
Thesis for the Degree of Doctor of Philosophy

Formalizing Refinements and Constructive
Algebra in Type Theory

Anders Mörtberg

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

SE-412 96 Gothenburg, Sweden

Gothenburg, 2014

Formalizing Refinements and Constructive Algebra in Type Theory
Anders Mörtberg
ISBN 978-91-982237-0-5

© Anders Mörtberg, 2014

Technical Report no. 115D96
Department of Computer Science and Engineering
Programming Logic Research Group

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden

Printed at Chalmers Reproservice
Gothenburg, Sweden 2014

Abstract

The extensive use of computers in mathematics and engineering has led to an
increased demand for reliability in the implementation of algorithms in com-
puter algebra systems. One way to increase the reliability is to formally verify
that the implementations satisfy the mathematical theorems stating their spec-
ification. By implementing and specifying algorithms from computer algebra
inside a proof assistant both the reliability of the implementation and the com-
putational capabilities of the proof assistant can be increased.

This first part of the thesis presents a framework, developed in the interac-
tive theorem prover Coq, for conveniently implementing and reasoning about
program and data refinements. In this framework programs defined on rich
dependent types suitable for proofs are linked to optimized implementations
on simple types suitable for computation. The correctness of the optimized
algorithms is established on the proof-oriented types and then automatically
transported to the computation-oriented types. This method has been applied
to develop a library containing multiple algorithms from computational alge-
bra, including: Karatsuba’s polynomial multiplication, Strassen’s matrix mul-
tiplication and the Sasaki-Murao algorithm for computing the characteristic
polynomial of matrices over commutative rings.

The second part of the thesis presents the formalization of notions from
constructive algebra. Focus is on the theory of coherent and strongly discrete
rings, which provides a general setting for developing linear algebra over rings
instead of fields. Examples of such rings include Bézout domains, Prüfer
domains and elementary divisor rings. Finitely presented modules over these
rings are implemented using an abstraction layer on top of matrices. This
enables us to constructively prove that the category of these modules form a
suitable setting for developing homological algebra. We further show that any
finitely presented module over an elementary divisor ring can be decomposed
to a direct sum of a free module and cyclic modules in a unique way. This
decomposition gives a decision procedure for testing if two finitely presented
modules are isomorphic.

i

ii

List of publications

This thesis is based on the work contained in the following papers:

1. A Refinement-Based Approach to Computational Algebra in Coq. Maxime
Dénès, Anders Mörtberg and Vincent Siles. In Interactive Theorem Proving,
volume 7406 of Lectures Notes in Computer Science, pages 83–98. Springer,
2012.

2. Refinements for free!. Cyril Cohen, Maxime Dénès and Anders Mörtberg.
In Certified Programs and Proofs, volume 8307 of Lecture Notes in Computer
Science, pages 147–162. Springer, 2013.

3. A Formal Proof of Sasaki-Murao Algorithm. Thierry Coquand, Anders
Mörtberg and Vincent Siles. Journal of Formalized Reasoning, 5(1):27–36,
2012.

4. Coherent and Strongly Discrete Rings in Type Theory. Thierry Coquand,
Anders Mörtberg and Vincent Siles. In Certified Programs and Proofs, vol-
ume 7679 of Lecture Notes in Computer Science, pages 273–288. Springer,
2012.

5. A Coq Formalization of Finitely Presented Modules. Cyril Cohen and
Anders Mörtberg. In Interactive Theorem Proving, volume 8558 of Lecture
Notes in Computer Science, pages 193–208. Springer, 2014.

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq. Guil-
laume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg and Vincent
Siles. Preprint, 2014.

The following papers are related but not included in the thesis:

Towards a Certified Computation of Homology Groups for Digital Images.
Jónathan Heras, Maxime Dénès, Gadea Mata, Anders Mörtberg, Marı́a
Poza and Vincent Siles. In Computational Topology in Image Context, volume
7309 of Lecture Notes In Computer Science, pages 49–57. Springer, 2012.

Computing Persistent Homology Within Coq/SSReflect. Jónathan Heras,
Thierry Coquand, Anders Mörtberg and Vincent Siles. ACM Transactions
on Computational Logic, 14(4):1–26, 2013.

iii

Statement of contribution

The authors’ contributions to each of the papers included in the thesis are:

1. Implementation of list based polynomials and the algebraic hierarchy of
computational structures. Wrote the sections on these and participated in
writing the other sections.

2. Collaborated on developing the library and designing the methodology.
Implemented the theory on sparse polynomials. Writing was distributed
evenly among the authors.

3. Mainly contributed to the formalization of the correctness proof and the
implementation of the efficient version of the algorithm.

4. Contributed to all parts, both formalization and writing. Implemented the
executable versions and correctness proof of the algorithms and structures.

5. Collaborated on the formalization and wrote most parts of the paper.

6. Contributed to all parts of the formalization, in particular to the theory of
rings with explicit divisibility, the proof that elementary divisor rings are
coherent and the development on the Kaplansky condition. Wrote parts of
most sections of the paper.

iv

Contents

Introduction 1

1 Software verification . 1
2 Formalization of mathematics . 5
3 This thesis . 7

3.1 Method . 8
3.2 Formal developments . 8
3.3 Structure and organization of the thesis 9

4 Program and data refinements . 9
4.1 A refinement-based approach to computational algebra

in Coq . 10
4.2 Refinements for free! . 11
4.3 A formal proof of the Sasaki-Murao algorithm 12

5 Constructive algebra in type theory 13
5.1 Coherent and strongly discrete rings in type theory 13
5.2 A Coq formalization of finitely presented modules 14
5.3 Formalized linear algebra over elementary divisor rings

in Coq . 15

I Program and Data Refinements 17

1 A Refinement-Based Approach to Computational Algebra in Coq 19
1.1 Introduction . 19
1.2 Refinements . 20
1.3 Matrices . 21

1.3.1 Representation . 22
1.3.2 Computing the rank . 23
1.3.3 Strassen’s fast matrix product 24

1.4 Polynomials . 26
1.4.1 Karatsuba’s fast polynomial multiplication 27
1.4.2 Computing the gcd of multivariate polynomials 29

1.5 Hierarchy of computable structures 30
1.5.1 Design of the library . 31
1.5.2 Example: computable ring of polynomials 32
1.5.3 Examples of computations 33

1.6 Conclusions and future work . 33

v

2 Refinements for free! 35
2.1 Introduction . 35
2.2 Data refinements . 37

2.2.1 Refinement relations . 37
2.2.2 Comparison with the previous approach 40
2.2.3 Indexing and using refinements 41

2.3 Generic programming . 41
2.4 Parametricity . 42

2.4.1 Splitting refinement relations 42
2.4.2 Parametricity for refinements 43
2.4.3 Generating the parametricity lemma 44

2.5 Example: Strassen’s fast matrix product 44
2.6 Related work . 47
2.7 Conclusions and future work . 48

3 A Formal Proof of the Sasaki-Murao Algorithm 51
3.1 Introduction . 51
3.2 The Sasaki-Murao algorithm . 52

3.2.1 Matrices . 52
3.2.2 The algorithm . 54

3.3 Correctness proof . 54
3.4 Representation in type theory . 56
3.5 Conclusions and benchmarks . 60

II Constructive Algebra in Type Theory 61

4 Coherent and Strongly Discrete Rings in Type Theory 63
4.1 Introduction . 63
4.2 Coherent rings . 64

4.2.1 Ideal intersection and coherence 66
4.3 Strongly discrete rings . 67

4.3.1 Ideal theory . 68
4.3.2 Coherent strongly discrete rings 69
4.3.3 Bézout domains are coherent and strongly discrete 70

4.4 Prüfer domains . 71
4.4.1 Principal localization matrices and strong discreteness . . 71
4.4.2 Coherence . 73
4.4.3 Examples of Prüfer domains 74

4.5 Computations . 74
4.6 Conclusions and future work . 76

5 A Coq Formalization of Finitely Presented Modules 79
5.1 Introduction . 79
5.2 Finitely presented modules . 81

5.2.1 Morphisms . 82
5.2.2 Coherent and strongly discrete rings 83
5.2.3 Finitely presented modules over coherent strongly dis-

crete rings . 84
5.3 Monos, epis and operations on morphisms 85

vi

5.3.1 Testing if finitely presented modules are zero 86
5.3.2 Kernels . 86
5.3.3 Cokernels . 87
5.3.4 Homology . 88

5.4 Abelian categories . 88
5.5 Smith normal form . 90
5.6 Conclusions and future work . 91

6 Formalized Linear Algebra over Elementary Divisor Rings in Coq 93
6.1 Introduction . 93
6.2 Rings with explicit divisibility . 95

6.2.1 Rings with explicit divisibility 95
6.2.2 Formalization of algebraic structures 97

6.3 A verified algorithm for the Smith normal form 99
6.3.1 Smith normal form over Euclidean domains 100
6.3.2 Extension to principal ideal domains 106

6.4 Elementary divisor rings . 108
6.4.1 Linear algebra over elementary divisor rings 108
6.4.2 Finitely presented modules and elementary divisor rings 110
6.4.3 Uniqueness of the Smith normal form 112

6.5 Extensions to Bézout domains that are elementary divisor rings . 114
6.5.1 The Kaplansky condition 115
6.5.2 The three extensions to Bézout domains 117

6.6 Related work . 120
6.7 Conclusions and future work . 120

Conclusions and future directions 123

1 Conclusions . 123
2 Future directions . 124

2.1 Refinements and constructive algebra 124
2.2 Improving the refinement methodology 125
2.3 Constructive algebra in Homotopy Type Theory 126
2.4 Computing in Homotopy Type Theory 127

Bibliography 129

vii

viii

Acknowledgments

First of all I would like to thank my supervisor Thierry Coquand for the sup-
port and guidance that has made it possible for me to finish this thesis. I
am also grateful to my co-supervisor Cyril Cohen, who together with Vincent
Siles taught me Coq and SSReflect.

