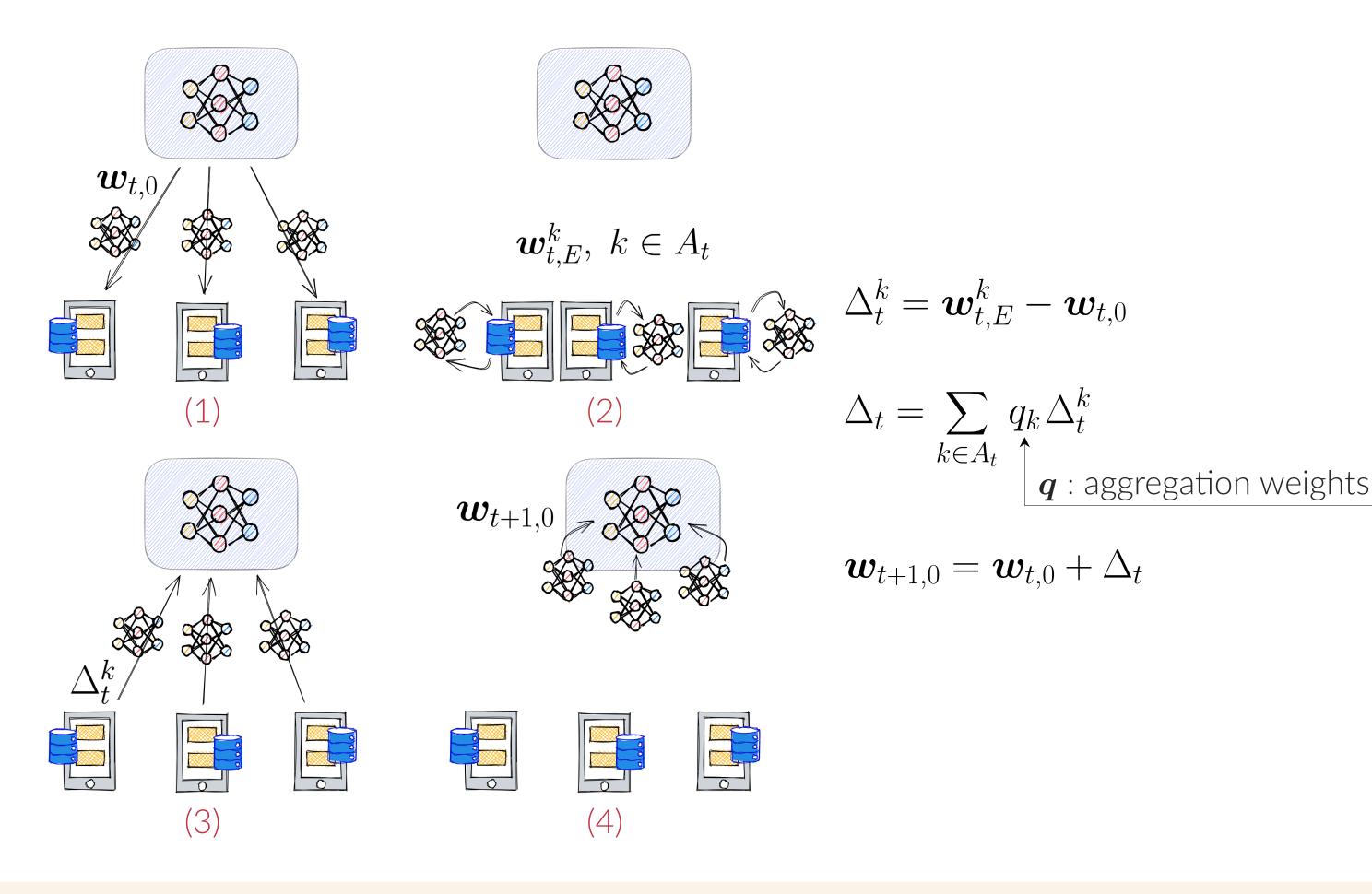
From the optimization problem, we derive the following guidelines:

A) Some clients can be excluded from training, i.e., receive $q_k^* = 0$ B) Exclude clients with low availability π_k and high correlation $\lambda(\mathbf{P_k})$ C) Assign allocation $q_k = \alpha_k / \pi_k$ to the included clients

Combining these guidelines, we propose a **client aggregation strategy** (CA-Fed) that dynamically excludes clients from training and improves convergence rate

