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Context

Massive data production on the edge

End-user devices such as smartphones and ol de-
vices produce a plethora of rich data at the edge of
the network [1].

The importance of data for Machine Learning

Machine Learning models need data. The empiri-
cal learning curve of real applications shows robust
power-law regions: scaling the training data set is
ikely to improve the model’s accuracy [2].
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Figure 1. The learning curve of real applications [2].

Personal data are privacy sensitive

Data protection and privacy regulations prevent
cloud providers from accessing and storing sensitive
personal data [1].

Federated Learning: An Overview

In the centralized machine learning training, both the
model and the data are stored on the same device.
In a traditional distributed training, the parameter
server splits the data across the workers.

Figure 2. Centralized (a) vs Distributed (b) ML training

Federated Learning (FL) [3] flips the paradigm:

ne server sends the model to the devices:

£
the devices train locally for multiple iterations;
£
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ne devices send the model updates to the server
(the data never leaves the devices);

(d) the server aggregates the model updates from the
devices and updates the global model.

Figure 3. Federated Learning [3].

Motivations

Main problem

e Today: FL for Google, a few other Big Tech.
e Tomorrow: Large-scale FL, open to everybody.

The large-scale deployment of FL arises new chal-
lenges. Google and the others have access to a gi-
normous and exclusive resource availability. Typi-
cal population sizes for real applications training with
cross-device FL are in the order of hundreds of mil-
ions of end-devices [1]. Onthe other side, start-ups,
small and medium-sized businesses have to deal with
resource availability constraints. VWhen the number
of available clients is limited, the probability to sam-
ple a node more than once becomes non-negligible.
The problem of unbalanced client participation in
FL is of current interest in the ML community [4, 5].

Our Goals /7 Contributions

e We show that training with unbalanced client
participation introduces a bias in the global
model towards clients with more resources.

e \We propose two debiasing solutions:

(a) debiased aggregation step in FedAvg;
(b) control of the underlying Markov chain.

Problem formulation

e The population is a (countable) set of N nodes:;
e Agenericnodek €{1,...,N};

e Node k's local data set: {(X,(f), y;(f))}?il;

e |Partial device participation).
The set of clients participating at round ¢ Is S;;

e |Heterogeneous device participation).
Client £ 1s available in the system with prob. my.

Distributed optimization problem

Client k£ aims to minimize its local objective:
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We aim to minimize the global objective:
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[Local update rule].
E local epochs, 2 =0,..., E — 1.
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|Global aggregation rule].
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The aggregation rule is biased

Proposed solutions

When the device participation is heterogeneous, the
aggregation step in FedAvg is biased. Let & be a
Bernoulli random variable with parameter m.. Then:
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(a) Debiased aggregation step

To remove the bias introduced by the heterogeneous
device participation, we propose a minor modifica-
tion in the FedAvg aggregation step:

R

— — — — . /
Wil Wt+Nk§St Wk(Wt’E W) (/)

(b) Control of the Markov chain

The participation of each device can be controlled
studying its underlying Markov chain. At time ¢, a
device can be either online and available (ON,A) or
offline (OFF). When needed, the server can set it in-
active (ON,I), excluding it from the training set ;.
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Experimental results

We compare two settings: (a) Homogeneous device
participation (blue) vs (b) Heterogeneous device par-
ticipation (green). The latter shows a bias. Both
proposed methods, namely (a) Debiased aggregation
step (red) and (b) Control w/ Markov chain (magenta),
reduce the bias but slow down the convergence.
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Figure 4. Effect of the heterogeneity of nodes on the test loss
for the Synthetic(O,0) non-i.i.d. dataset.

Conclusions

A resource-aware paradigm can spread out FL over
a wide number of new operators and applications.
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