Most of my time as a PhD student has been spent in an office shared with
Bassel Mannaa, Guilhem Moulin and Simon Huber who have contributed
to my work not only by discussions about research but also by being great
friends. I would like to thank everyone I have written papers with, the mem-
bers of my follow up group, my colleagues in the ForMath project and in the
Programming Logic group at Chalmers. I am also grateful to everyone else
at the Department of Computer Science and Engineering for making my time
here so enjoyable.

I would like to thank Anjelica Hammersjö for her patience and encour-
agement, and my family for always being helpful and supportive. A special
thanks to my cats for not being supportive at all, sitting on my keyboard and
forcing me to take breaks sometimes.

The comments from Andrea Vezzosi, Anjelica Hammersjö, Bassel Mannaa
and Cyril Cohen on earlier versions of this thesis have been very helpful.
The answers from Ramona Enache to my numerous questions about practical
issues have made my life much easier and our walks around Guldheden have
been lots of fun. I would also like to thank all of the friends that I have
made in Gothenburg. Especially the three friends I met on my first day as an
undergraduate student at Chalmers nine years ago: Daniel Gustafsson, Pontus
Lindström and Ulf Liljengren. Thanks to all of you I have learned so many
things and had lots of fun during all these years!

The research leading to these results has received funding from the European
Union’s 7th Framework Programme under grant agreement nr. 243847 (For-
Math).

ix

x

Introduction

Computers are playing an increasingly important role in modern mathemat-
ics. Computer algebra systems like Matlab and Mathematica are funda-
mental tools in engineering, scientific computation and also to some extent in
pure mathematics. It is important that these systems are correct – but this is
not always the case [Durán et al., 2014]. For instance, Matlab had a bug in
2009 that made it compute an incorrect solution to a very simple system of
equations [Walking Randomly, 2009]. This is problematic as equation solving
is one of the most fundamental operations in Matlab on which more complex
operations are based.

Many people can relate to the frustration caused by software that is not
working correctly. Faulty software can also have more serious consequences:
It could cost a lot of money or – even worse – human lives. Famous exam-
ples include the Pentium FDIV bug [Cipra, 1995] that costed Intel about $475
million [Nicely, 2011] and in 1991 when a U.S. Patriot missile defense system
in Saudi Arabia failed to detect an attack because of a miscalculation due to
rounding errors which led to the death of 28 soldiers [Marshall, 1992].

This thesis uses techniques from software verification to facilitate the im-
plementation of formally verified programs and mathematical theories in type
theory, more precisely in the Coq proof assistant [Coq Development Team,
2012]. A potential use of this is to increase the reliability in computer algebra
systems and software used in safety critical applications, reducing the risk for
problems like those mentioned above.

1 Software verification

The standard approach for increasing the reliability in software is testing.
This usually means that the programmer writes tests and collects them in a
test-suite, or that a user tests the system and reports any errors found. How-
ever, these two approaches are both problematic since bugs are often found
in corner-cases that are hard to find and for which it is difficult to write good
tests. Because of this, bugs might be found too late.

Another approach is to use a tool designed for randomized testing like
QuickCheck [Claessen and Hughes, 2000]. This means that the programmer
writes a logical specification of the program and the tool generates random
input to test the specification with. This has the benefit that the programmer
is relieved of the tedious task of producing test-suites and that the specification
of the program has to be taken into consideration when writing it.

1

Introduction

However, regardless of its usefulness, testing has a fundamental limitation
as pointed out by Dijkstra:

“Program testing can be used to show the presence of bugs, but never to
show their absence!” [Dijkstra, 1970]

So the question is: how can one show the absence of bugs?

The answer to this is proofs, that is, by a convincing argument that the pro-
gram satisfies its specification. There are many ways to prove the correctness
of a program. The traditional method is to write the proof by hand. This has
the benefit that the proof can be read and verified by another person, however
there might be subtle errors that are hard to spot and corner-cases could be
overlooked. An alternative approach, that aims at overcoming these issues,
is to use computers for both finding and verifying proofs. However, even
though one has proved that the underlying algorithm is correct one can still
make mistakes when implementing it. The correctness proof should hence
be about the actual implementation of the program and not only about the
underlying algorithm.

A prerequisite to both testing and proving is that the program has been
clearly specified. However, specifying a program and then proving that it
satisfies the specification might not be enough to guarantee that the program
is correct. Donald E. Knuth put it nicely in the end of one of his letters:

“Beware of bugs in the above code; I have only proved it correct, not tried
it.” [Knuth, 1977]

A reason could be that there are errors in the specification. This kind of errors
can stem from an incorrect understanding of what the program is supposed
to be doing [Claessen and Hughes, 2000], or from the difficulty of specifying
general purpose programs. For mathematical software the situation is slightly
better. The reason for this is that a mathematical algorithm usually has a clear
specification in terms of a mathematical theorem stating what is required of
the input and expected by the output.

In order to make it easier to correctly specify programs it is important to
write them in a suitable programming language. In the functional program-
ming paradigm functions are first-class objects, that is, they can be passed
as arguments to other functions or be returned by functions. This makes it
possible for the programmer to find good abstractions and write short general
programs. The restricted use of side-effects also makes functional program-
ming well-suited for verification. When a function has no side-effects, it is
much easier to specify what it is supposed to be doing because of referential
transparency [Strachey, 2000].

One approach that is used a lot in industry to prove the correctness of
complex hardware designs and for verifying concurrent and distributed soft-
ware is model checking. This involves constructing a model of a system and
then checking that a property is satisfied by the model. The properties are
usually expressed in a temporal logic and might state safety properties like
absence of deadlocks or race conditions. There are many tools for doing this
kind of verification, used in both research and industry, like the SPIN model

2

1. Software verification

checker [Holzmann, 2004] that received the prestigious ACM Software System
Award in 2001 [ACM, 2001].

Another approach to automatic verification is automated theorem proving
which involves writing programs to automatically prove mathematical theo-
rems expressed in a logical system. Depending on the logical system, the
properties of these programs varies. For instance if the underlying logic is
propositional logic the problem of satisfiability of formulas (SAT) is decid-
able, simply by constructing truth-tables. However, as the SAT problem is
NP-complete there can only be exponential time algorithms (unless the com-
plexity classes P and NP are the same). Regardless there are many algorithms
and solvers that very efficiently solve many classes of problems, which makes
them feasible to use in practice.

In first-order logic, on the other hand, logical entailment is only semidecid-
able. This means that it is possible to write a program that finds a proof of a
formula if it is provable, but if the formula is not provable the program might
not terminate. There are many efficient tools that automatically try to prove
first-order formulas, an example is the Vampire prover [Kovacs and Voronkov,
2013] that has won more than 30 titles in the “world cup for theorem provers”.

It is also common to consider decision problems for logical formulas with
respect to some background theory. This class of problems is called Satisfac-
tion Modulo Theories (SMT). The theories are often expressed using first-order
logic and can be axiomatizations of, for example, integers or lists. Attention
is usually restricted to decidable theories, like Presburger arithmetic (natu-
ral numbers with addition), dense linear orders or real-closed fields. This
way the correctness of programs that use these theories can be automatically
verified using SMT solvers like CVC4 [Barrett et al., 2011] or Microsoft’s Z3
solver [De Moura and Bjørner, 2008].

Fully automatic theorem provers have also been used to prove some in-
teresting conjectures in mathematics. The most famous might be the proof
of the Robbins conjecture, stated back in 1933, that asks whether all Robbins
algebras are Boolean algebras. This problem has a simple statement, but its
solution eluded many famous mathematicians and logicians, including Tarski,
for many years. However, in 1996 William McCune found a proof of the con-
jecture using the automated theorem prover EQP [McCune, 1997].

Fully automated tools have both their pros and cons. On the one hand they
are easy to use, but on the other the resulting proofs might be very big and not
comprehensible by humans. In February 2014 fields medalist Timothy Gowers
wrote on his blog [Gowers’s Weblog, 2014] that a paper had appeared on the
arXiv with an interesting result about the Erdos discrepancy problem. In the
paper a certain bound is proved to be the best possible and interestingly the
proof of this was found using a SAT solver. But the authors say in the paper
that:

“The negative witness, that is, the DRUP unsatisfiability certificate, is
probably one of longest proofs of a non-trivial mathematical result ever
produced. Its gigantic size is comparable, for example, with the size of the
whole Wikipedia, so one may have doubts about to which degree this can
be accepted as a proof of a mathematical statement.” [Konev and Lisitsa,
2014]

3

Introduction

A possible solution to increase the reliability in this kind of results is to im-
plement a checker for verifying the certificate. However, this will rely on the
correctness of the checker, so ideally this should also be verified. A possible
approach for doing this is to develop it using an interactive theorem prover.