Experiments

Population with K = 24 clients, divided in:



- "More available" clients with large π_k
- "Less available, weakly correlated" clients with low π_k , low $\lambda({m P}_k)$
- "Less available, correlated" clients with low π_k , large $\lambda(\boldsymbol{P_k})$

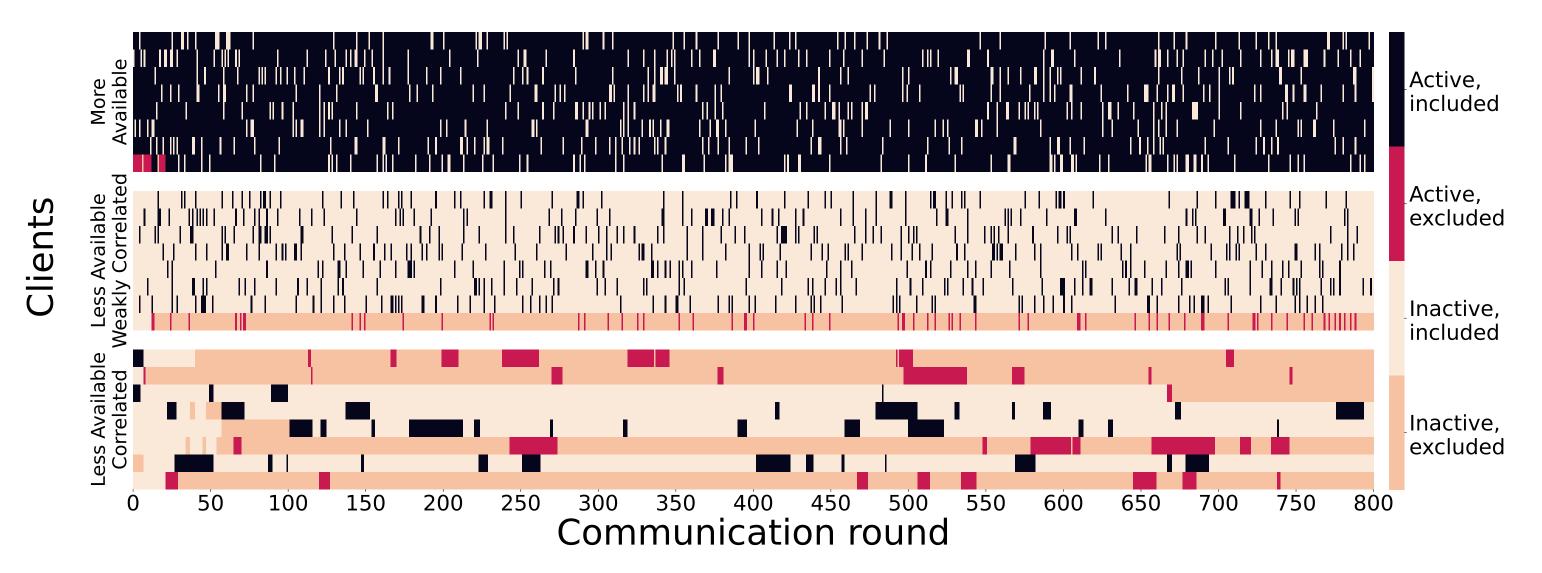
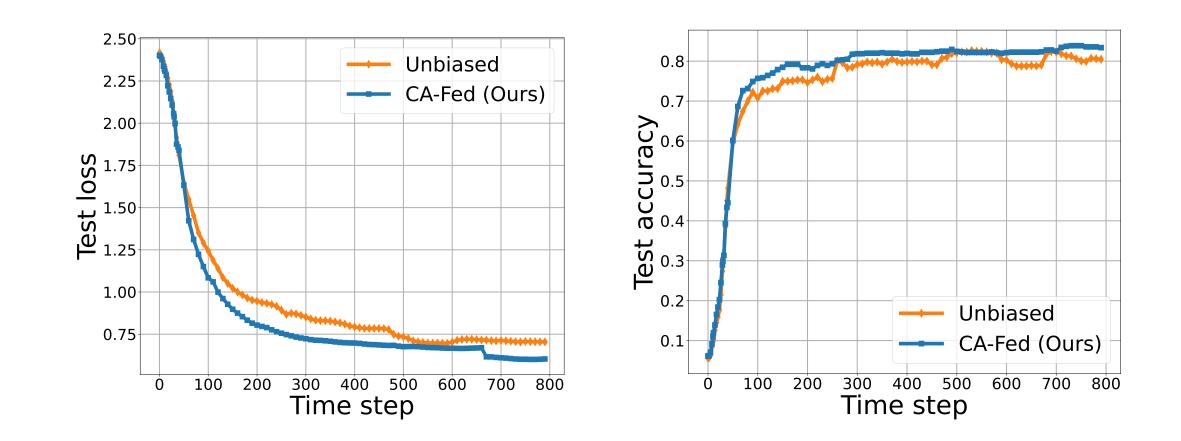


