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Context

Massive data production on the edge

End-user devices such as smartphones and IoT de-

vices produce a plethora of rich data at the edge of

the network [1].

The importance of data for Machine Learning

Machine Learning models need data. The empiri-

cal learning curve of real applications shows robust

power-law regions: scaling the training data set is

likely to improve the model’s accuracy [2].

Figure 1. The learning curve of real applications [2].

Personal data are privacy sensitive

Data protection and privacy regulations prevent

cloud providers from accessing and storing sensitive

personal data [1].

Federated Learning: An Overview

In the centralizedmachine learning training, both the

model and the data are stored on the same device.

In a traditional distributed training, the parameter

server splits the data across the workers.
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Figure 2. Centralized (a) vs Distributed (b) ML training

Federated Learning (FL) [3] flips the paradigm:

(a) the server sends the model to the devices;

(b) the devices train locally for multiple iterations;

(c) the devices send the model updates to the server

(the data never leaves the devices);

(d) the server aggregates the model updates from the

devices and updates the global model.
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Figure 3. Federated Learning [3].

Motivations

• Today: FL for Google, a few other Big Tech.

• Tomorrow: Large-scale FL, open to everybody.

Main problem

The large-scale deployment of FL arises new chal-

lenges. Google and the others have access to a gi-

normous and exclusive resource availability. Typi-

cal population sizes for real applications training with

cross-device FL are in the order of hundreds of mil-

lions of end-devices [1]. On the other side, start-ups,

small andmedium-sized businesses have to dealwith

resource availability constraints. When the number

of available clients is limited, the probability to sam-

ple a node more than once becomes non-negligible.

The problem of unbalanced client participation in

FL is of current interest in the ML community [4, 5].

Our Goals / Contributions

• We show that training with unbalanced client

participation introduces a bias in the global

model towards clients with more resources.

• We propose two debiasing solutions:

(a) debiased aggregation step in FedAvg;

(b) control of the underlying Markov chain.

Problem formulation

• The population is a (countable) set of N nodes;

• A generic node k ∈ {1, . . . , N};

• Node k’s local data set: {(x(j)
k , y

(j)
k )}nk

j=1;

• [Partial device participation].

The set of clients participating at round t is St;

• [Heterogeneous device participation].

Client k is available in the system with prob. πk.

Distributed optimization problem

Client k aims to minimize its local objective:

Fk(w) , 1
nk

nk∑
j=1

`(w; (x(j)
k , y

(j)
k )); (1)

We aim to minimize the global objective:

minimizew F (w) , 1
N

N∑
k=1

Fk(w). (2)

Federated Averaging

[Local update rule].

E local epochs, i = 0, . . . , E − 1.
wk

t,i+1 = wk
t,i − ηt,i+1∇Fk(wk

t,i, ξk
t,i+1); (3)

[Global aggregation rule].

wt+1 = wt + 1
N

∑
k∈St

(wk
t,E − wt). (4)

The aggregation rule is biased

When the device participation is heterogeneous, the

aggregation step in FedAvg is biased. Let ξk be a

Bernoulli random variable with parameter πk. Then:

wt+1 = wt + 1
N

N∑
k=1

ξk(wk
t,E − wt), (5)

and

E [wt+1] = wt + 1
N

N∑
k=1

πk E
[
(wk

t,E − wt)
]
. (6)

Proposed solutions

(a) Debiased aggregation step

To remove the bias introduced by the heterogeneous

device participation, we propose a minor modifica-

tion in the FedAvg aggregation step:

wt+1 = wt + 1
N

∑
k∈St

1
πk

(wk
t,E − wt). (7)

(b) Control of the Markov chain

The participation of each device can be controlled

studying its underlying Markov chain. At time t, a
device can be either online and available (ON,A) or

offline (OFF). When needed, the server can set it in-

active (ON,I), excluding it from the training set St.
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qPON
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1 − POFF
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Experimental results

We compare two settings: (a) Homogeneous device

participation (blue) vs (b) Heterogeneous device par-

ticipation (green). The latter shows a bias. Both

proposed methods, namely (a) Debiased aggregation

step (red) and (b) Control w/Markov chain (magenta),

reduce the bias but slow down the convergence.
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Figure 4. Effect of the heterogeneity of nodes on the test loss

for the Synthetic(0,0) non–i.i.d. dataset.

Conclusions

A resource-aware paradigm can spread out FL over

a wide number of new operators and applications.

References

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.

Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al.

Advances and open problems in federated learning.

arXiv preprint arXiv:1912.04977, 2019.

[2] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,

M. Patwary, M. Ali, Y. Yang, and Y. Zhou.

Deep learning scaling is predictable, empirically.

arXiv preprint arXiv:1712.00409, 2017.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.

Communication-efficient learning of deep networks from

decentralized data.

In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[4] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang.

On the convergence of fedavg on non-iid data.

In International Conference on Learning Representations, 2019.

[5] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi.

On the impact of client sampling on federated learning convergence.

arXiv preprint arXiv:2107.12211, 2021.

3IA Côte d’Azur — Scientific Days 2021 Chair title: Pervasive Sustainable Learning Systems Chair holder: Giovanni Neglia