In interactive theorem proving a human writes a proof in some formal
language that can be understood by a computer program, which then checks
the correctness of the proof by verifying each deductive step. This is a more
modest approach than fully automatic proving as checking the correctness of
a proof is easier than actually finding it.

The systems used for this kind of theorem proving are called proof assis-
tants as they assist the user in writing a formal proof that is then verified by
the system. This is often done using an interface that displays what is cur-
rently known and which goals has to be proved in order to finish the proof.
Many proof assistants, like for example Coq, have a so called tactic language
for developing proofs. This is a domain specific language in which the user
writes tactics that gets executed by the proof assistant and modify the cur-
rent state of the proof. A tactic could for example apply an inference rule or
rewrite some part of the goal using a lemma. Many proof assistants also use
automatic techniques, like those mentioned above, in order to help the user
discharge easy subgoals. This way formal proofs can be developed interac-
tively by a kind of human-computer collaboration.

Proof assistants date back to the 1960s and the pioneering work of Nico-
laas Govert de Bruijn on the Automath system [Nederpelt et al., 1994]. This
system was very influential and has inspired many of the modern proof assis-
tants in use today. It was for instance based on a typed lambda calculus and
the Curry-Howard correspondence. Since the 1960s many more proof assis-
tants have been developed [Wiedijk, 2006], and in 2013 the Coq proof assistant
received the prestigious ACM Software System Award with the motivation:

“Coq has played an influential role in formal methods, programming lan-
guages, program verification and formal mathematics. As certification
gains importance in academic and industrial arenas, Coq plays a critical
role as a primary programming and certification tool.” [ACM, 2013]

This kind of tools have been used in some large-scale formalizations in com-
puter science. One of the most impressive is the formal proof of the seL4
microkernel whose functional correctness was formally verified in 2009 [Klein
et al., 2009]. This means that the kernel’s implementation is free of bugs
like deadlocks, buffer overflows, arithmetic errors and so on. This work is
estimated to have taken about 25-30 person years to be completed and was
performed using the Isabelle/HOL proof assistant [Nipkow et al., 2002].

Another impressive formalization effort, led by Xavier Leroy, is the Coq

implementation of the optimizing C compiler CompCert [Leroy, 2006]. The
compiler produces PowerPC, ARM and x86 assembly code which is guaran-
teed to do the same thing as the original C code. In 2011 researchers at the
University of Utah wrote a program called Csmith that randomly generates C
code and then compared the output of different C compilers. They managed
to find bugs in state of the art compilers like GCC and LLVM, but CompCert

stood out:

4

2. Formalization of mathematics

“The striking thing about our CompCert results is that the middle-end
bugs we found in all other compilers are absent. As of early 2011, the
under-development version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to the task.” [Yang
et al., 2011]

The completion and success of these large-scale formalizations indicates
that proof assistants are becoming mature enough to develop software that
can be used in safety critical systems. However, proof assistants have not
only been used to verify impressive results in computer science, but also to
formalize many famous theorems in mathematics.

2 Formalization of mathematics

The idea of formalizing mathematics by developing it in a formal system,
starting from a basic foundation, is much older than computers. Back in 1879
Gottlob Frege wrote a book called Begriffsschrift which presented a logical
system with quantifiers, and using this formal language he formalized basic
arithmetic in the subsequent volume Grundgesetze der Arithmetik. However
a few years later, in 1903, Bertrand Russell proved that Frege’s system was
inconsistent by pointing out his famous paradox about sets containing them-
selves. Following this, many new foundational systems for mathematics were
developed. Some were based on set theory, like Zermelo and Fraenkel set theory
with the axiom of choice (ZFC). Others on the type theory developed by Bertrand
Russell and Alfred North Whitehead in order to write Principia Mathematica.
In type theory each mathematical object has a type and paradoxes like the one
of Russell are avoided by stratifying the types of types and not letting a type
have itself as a type. Today type theories are used as a foundation for many
interactive theorem provers.

One class of type theories are those based on Church’s Simple Theory of
Types [Church, 1940], these provide the basis for proof assistants in the HOL
family (e.g. HOL4 [Gordon and Melham, 1993; Slind and Norrish, 2008], HOL
Light [Harrison, 1996] and Isabelle/HOL [Nipkow et al., 2002]). These are
usually “simple” in the sense that types cannot depend on arbitrary terms.
Many important mathematical theorems have been formalized in these sys-
tems, for instance the prime number theorem [Avigad et al., 2007; Harrison,
2009] and the Jordan curve theorem [Hales, 2007].

Another class are the intuitionistic type theories which have the aim to be
used as a foundations for constructive mathematics. In constructive mathe-
matics the law of excluded middle and the axiom of choice are not accepted.
By avoiding these principles the mathematical theories become inherently
computational (see [Bridges and Palmgren, 2013]) which makes them suitable
for implementation on computers [Martin-Löf, 1984b].

This class of systems are based on Martin-Löf type theory [Martin-Löf, 1984a]
and the Calculus of (Inductive) Constructions [Coquand and Huet, 1986; Co-
quand and Paulin, 1990] which are dependently typed theories where types
can depend on terms. This has the implication that, by the Curry-Howard
correspondence, proofs and propositions correspond to terms and types. This

5

Introduction

means that both the programs and their proofs of correctness can be imple-
mented using the same language and logic. Also, checking the correctness of
a proof corresponds to checking that a term has a certain type. This is very
appealing as techniques from programming language theory can be used to
develop proof assistants for this kind of type theories, for instance, type in-
ference can be used for proof construction. Because of this, there are many
implementations of systems based on intuitionistic type theory, both as proof
assistants like the Coq system and as general purpose dependently typed pro-
gramming languages like Agda [Norell, 2007] and Idris [Brady, 2013].

In recent years, many large-scale formalizations of mathematics have been
completed. The first of these was the formalization of the four color theorem
which states that any planar map can be colored using at most four colors
in such a way that no two adjacent colors are the same. The formal proof,
using the Coq system, was finished by Georges Gonthier in 2005 [Gonthier,
2005, 2008]. In 2012 a team, led by Georges Gonthier and using Coq, com-
pleted the formal proof of the Feit-Thompson odd order theorem stating that
all finite groups of odd order are solvable [Gonthier et al., 2013]. In 2014 it
was announced that the FlySpeck project, led by Thomas Hales, formalizing
the Kepler Conjecture had been completed [The FlySpeck Project, 2014]. This
conjecture (which is now a theorem) explains the optimal way to pack spheres
in three dimensional space. The formal proof was carried out using a combi-
nation of both the Isabelle and HOL Light proof assistants.

The original proofs of these theorems were controversial when they were
first announced. The first proof of the four color theorem, by Kenneth Appel
and Wolfgang Haken, relied on extensive computations of different graph con-
figurations that took over 1000 hours for their computers to complete [Appel,
1984]. Also Thomas Hales’ original proof of the Kepler conjecture, submitted
in 1998 to the Annals of Mathematics, was proved with the aid of computer
programs written in approximately 40,000 lines of code. The paper and code
were reviewed by 12 experts during four years, and the final verdict was that
they were only “99% certain” of the correctness of the proof [Avigad and
Harrison, 2014]. Because of this Thomas Hales started the FlySpeck project
with the aim of formalizing his proof and removing this last percent of doubt,
which now seems to have been achieved [The FlySpeck Project, 2014].

The proof of the odd order theorem of Walter Feit and John Griggs Thomp-
son on the other hand was controversial because of the sheer length of the
proof. With its 255 pages it was one of the longest proofs ever submitted to a
mathematical journal back in 1963. This theorem is part of the classification
theorem of finite simple groups whose final proof now consists of almost ten
thousand pages written by many authors over a long period of time [Stein-
gart, 2012]. Jean-Pierre Serre discusses this in an interview from when he was
awarded the Abel prize in 2003:

“For years I have been arguing with group theorists who claimed that
the “Classification Theorem” was a “theorem”, i.e. had been proved. It
had indeed been announced as such in 1980 by Gorenstein, but it was
found later that there was a gap (the classification of “quasi-thin” groups).
Whenever I asked the specialists, they replied something like: “Oh no, it
is not a gap; it is just something which has not been written, but there is

6

3. This thesis

an incomplete unpublished 800-page manuscript on it.” For me, it was
just the same as a “gap”, and I could not understand why it was not
acknowledged as such.” [Raussen and Skau, 2004]

This kind of reliability issues of very large and complicated mathemat-
ical results, that might be understood by only a few experts, is problematic.
Another example of such a proof is Andrew Wiles’ proof of Fermat’s Last The-
orem where the first version was believed to be correct in 1993, but an error
was found and finally corrected two years later in 1995. Because of the com-
plexity of proofs like this, and the shortage of people with enough expertise to
asses them, peer-reviewing becomes very time consuming and errors might go
unnoticed for a long time. Formal proofs of these results would increase not
only the reliability, but also the efficiency of the peer-reviewing process. The
formalizations would, hopefully, also give rise to new mathematical methods
and results.