Figure 1. Clients' activities (active/inactive) and CA-Fed's decisions (included/excluded)

We compare CA-Fed with the Unbiased baseline that assigns $q_k = \alpha_k / \pi_k \ \forall k \in \mathcal{K}$:



In real-world scenarios, the activity of clients $(A_t)_{t\geq 0}$ is dictated by exogenous factors beyond the control of the orchestrating server and hard to predict

- Temporal correlation: the activity of a client is correlated over time
- Spatial correlation: the activity is correlated across clients

Intermittent and Correlated Client Availability

Main assumption

Clients' activities follow a DTMC $(A_t)_{t\geq 0}$ with transition matrix P and stationary distribution π . E.g., each client $k \in \mathcal{K}$ evolves independently according to $(A_t^k)_{t\geq 0}$

$$p_{\text{on}}^{k} \underbrace{\text{on}}_{1-p_{\text{off}}^{k}} \underbrace{\text{off}}_{1-p_{\text{off}}^{k}} p_{\text{off}}^{k}, \quad \mathbf{P} = \bigotimes_{k=1}^{K} \mathbf{P}_{k}, \ \mathbf{\pi} = \bigotimes_{k=1}^{K} \mathbf{\pi}_{k}, \ \lambda(\mathbf{P}) = \max_{k \in [K]} \lambda(\mathbf{P}_{k})$$

The intermittent availability introduces a model bias

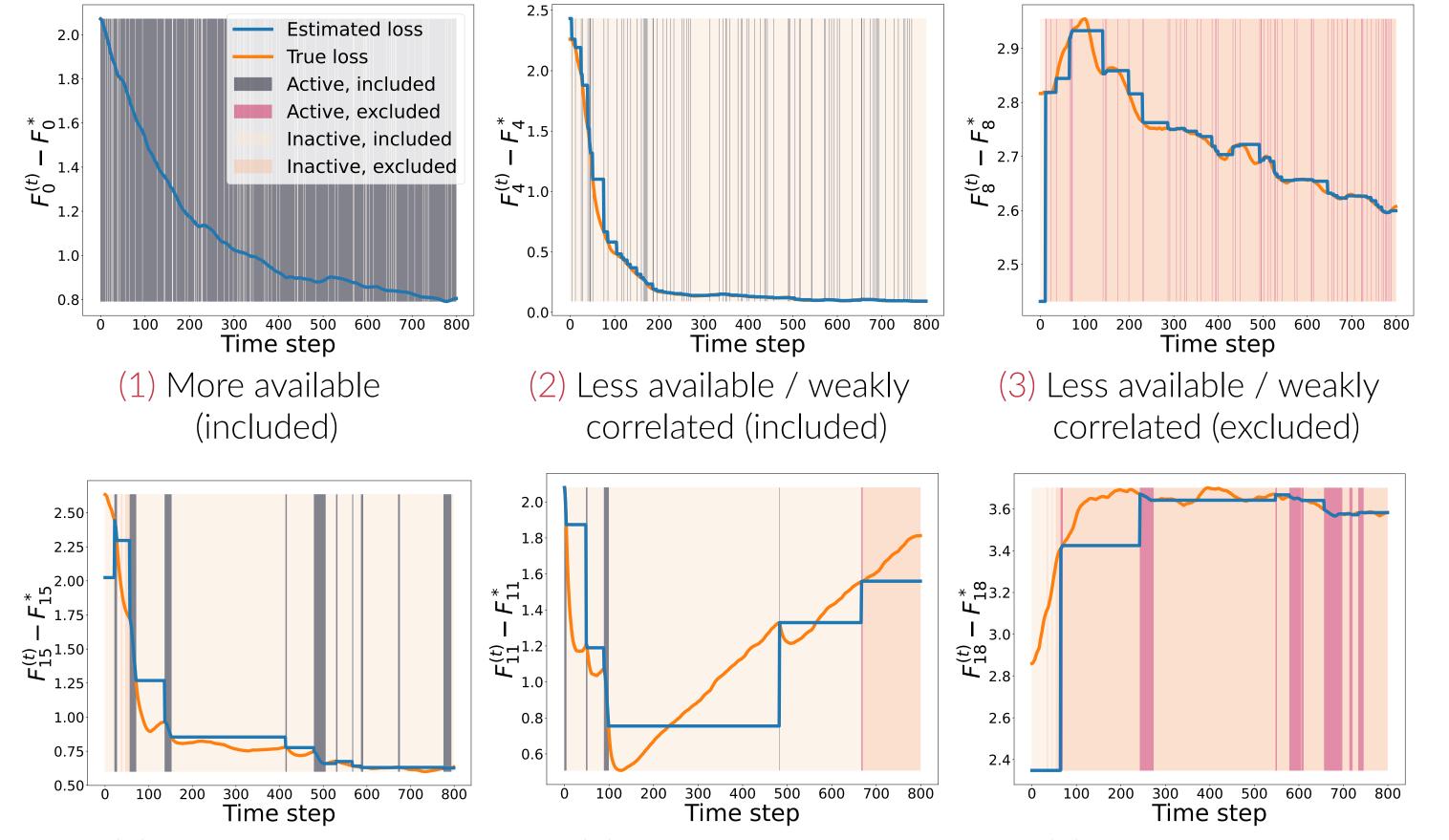
Under intermittent availability $\boldsymbol{\pi}$, FedAvg converges to a biased objective $F_B(\boldsymbol{w})$:

$$F_B(\boldsymbol{w}) := \sum_{k=1}^{K} p_k F_k(\boldsymbol{w}), \ p_k = \frac{\pi_k q_k}{\langle \boldsymbol{\pi}, \boldsymbol{q} \rangle} \qquad \neq \qquad F(\boldsymbol{w}) := \sum_{k=1}^{K} \alpha_k F_k(\boldsymbol{w}) \qquad (2)$$

$$\underline{\boldsymbol{p}: \text{biased importance}} \qquad \underline{\boldsymbol{\alpha}: \text{true importance}}$$

The correlated availability slows down convergence

Figure 2. Test loss/accuracy vs communication round for Unbiased and CA-Fed



$$\mathbb{E}[F_B(\bar{\boldsymbol{w}}_{T,0}) - F_B^*] \le \mathcal{O}\left(\frac{1}{\sqrt{T}} \cdot \frac{1}{\ln(1/\lambda(\boldsymbol{P}))}\right)$$

where T is the total communication rounds and $\lambda(P)$ quantifies correlation

Convergence in terms of the true objective

$$\epsilon(\boldsymbol{q}) \coloneqq F(\boldsymbol{w}_{T,0}) - F^* \leq \underbrace{\mathcal{O}\left(F_B(\boldsymbol{w}_{T,0}) - F_B^*\right)}_{\coloneqq \epsilon_{\text{opt}}(\boldsymbol{q})} + \underbrace{\mathcal{O}\left(d_{TV}^2(\boldsymbol{\alpha}, \boldsymbol{p})\Gamma\right)}_{\coloneqq \epsilon_{\text{bias}}(\boldsymbol{q})}$$
(4)

where $d_{TV}(\boldsymbol{\alpha}, \boldsymbol{p}) = \frac{1}{2} \sum_{k=1}^{K} |\alpha_k - p_k|$, and $\Gamma = \max_{k \in [K]} \{F_k(\boldsymbol{w}_B^*) - F_k^*\}$

Objective: find the optimal aggregation weights q^* that minimize $\epsilon(q)$

(4) Less available / correlated (included) (5) Less available / correlated (borderline) (6) Less available / correlated (excluded)

Figure 3. Details on per-client losses vs communication round

CA-Fed excludes clients from training without performance drop

Conclusions

- Introducing a correlation process in the modeling of FL population
- First convergence analysis under intermittent and correlated client availability
- Adaptively excluding less available and correlated clients can be effective
- Excluding clients also reduces the overall training cost

3IA Côte d'Azur

Chair title: Pervasive Sustainable Learning Systems

(3)

Chair holder: Giovanni Neglia