Another motivation behind formalizing mathematics is that it involves
carefully representing mathematical concepts and proofs in order to make
them suited for implementation on a computer. This way simpler, clearer and
more elegant proofs can be obtained. This works the other way around as well:
when formalizing a mathematical result the proof assistant, or the underlying
logical system, might need to be improved in order to be able to represent
mathematics more conveniently, yielding better tools and techniques.

An example of this is the recent developments in type theory, building
on connections to abstract homotopy theory, creating a new field called Ho-
motopy Type Theory [Pelayo and Warren, 2014; Univalent Foundations Pro-
gram, 2013]. This connection was discovered, among others, by Fields medal-
ist Vladimir Voevodsky. From it a new axiom, motivated by models of type
theory in simplicial sets, called the univalence axiom was added to type the-
ory. This new foundations of mathematics is called Univalent foundations
and during the 2012–2013 academic year the Institute for Advanced Study in
Princeton held a special year devoted to it.

3 This thesis

Regardless of the success stories and impressive developments in the inter-
active theorem proving community during recent years it is hard to imagine
programmers and mathematicians starting to prove their programs and the-
orems correct using a proof assistant on a daily basis. The main reason for
this is that formalization is very time consuming and requires both a lot of
training and expertise.

A goal of this thesis is to provide a step in the direction to remedy this.
First by studying techniques to formally verify efficient programs and data
structures, and then by formalizing constructive algebra. This involves find-
ing good abstractions and suitable proofs to implement libraries of formal-
ized mathematics that can be used for further developments. These together
provide a basis for bridging the gap between algorithms and theories imple-
mented in computer algebra systems and proof assistants. This way both the
reliability in implementations of algorithms in computer algebra systems and
the computational capabilities of proof assistants can be increased.

7

Introduction

3.1 Method

The formalizations presented in this thesis has been performed using the Coq

proof assistant together with the Small Scale Reflection (SSReflect) exten-
sion [Gonthier et al., 2008]. This extension was initially developed by Georges
Gonthier during the formalization of the four color theorem and has since
then been further developed in the Mathematical Components (MathComp)
Project [Mathematical Components Project, 2014] during the formalization of
the Feit-Thompson Theorem. The extension provides a new tactic language to
Coq that is useful for doing “small scale reflection”. The idea of small scale
reflection is to use computation to automate small proof steps resulting in a
very concise proof style.

The SSReflect/MathComp project also contains a large and well designed
library of already formalized mathematical theories, which was developed
during the formalization of the Feit-Thompson theorem. It contains many
basic mathematical structures and theories, including an algebraic hierarchy,
polynomials, matrices and linear algebra. By using this library we avoid reim-
plementing these fundamental notions and may start building on what has
already been done. From here on we will refer to this library simply as the
“MathComp library”.

The main sources of constructive algebra used during the formalizations
are the book by Mines, Richman and Ruitenburg [Mines et al., 1988] and the
more recent book by Lombardi and Quitté [Lombardi and Quitté, 2011]. These
present modern algebra from a constructive point of view, avoiding Noethe-
riannity whenever possible. The reason for avoiding Noetheriannity is that it
is defined by quantification over all ideals, making it a logically complicated
notion. By not assuming it more general results, expressed using first-order
logic, can be obtained. Because of this, results are effective and have direct
computational meaning, which makes them well-suited for formalization in
intuitionistic type theory.

Most of the work presented in this thesis has been carried out as part of the
European project ForMath – Formalization of Mathematics [The ForMath Project,
2014]. The goal of this project was to develop formally verified libraries of
mathematics concerning abstract algebra, linear algebra, real number compu-
tation and algebraic topology. These libraries should be designed as software
libraries using ideas from software engineering to increase reusability and
scalability.

3.2 Formal developments

The formalizations presented in this thesis have resulted in a library of com-
putational algebra called CoqEAL — The Coq Effective Algebra Library. The
latest development version can be found at:

https://github.com/CoqEAL/CoqEAL/

The developments are divided into three folders. The v0.1 folder corresponds
to the first version of the CoqEAL library, while the refinements and theory
folders correspond to the latest version. Some data, corresponding to the

8

https://github.com/CoqEAL/CoqEAL/

4. Program and data refinements

Definitions Lemmas Lines of code
v0.1 646 971 14850
refinements 264 243 9048
theory 355 699 9136
total 1265 1913 33034

Table 1.1: Data related to the formal developments

development version of the library at the time of writing, are collected in
Table 1.1.

The numbers in the last row should be taken with a grain of salt as many
results in the v0.1 folder are reimplemented in the refinements and theory
folders.

Documentation of the formalizations, corresponding to what is presented
in the thesis, can be found at:

http://www.cse.chalmers.se/∼mortberg/thesis/

3.3 Structure and organization of the thesis

This thesis is a collection of six papers, divided evenly into two parts. One
part is about program and data refinements, and the other about constructive
algebra. The papers have all been slightly modified to fit together in the thesis.
However, all papers can still be read separately which means that there is some
overlap in terms of notions and notations being defined in different papers. A
person who reads the thesis from beginning to end can hence skim over these,
while someone who is only interested in the results of one paper can read it
without having to jump back and forth.

The rest of this introduction presents overviews of the two parts and the
papers contained in them. The main results are summarized and the relation-
ship between the papers detailed.

4 Program and data refinements

This part discusses ways to implement program and data refinements in type
theory. These two kinds of refinements can be summarized as:

• Program refinements: Transform a program into a more efficient one
computing the same thing using a different algorithm, while preserving
the types.

• Data refinements: Change the data representation on which the pro-
gram operates into a more efficient one, while preserving the involved
algorithms.

The first two papers discuss a framework for conveniently expressing these
kinds of refinements in Coq. The third paper presents an example of a pro-
gram refinement of the Sasaki-Murao algorithm [Sasaki and Murao, 1982] for

9

http://www.cse.chalmers.se/~mortberg/thesis/

Introduction

computing the characteristic polynomial of a matrix over any commutative
ring in polynomial time.

This part provides the basis of the CoqEAL library and has successfully
been used in a formal proof that ζ(3) is irrational [Mahboubi et al., 2014].
More precisely, it was used to prove a lemma involving computations with
rather large rational numbers by refining a unary representation to a binary
one and then performing the computations with the more efficient binary
representation.

4.1 A refinement-based approach to computational algebra in
Coq

The first paper presents a methodology for implementing efficient algebraic
algorithms and proving them correct using both program and data refine-
ments. This is done by implementing a simple and often inefficient version of
the algorithm on rich data types and then refining it to a more efficient version
on simple types. The two versions of the algorithms are then linked to each
other and the correctness of the translation is formally proved in Coq.

The methodology for doing program and data refinements in the paper
can be summarized as:

1. Implement a proof-oriented version of the algorithm using rich (depen-
dent) data types and use the MathComp library to develop theories
about them.

2. Refine this algorithm into an efficient computation-oriented one, using the
same data types as in 1., and prove that it behaves like the proof-oriented
version.

3. Translate the rich data types and the computation-oriented algorithm to
computation-oriented data types and prove the correctness of the trans-
lation.

By separating the implementation of the algorithm used for proving properties
and the one used for computation we achieve what Dijkstra referred to as “the
separation of concerns”:

“We know that a program must be correct and we can study it from
that viewpoint only; we also know that it should be efficient and we can
study its efficiency on another day, so to speak. [...] But nothing is gained
– on the contrary! – by tackling these various aspects simultaneously. It is
what I sometimes have called “the separation of concerns”.” [Dijkstra,
1974]

Using this methodology the paper presents a library of computational struc-
tures with four main examples of algorithms from linear and commutative
algebra:

• Efficient polynomial multiplication using Karatsuba’s algorithm.

• Greatest common divisor (gcd) of multivariate polynomials.

10

4. Program and data refinements

• Rank computation of matrices with coefficients in a field.

• Efficient matrix multiplication based on Winograd’s version of Strassen’s
algorithm.

The second of these, gcd of multivariate polynomials, is especially interesting
from the point of view of constructive algebra as the correctness proof neither
rely on the field of fractions nor unique factorization as is customary in clas-
sical presentations. It is instead based on Gauss’ Lemma as in [Knuth, 1981]
and the notion of GCD domains [Mines et al., 1988].

This paper was published in the post-proceedings of the 2012 edition of the Interactive
Theorem Proving conference. [Dénès et al., 2012]

4.2 Refinements for free!

The data refinement step of the methodology presented in the first paper was
implemented by duplicating both the implementation of the efficient program
and the hierarchy of structures on which it operates. It also restricted which
computation-oriented types could be used to types with a subtype isomor-
phic to the proof-oriented one. This works fine for polynomials or matrices
represented using lists, but not for non-normalized rational numbers. This
paper resolves these issues and improves the methodology in the first paper
by adopting the following approach:

1. Relate a proof-oriented data representation with a more computationally
efficient one by an arbitrary heterogeneous relation.

2. Parametrize algorithms and the data on which they operate by an abstract
type and its basic operations.

3. Instantiate these algorithms with proof-oriented data types and basic op-
erations, and prove the correctness of that instance.

4. Use parametricity of the algorithm (with respect to the data representa-
tion on which it operates), together with points 2. and 3., to deduce that
the algorithm instantiated with the more efficient data representation is
also correct.

This methodology improves the one presented in the first paper with respect
to the following aspects:

1. Generality: it extends to previously unsupported data types, like non-
normalized rational numbers.

2. Modularity: each operation is refined in isolation instead of refining
whole algebraic structures.

3. Genericity: before, every operation had to be implemented both for the
proof-oriented and computation-oriented types, now only one generic
implementation is sufficient.

11

Introduction

4. Automation: there is now a clearer separation between the different
steps of data refinements which makes it possible to use parametricity
in order to automate proofs that previously had to be done by hand.

The last step involves proof automation using parametricity, which makes it
the most subtle to implement as there is no internal parametricity in Coq. We
chose to implement a proof-search algorithm using type classes [Sozeau and
Oury, 2008] that finds the proof that a function is parametric when needed.
In a system with internal parametricity, like Type Theory in Color [Bernardy
and Moulin, 2013], one would instead get this for free. In practice the imple-
mentation works well in many cases, but when it fails the user has to provide
the proofs by hand. This is still an improvement compared to the first paper
though, as this kind of proofs always had to be given by hand before.

We have ported some of the algorithms of the first paper to the new frame-
work and added new data refinements, in particular sparse polynomials and
non-normalized rational numbers. The methodology presented in this paper
provides the basis of the current version of the CoqEAL library.

This paper was published in the post-proceedings of the 2013 edition of the Certified
Programs and Proofs conference. [Cohen et al., 2013]

4.3 A formal proof of the Sasaki-Murao algorithm

The third paper describes the formalization of a simple polynomial time algo-
rithm for computing the determinant of matrices over any commutative ring.
The algorithm is based on Bareiss’ algorithm [Bareiss, 1968], which can be
compactly presented using functional programming notations. The algorithm
is simple and runs in polynomial time, but the standard proof of correct-
ness involves complicated identities for determinants called Sylvester identi-
ties [Abdeljaoued and Lombardi, 2004]. In order to conveniently formalize the
correctness of this algorithm an alternative proof was found and some of the
Sylvester identities then follows as corollaries of it.

The correctness of Bareiss’ algorithm requires that the principal minors of
the matrix are regular, that is, that they are not zero divisors. The Sasaki-
Murao algorithm [Sasaki and Murao, 1982] uses an elegant trick to avoid this:
apply Bareiss’ algorithm to the matrix used when computing the character-
istic polynomial and do the computations in the polynomial ring. This way
Bareiss’ algorithm can be applied to any matrix to compute the characteristic
polynomial, and from this the determinant easily can be obtained by setting
the indeterminate to zero. A benefit of computing in the polynomial ring is
that polynomial pseudo-division [Knuth, 1981] may be used. Hence there is
no need to assume that the ring has a division operation and the algorithm
can be applied to matrices over any commutative ring.

The effective version of the algorithm has been implemented using the
approach presented in the first paper. This implementation required us to
combine many of the different parts of the library as the computations are
done on matrices of polynomials. The resulting version is a simple and for-
mally verified algorithm for computing the determinant of a matrix using op-
erations like matrix multiplication, polynomial pseudo-division and Horner
evaluation of polynomials.

12

5. Constructive algebra in type theory

This paper has been published in the Journal of Formalized Reasoning in 2012. [Co-
quand et al., 2012a]

5 Constructive algebra in type theory

This part discusses the formalization of various structures and results in con-
structive algebra. Constructive algebra differs from classical algebra by avoid-
ing the law of excluded middle and the axiom of choice. It is also common
not to assume Noetheriannity (i.e. that all ideals are finitely generated) as it is
a complicated notion from a constructive point of view [Perdry, 2004]. In fact,
many results can be proved constructively in the more general setting without
Noetherian assumptions [Lombardi and Quitté, 2011].

The first paper in this part is concerned with the formalization of coherent
and strongly discrete rings. The next paper then develops the theory of finitely
presented modules over these rings and prove that it is a good setting for
doing homological algebra. Finally, in the sixth and last paper of the thesis,
the formalization of elementary divisor rings is described. These are examples
of coherent and strongly discrete rings, which means that we get concrete
instances for the theory developed in the first two papers of this part.

5.1 Coherent and strongly discrete rings in type theory

This paper presents the formalization of algebraic structures that are impor-
tant in constructive algebra: coherent and strongly discrete rings. Coherent
rings can be characterized as rings where any finitely generated ideal is finitely
presented, this means that it is possible to solve homogeneous systems of
equations over these rings. Further, a ring is strongly discrete if membership
in finitely generated ideals is decidable. If a ring is both coherent and strongly
discrete it is not only possible to solve homogeneous systems of equations, but
the solution to any (solvable) system can be computed.

These notions are not stressed in classical presentations as one can prove
that Noetherian rings are coherent and strongly discrete, however the proof
of this relies on classical logic in essential ways. This means that the proof
has no computational content, which implies that it is not possible to write a
program that extracts a finite presentation from a finitely generated ideal over
a Noetherian ring. By dropping the Noetherian assumptions and working di-
rectly with coherent and strongly discrete rings we not only get more general
results, but also proofs with computational content.

Examples of coherent and strongly discrete rings considered in the paper
are Bézout domains (e.g. Z and k[x] where k is a field) and Prüfer domains
(e.g. Z[

√
−5] and k[x, y]/(y2 + x4 − 1)). These are non-Noetherian analogues

to the classical notions of principal ideal domains and Dedekind domains.
By proving that these structures are coherent and strongly discrete we obtain
formally verified algorithms for solving systems of equations over them.

The methodology of the first paper has been applied in order to develop
computational versions of the structures and effective versions of the algo-
rithms. This was complicated as some of the algorithms, especially for Prüfer

13

Introduction

domains, are quite involved.
Our main motivation for studying these structures is that coherent and

strongly discrete rings are fundamental notions in constructive algebra [Mines
et al., 1988] that can be used as a basis for developing computational homolog-
ical algebra as in the Homalg system [Barakat and Lange-Hegermann, 2011;
Barakat and Robertz, 2008].

This paper was published in the post-proceedings of the 2012 edition of the Certified
Programs and Proofs conference. [Coquand et al., 2012b]

5.2 A Coq formalization of finitely presented modules

This paper is about formalizing the module theory of coherent and strongly
discrete rings. The concept of a module over a ring is a generalization of
the notion of a vector space over a field, where the scalars are elements of
an arbitrary ring. We restrict to finitely presented modules as these can be
concretely represented using matrices. More precisely, an R-module M is
finitely presented if it can be represented using a finite set of generators and
a finite set of relations between these. This means that they can be compactly
described by an exact sequence:

Rm1 Rm0 M 0M π

Here π is a surjection and M a matrix representing the m1 relations among
the m0 generators of the moduleM. A morphism between finitely presented
modules,M and N , is given by the following commutative diagram:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

ϕR ϕG ϕ

N

This means that morphisms between finitely presented modules can be rep-
resented using matrices as well. All operations can then be defined by ma-
nipulating these matrices. By assuming that the underlying ring is coherent
and strongly discrete we can represent morphisms using only one matrix and
a proof that the other matrix can be computed from this. We also get algo-
rithms for computing the kernel and cokernel of morphisms. Using this we
have verified that finitely presented modules over coherent and strongly dis-
crete rings form an abelian category, which means that they are a good setting
for developing homological algebra.

It is in general not possible, even if the ring is coherent and strongly dis-
crete, to decide whether two finitely presented modules are isomorphic or
not. However when working with Z-modules, or more generally R-modules
over rings where there is an algorithm computing the Smith normal form of
any matrix, this is possible. The next paper discusses a class of rings with
this property, called elementary divisor rings in [Kaplansky, 1949], and pro-
vides new concrete instances of coherent and strongly discrete rings. This can
hence be combined with the theory developed in this paper for formalizing
computational homological algebra.

14

5. Constructive algebra in type theory

This paper was published in the post-proceedings of the 2014 edition of the Interactive
Theorem Proving conference. [Cohen and Mörtberg, 2014]

5.3 Formalized linear algebra over elementary divisor rings in
Coq

An integral domain is called an elementary divisor ring if any matrix is equiv-
alent to a matrix in Smith normal form:

d1 0 · · · · · · 0
. . .

...
0 dk 0 · · · 0
... 0 0

...
...

...
. . .

...
0 · · · 0 · · · · · · 0

where di | di+1 for all i. This means that given M we should be able to compute
invertible matrices P and Q such that PMQ = D where D is in Smith normal
form.

By developing the theory of linear algebra over these rings we can prove
that they are coherent. It is also easy to show that any elementary divisor ring
is a Bézout domain and hence strongly discrete using the theory developed in
the fourth paper. We hence get that elementary divisor rings form interesting
instances for our work on finitely presented modules.

Finitely presented modules over elementary divisor rings are especially
well-behaved because any module is isomorphic to a direct sum of a free
module and cyclic modules in a unique way. The proof of this can be seen
as a constructive version of the classification theorem for finitely generated
modules over principal ideal domains. We have formalized this theorem and
from it we get an algorithm for deciding if two finitely presented modules
over elementary divisor rings are isomorphic or not.

It is a well-known classical result that principal ideal domains (i.e. integral
domains where every ideal is principal) are elementary divisor rings. But, as
pointed out earlier, we want to avoid Noetherian hypotheses in constructive
algebra. However, the problem whether any Bézout domain is an elementary
divisor ring is still open [Lorenzini, 2012]. So instead we start by giving a
concrete implementation of an algorithm for computing the Smith normal
form of matrices with coefficients in a Euclidean domain. It is straightforward
to generalize this to constructive principal ideal domains, defined as Bézout
domains where strict divisibility is well-founded.

We have also formalized a reduction, due to Kaplansky [Kaplansky, 1949],
that reduces the problem of proving that a Bézout domain is an elementary
divisor ring to proving that it satisfies a first-order condition called the “Ka-
plansky condition”. Using this we prove that Bézout domains extended with
one of the following assumptions are elementary divisor rings:

1. Adequacy (i.e. the existence of a gdco operation) [Helmer, 1943].

15

Introduction

2. Constructive Krull dimension ≤ 1 [Lombardi and Quitté, 2011].

3. Well-founded strict divisibility (constructive principal ideal domains).

The first one of these is the most general while the other two imply it. This
hence gives an alternative proof that constructive principal ideal domains are
elementary divisor rings. This proof also shows that while it may not be
possible to just drop the Noetherian assumption altogether, it can sometimes
be replaced by some first-order condition, in this case either constructive Krull
dimension ≤ 1, adequacy or the Kaplansky condition.

This paper is currently under submission. [Cano et al., 2014]

16

Part I

Program and Data
Refinements

17

1

A Refinement-Based
Approach to Computational
Algebra in Coq

Maxime Dénès, Anders Mörtberg and Vincent Siles

Abstract. We describe a step-by-step approach to the implemen-
tation and formal verification of efficient algebraic algorithms.
Formal specifications are expressed on rich data types which are
suitable for deriving essential theoretical properties. These speci-
fications are then refined to concrete implementations on more ef-
ficient data structures and linked to their proof-oriented counter-
parts. We illustrate this methodology on key applications: matrix
rank computation, Strassen’s fast matrix product, Karatsuba’s
polynomial multiplication, and the gcd of multivariate polyno-
mials.

Keywords. Formalization of mathematics, Computer algebra,
Efficient algebraic algorithms, Coq, SSReflect.

1.1 Introduction

In the past decade, the range of application of proof assistants has extended its
traditional ground in theoretical computer science to mainstream mathemat-
ics. Formalized proofs of important theorems like the fundamental theorem
of algebra [Barendregt et al., 2014], the four color theorem [Gonthier, 2005,
2008] and the Jordan curve theorem [Hales, 2007] have advertised the use of
proof assistants in mathematical activity, even in cases when the pen and pa-
per approach was no longer tractable.

But since these results established proofs of concept, more effort has been
put into designing an actually scalable library of formalized mathematics.

19

1. A Refinement-Based Approach to Computational Algebra in Coq

The Mathematical Components project (developing the MathComp library) uses
the small scale reflection extension (SSReflect) for the Coq proof assistant
to achieve a nearly comparable level of detail to usual mathematics on pa-
per, even for advanced theories like the proof of the Feit-Thompson theo-
rem [Gonthier et al., 2013]. In this approach, the user expresses significant
deductive steps while low-level details are taken care of by small computa-
tional steps, at least when properties are decidable. Such an approach makes
the proof style closer to usual mathematics.

One of the main features of these libraries is that they heavily rely on rich
dependent types, which gives the opportunity to encode a lot of information
directly into the type of objects: for instance, the type of matrices embeds their
size, which makes operations like multiplication easy to implement. Also, al-
gorithms on these objects are simple enough so that their correctness can easily
be derived from the definition. However in practice, most efficient algorithms
in modern computer algebra systems do not rely on dependent types and do
not provide any proof of correctness. We show in this paper how to use this
rich mathematical framework to develop efficient computer algebra programs
with proofs of correctness. This is a step towards closing the gap between proof
assistants and computer algebra systems.

The methodology we suggest for achieving this is the following: we are
able to prove the correctness of some mathematical algorithms having all the
high-level theory at our disposal and we then refine them to an implemen-
tation on simpler data structures that will be actually running on machines.
In short, we aim at formally linking convenient high-level properties to effi-
cient low-level implementations, ensuring safety of the whole approach while
enjoying better performance thanks to the separation of proofs and computa-
tional content.

In the next section, we describe the methodology of refinements. Then, we
give two examples of such refinements for matrices in section 1.3, and poly-
nomials in section 1.4. In section 1.5, we give a solution to unify both examples
by describing CoqEAL — The Coq Effective Algebra Library. This is a library
built using the methodology presented in this paper on top of the MathComp

libraries.

1.2 Refinements

Refinements are commonly used to describe successive steps when verify-
ing a program. Typically, a specification is expressed in Hoare logic [Hoare,
1969], then the program is described in a high-level language and finally im-
plemented in C. Each step is proved correct with respect to the previous one.
By using several formalisms, one has to trust every translation step or prove
them correct in yet another formalism.

Our approach is similar: we refine the definition of a concept to an efficient
algorithm described on high-level data structures. Then, we implement it on
data structures that are closer to machine representations, once we no longer
need rich theory to prove the correctness.

However, in our approach, all of the layers can be expressed in the same

20

1.3. Matrices

formalism (the Calculus of Inductive Constructions), though they do not use
exactly the same features. On one hand, the high-level layers use rich depen-
dent types that are very useful when describing theories because they allow
abuse of notations and concise statements which quickly become necessary
when working with advanced mathematics. On the other hand, the efficient
implementations use simple types, which are closer to standard implemen-
tations in traditional programming languages. The main advantage of this
approach is that the correctness of translations can easily be expressed in the
formalism itself, and we do not rely on any additional external proofs.

The implementation is an immediate translation of the algorithm in Fig-
ure 1.1:

Proof-oriented definitions

Algorithmic refinement

Efficient Implementation

Correctness proof

Morphism lemma

Figure 1.1: The three steps of refinement

In the next sections, we are going to use the following methodology to build
efficient algorithms from high-level descriptions:

1. Implement a proof-oriented version of the algorithm using MathComp

structures and use the libraries to prove properties about them.

2. Refine this algorithm into an efficient one still using MathComp struc-
tures and prove that it behaves like the proof-oriented version.

3. Translate the MathComp structures and the efficient algorithm to the
low-level data types, ensuring that they will perform the same opera-
tions as their high-level counterparts.

The first two points uses the full power of dependent types to develop the
theory and proving the correctness of the refinements while the third only
uses simple types suitable for computation.

1.3 Matrices

Linear algebra is a natural first test-case to validate our approach, as a perva-
sive and inherently computational area of mathematics, which is well covered
by the MathComp library [Gonthier, 2011]. In this section, we will detail the

21

1. A Refinement-Based Approach to Computational Algebra in Coq

(quite simple) data structure we use to represent matrices and then review
two fundamental examples: rank computation and efficient matrix product.

1.3.1 Representation

Matrices are represented by finite functions over pairs of ordinals (the indices):

(* 'I_n *)
Inductive ordinal (n : nat) := Ordinal m of m < n.

(* 'M[R]_(m,n) = matrix R m n *)
(* 'rV[R]_m = 'M[R]_(1,m) *)
(* 'cV[R]_m = 'M[R]_(m,1) *)
Inductive matrix R m n := Matrix of {ffun 'I_m * 'I_n -> R}.

This encoding makes many properties easy to derive, but it is inefficient for
evaluation. Indeed, a finite function over 'I_m * 'I_n is internally represented
as a flat list of m× n values which has to be traversed whenever the function is
evaluated. Moreover, having the size of matrices encoded in their type allows
to state concise lemmas without explicit side conditions, but it is not always
flexible enough when getting closer to machine-level implementation details.

To be able to implement efficient matrix operations we introduce a low-
level data type seqmatrix representing matrices as lists of lists. Such a matrix
is built from a dependently typed one by mapping canonical enumerations
(given by the enum function) of ordinals to the corresponding coefficients in
the dependently typed matrix:

Definition seqmx_of_mx (M : 'M[R]_(m,n)) : seqmatrix :=
[seq [seq M i j | j <- enum 'I_n] | i <- enum 'I_m].

To ensure the correct behavior of list based matrices it is sufficient to prove
that seqmx_of_mx is injective:

Lemma seqmx_eqP (M N : 'M[R]_(m,n)) :
reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

The == symbol denotes boolean equality defined using the underlying equality
on R. Operations like addition are straightforward to implement, and their
correctness is expressed through a morphism lemma, stating that the list based
representation of the sum of two dependently typed matrices is the sum of
their representations as lists:

Definition addseqmx (M N : seqmatrix) : seqmatrix :=
zipwith (zipwith (fun x y => add x y)) M N.

Lemma addseqmxE :
{morph seqmx_of_mx : M N / M + N >-> addseqmx M N}.

Here morph is notation meaning that seqmx_of_mx is an additive morphism
from dependently types to list based matrices. It is worth noting that we
could have stated all our morphism lemmas with the converse operator (from
list based matrices to dependently typed ones). But these lemmas would then
have been quantified over lists of lists, with poorer types, which would have

22

1.3. Matrices

required a well-formedness predicate as well as premises expressing size con-
straints. The way we have chosen takes full advantage of the information
carried by the richer types.

Like the addseqmx operation, we have developed list based implementa-
tions of most of the matrix operations in the MathComp library and proved
the corresponding morphism lemmas. Among these operations we can cite:
subtraction, scaling, transpose and block operations.

1.3.2 Computing the rank

Now that the basic data structure and operations have been defined, it is
possible to apply our approach to an algorithm based on Gaussian elimination
which computes the rank of a matrix A = (ai,j) over a field K. We first specify
the algorithm using dependently typed matrices and then refine it to the low-
level structures.

An elimination step consists of finding a nonzero pivot in the first column
of A. If there is none, it is possible to drop the first column without changing
the rank. Otherwise, there is an index i such that ai,1 6= 0. By linear combina-
tions of rows (preserving the rank) A can be transformed into the following
matrix B:

0 a1,2 −
a1,1×ai,2

ai,1
· · · a1,n −

a1,1×ai,n
ai,1

0
...

...
ai,1 ai,2 · · · ai,n

0
...

...
0 an,2 −

an,1×ai,2
ai,1

· · · an,n −
an,1×ai,n

ai,1

=

0
R1...

0
ai,1 · · · ai,n
0

R2...
0

Let R =

[
R1
R2

]
, since ai,1 6= 0, this means that rank(A) = rank(B) = 1 +

rank(R). Hence the current rank can be incremented and the algorithm can
be recursively applied on R.

In our development we defined a function elim_step returning the matrix
R above and a boolean b indicating if a pivot has been found. A wrapper func-
tion rank_elim is in charge of maintaining the current rank and performing
the recursive call on R:

Fixpoint rank_elim (m n : nat) : 'M[K]_(m,n) -> nat :=
match n return 'M[K]_(m,n) -> nat with
| q.+1 => fun M =>
let (R,b) := elim_step M in (rank_elim R + b)%N

| _ => fun _ => 0%N
end.

Note that booleans are coerced to natural numbers: b is interpreted as 1 if true
and 0 if false. The correctness of rank_elim is expressed by relating it to the
\rank function of the MathComp library:

Lemma rank_elimP n m (M : 'M[K]_(m,n)) : rank_elim M = \rank M.

23

1. A Refinement-Based Approach to Computational Algebra in Coq

The proof of this specification relies on a key invariant of elim_step, relating
the ranks of the input and output matrices:

Lemma elim_step_rank m n (M : 'M[K]_(m, 1 + n)) :
let (R,b) := elim_step M in \rank M = (\rank R + b)%N.

Now the proof of rank_elimP follows by induction on n. The computation
oriented version of this algorithm is a direct translation of the algorithm using
only list based matrices and operations on them. This simply typed version
(called rank_elim_seqmx) is then linked to rank_elim by the lemma:

Lemma rank_elim_seqmxE : forall m n (M : 'M[K]_(m, n)),
rank_elim_seqmx m n (seqmx_of_mx M) = rank_elim M.

The proof of this is straightforward as all of the operations on list based ma-
trices have morphism lemmas just like this one. This means that the proof
can be done simply by expanding the definitions and applying the translation
morphisms.

1.3.3 Strassen’s fast matrix product

In the context we presented, the naive matrix product (i.e. with cubic complex-
ity) of two matrices M and N can be compactly implemented by transposing
the list of lists representing N and then for each i and j compute ∑k Mi,k NT

j,k:

Definition mulseqmx (M N : seqmatrix) : seqmatrix :=
let N' := trseqmx N in
map (fun r => map (foldl2 (fun z x y => x * y + z) 0 r) N') M.

Lemma mulseqmxE (M : 'M[R]_(m,p)) (N : 'M[R]_(p,n)) :
mulseqmx (seqmx_of_mx M) (seqmx_of_mx N) =
seqmx_of_mx (M *m N).

Here *m is the notation for the matrix product from the MathComp libraries.
Once again, the rich type information in the quantification of the morphism
lemma ensures that it can be applied only if the two matrices have compatible
sizes.

In 1969, Strassen [Strassen, 1969] showed that 2× 2 matrices can be mul-
tiplied using only 7 multiplications without requiring commutativity. This
yields an immediate recursive scheme for the product of two n × n matri-
ces with O(nlog2 7) complexity.1 This is an important theoretical result, since
matrix multiplication was commonly thought to be intrinsically of cubic com-
plexity, it opened the way to many further improvements and gave birth to a
fertile branch of algebraic complexity theory.

However, Strassen’s result is also still of practical interest since the asymp-
totically best algorithms known today [Coppersmith and Winograd, 1990] are
slower in practice because of huge hidden constants. Thus, we implemented
a variant of this algorithm suggested by Winograd in 1971 [Winograd, 1971],
decreasing the required number of additions and subtractions to 15 (instead
of 18 in Strassen’s original proposal). This choice reflects the implementation

1log2 7 is approximately 2.807.

24

1.3. Matrices

of matrix product in most of modern computer algebra systems. A previous
formal description of this algorithm has been developed in ACL2 [Palomo-
Lozano et al., 2001], but it is restricted to matrices whose sizes are powers
of 2. The extension to arbitrary matrices represents a significant part of our
development, which is to the best of our knowledge the first complete for-
mally verified description of Winograd’s version of Strassen’s algorithm.

We define a function expressing a recursion step in Winograd’s algorithm.
Given two matrices A and B and an operator f representing matrix prod-
uct, it reformulates the algebraic identities involved in the description of the
algorithm:

Definition Strassen_step (p : positive)
(A B : 'M[R]_(p + p)) f :=

let A11 := ulsubmx A in let A12 := ursubmx A in
let A21 := dlsubmx A in let A22 := drsubmx A in
let B11 := ulsubmx B in let B12 := ursubmx B in
let B21 := dlsubmx B in let B22 := drsubmx B in
let X := A11 - A21 in let Y := B22 - B12 in
let C21 := f X Y in
let X := A21 + A22 in let Y := B12 - B11 in
let C22 := f X Y in
let X := X - A11 in let Y := B22 - Y in
let C12 := f X Y in
let X := A12 - X in
let C11 := f X B22 in
let X := f A11 B11 in
let C12 := X + C12 in let C21 := C12 + C21 in
let C12 := C12 + C22 in let C22 := C21 + C22 in
let C12 := C12 + C11 in
let Y := Y - B21 in
let C11 := f A22 Y in let C21 := C21 - C11 in
let C11 := f A12 B21 in let C11 := X + C11 in
block_mx C11 C12 C21 C22.

This is an implementation of matrix multiplication that is clearly not suited
for proving algebraic properties, like associativity. The correctness of this
function is expressed by the fact that if f is instantiated by the multiplication
of matrices, Strassen_step A B should be the product of A and B (where =2
denotes extensional equality):

Lemma Strassen_stepP (p : positive) (A B : 'M[R]_(p + p)) f :
f =2 mulmx -> Strassen_step A B f = A *m B.

This proof is made easy by the use of the ring tactic (the formal proof is two
lines long). Since version 8.4 of Coq ring is applicable to non-commutative
rings which has allowed its use in our context.

Note that the above implementation only works for even-sized matrices.
This means that the general procedure has to implement a strategy for han-
dling odd-sized matrices. Several standard techniques have been proposed,
which fall into two categories. Some are static, in the sense that they prepro-
cess the matrices to obtain sizes that are powers of 2. Others are dynamic,

25

1. A Refinement-Based Approach to Computational Algebra in Coq

meaning that parity is tested at each recursive step. Two standard treatments
can be implemented either statically or dynamically: padding and peeling.
The first consists of adding rows and/or columns of zeros as required to get
even dimensions (or a power of 2), these lines are then simply removed from
the result. Peeling on the other hand removes rows or columns when needed,
and corrects the result accordingly.

We chose to implement dynamic peeling because it seemed to be the most
challenging technique from the formalization point of view, since the size of
matrices involved depend on dynamic information and the post processing of
the result is more sophisticated than using padding. Another motivation is
that dynamic peeling has shown to give good results in practice.

The function that implements multiplication by dynamic peeling is called
Strassen and it is proved correct with respect to the usual matrix product:

Lemma StrassenP : forall (n : positive) (M N : 'M[R]_n),
Strassen M N = M *m N.

The list based version is called Strassen_seqmx and it is also just a direct
translation of Strassen using only operations defined on list based matrices.
In the next section, Figure 1.2 shows some benchmarks of how well this imple-
mentation performs compared to the naive matrix product, but we will first
discuss how to implement concrete algorithms based on dependently typed
polynomials.

1.4 Polynomials

Polynomials in the MathComp library are represented as records with a list
representing the coefficients and a proof that the last of these is nonzero. The
library also contains basic operations on this representation like addition and
multiplication defined using big operators [Bertot et al., 2008], which means
that all operations are locked [Gonthier et al., 2008]. This is done in order to
prevent definitions from being expanded during type checking which means
that computation on them are blocked.

To remedy this we have implemented polynomials as lists without any
proofs together with executable implementations of the basic operations. It
is very easy to build a list based polynomial from an dependently typed one,
simply apply the record projection (called polyseq) to extract the list from the
record. The soundness of list based polynomials is proved by showing that
the pointwise boolean equality on the projected lists reflects the equality on
MathComp polynomials:

Lemma polyseqP p q : reflect (p = q) (polyseq p == polyseq q).

Basic operations like addition and multiplication are slightly more compli-
cated to implement for list based polynomials than for list based matrices as
it is necessary to ensure that these operations preserve the invariant that the
last element is nonzero. For instance multiplication is implemented as:

Fixpoint mul_seq p q := match p,q with
| [::], _ => [::]
| _, [::] => [::]

26

1.4. Polynomials

| x :: xs,_ => add_seq (scale_seq x q)
(mul_seq xs (0%R :: q))

end.

Lemma mul_seqE : {morph polyseq : p q / p * q >-> mul_seq p q}.

Here add_seq is addition of list based polynomials and scale_seq x q means
that every coefficient of q is multiplied by x (both of these are implemented in
such a way that the invariant that the last element is nonzero is satisfied). Us-
ing this approach we have implemented a substantial part of the MathComp

polynomial library, including pseudo-division.

1.4.1 Karatsuba’s fast polynomial multiplication

The naive polynomial multiplication algorithm presented in the previous sec-
tion requires O(n2) operations. A more efficient algorithm is Karatsuba’s
algorithm [Abdeljaoued and Lombardi, 2004; Karatsuba and Ofman, 1962]
which is a divide and conquer algorithm based on reducing the number of
recursive calls in the multiplication. More precisely, in order to multiply two
polynomials written as aXk + b and cXk + d the ordinary method

(aXk + b)(cXk + d) = acX2k + (ad + bc)Xk + cd

requires four multiplications (as the multiplications by Xn can be efficiently
implemented by padding the list of coefficients by n zeros). The key observa-
tion is that this can be rewritten as

(aXk + b)(cXk + d) = acX2k + ((a + b)(c + d)− ac− bd)Xk + bd

which only requires three multiplication: ac, (a + b)(c + d) and bd.
If the two polynomials have 2n coefficients and the splitting is performed

in the middle at every point then the algorithm will only require O(nlog2 3)
which is better than the naive algorithm.2 If the polynomials do not have 2n

coefficients it is possible to split the polynomials at for example bn/2c as the
formula above holds for any k ∈N and still obtain a faster algorithm.

This algorithm has previously been implemented in Coq for binary nat-
ural numbers [O’Connor, 2014] and for numbers represented by a tree-like
structure [Grégoire and Théry, 2006]. But as far as we know, it has never been
implemented for polynomials before. When implementing this algorithm we
first implemented it using dependently typed polynomials as:

Fixpoint karatsuba_rec (n : nat) p q := match n with
| 0%N => p * q
| n'.+1 =>

let sp := size p in let sq := size in
if (sp <= 2) || (sq <= 2) then p * q else
let m := minn sp./2 sq./2 in
let (p1,p2) := splitp m p in
let (q1,q2) := splitp m q in

2log2 3 is approximately 1.585.

27

1. A Refinement-Based Approach to Computational Algebra in Coq

let p1q1 := karatsuba_rec n' p1 q1 in
let p2q2 := karatsuba_rec n' p2 q2 in
let p12 := p1 + p2 in
let q12 := q1 + q2 in
let p12q12 := karatsuba_rec n' p12 q12 in
p1q1 * 'Xˆ(2 * m) +
(p12q12 - p1q1 - p2q2) * 'Xˆm + p2q2

end.

Definition karatsuba p q :=
karatsuba_rec (maxn (size p) (size q)) p q.

Here splitp is a function that splits the polynomial at the correct point
using take and drop. The correctness of this algorithm is expressed by:

Lemma karatsubaE : forall p q, karatsuba p q = p * q.

As p and q are MathComp polynomials this lemma can be proved using all of
the theory in the library. The next step is to implement the list version (called
karatsuba_seq) of this algorithm which is done by changing all the operations
in the above definition to the corresponding operations on list based polyno-
mials. The correctness of karatsuba_seq is then expressed by:

Lemma karatsuba_seqE :
{morph polyseq : p q / karatsuba p q >-> karatsuba_seq p q}.

The proof of this is straightforward as all of the operations have morphism
lemmas for translating back and forth between the different representations.

In Figure 1.2 the running times of the different multiplication algorithms that
we have implemented are compared:

100 200

0

50

100

Size

Ti
m

e
[s
]

mulseqmx
Strassen seqmx

500 1,000

0

10

20

30

Degree

mul seq
karatsuba seq

Figure 1.2: Benchmarks of Strassen and Karatsuba multiplications

The benchmarks have been performed by computing the square of integer ma-
trices and polynomials using the Coq virtual machine [Grégoire and Leroy,

28

1.4. Polynomials

2002]. It is clear that both the implementation of Strassen matrix multiplica-
tion and Karatsuba polynomial multiplication is faster than their naive coun-
terparts, as expected.

1.4.2 Computing the gcd of multivariate polynomials

An important feature of modern computer algebra systems is to compute the
greatest common divisor (gcd) of multivariate polynomials. The main idea of
our implementation is based on the observation that in order to compute the
gcd of elements in R[X1, . . . , Xn] it suffices to show how to compute the gcd
in R[X] given that it is possible to compute the gcd of elements in R. So, for
example, to compute the gcd of elements in Z[X, Y] we model it as (Z[X])[Y],
i.e. as univariate polynomials in Y with coefficients in Z[X], and then use that
there is a gcd algorithm in Z.

The algorithm that we implemented is based on the presentation in [Knuth,
1981] which uses that in order to compute the gcd of two multivariate poly-
nomials it is possible to instead consider the task of computing the gcd of
primitive polynomials, i.e. polynomials where all coefficients are coprime. Us-
ing that any polynomial can be split in a primitive part and a non-primitive
part by dividing by the gcd of its coefficients (this is called the content of the
polynomial and is denoted by cont(p)) we get an algorithm for computing the
gcd of any two polynomials. Below is our implementation of this algorithm:

Fixpoint gcdp_rec (n : nat) (p q : {poly R}) :=
let r := modp p q in
if r == 0 then q

else if n is m.+1 then gcdp_rec m q (pp r)
else pp r.

Definition gcdp p q :=
let (p1,q1) := if size p < size q then (q,p) else (p,q) in
let d := gcdr (cont p1) (cont q1) in
d%:P * gcdp_rec (size (pp p1)) (pp p1) (pp q1).

The new operations can be explained as:

• modp p q: the remainder after pseudo-dividing p by q.

• pp p: the primitive part of p, computed by dividing p by its content.

• gcdr (cont p1) (cont q1): the gcd (using the operation in the underly-
ing ring) of the content of p1 and the content of q1.

The correctness of this algorithm is now expressed by:

Lemma gcdpP g p q : g %| gcdp p q = (g %| p) && (g %| q).

Here p %| q computes whether p divides q or not. As divisibility is reflexive
this equality is a compact way of expressing that the function actually com-
putes the gcd of p and q.

Our result can be stated in constructive algebra as: If R is a GCD domain
then so is R[X]. Our algorithmic proof is different (and arguably simpler) than

29

1. A Refinement-Based Approach to Computational Algebra in Coq

the one found in [Mines et al., 1988]; for instance, we do not go via the field of
fractions of the ring. Instead it is proved using Gauss’ lemma and its corollary
for the primitive part:

Lemma cont_mul : forall p q, cont (p * q) %= cont p * cont q.

Lemma pp_mul : forall p q, pp (p * q) %= pp p * pp q.

This lemma states that the content of the product of a polynomial is equal
to the product of the contents of the polynomials up to multiplication by a
unit. The reason that this result is important is that one can use it to derive
properties of the gcd of polynomials [Knuth, 1981]. Let gcdR[x](p, q) be the
gcd of p and q in R[x], then Gauss’ lemma implies that:

cont(gcdR[x](p, q)) = gcdR(cont(p), cont(q))

pp(gcdR[x](p, q)) = gcdR[x](pp(p), pp(q))

Hence

gcdR[x](p, q) = gcdR(cont(p), cont(q))gcdR[x](pp(p), pp(q))

and the computation of the gcd of polynomials can be reduced to computing
the gcd of primitive polynomials which is exactly what is done in gcdp_rec.

As noted in [Knuth, 1981], this algorithm may be inefficient when applied
to polynomials over integers. A possible solution is to use subresultants. This
is a further refinement of the algorithm, which would be interesting to explore
since subresultants already been have implemented in Coq [Mahboubi, 2006].

The list based version (gcdp_seq) of the algorithm has also been imple-
mented and is linked to the version above by:

Lemma gcdp_seqE :
{morph polyseq : p q / gcdp p q >-> gcdp_seq p q}.

However, when running the list based implementation there is a quite sub-
tle problem: the polyseq projection links the MathComp polynomials with the
polynomials of type seq R where R is a MathComp ring. Let us consider what
happens if we want to compute with R[x, y]. It will be represented by seq (
seq R), but when we apply the polyseq projection we get seq R which is not
a ring. So our programs are not applicable!

The next section explains how to resolve this issue so that it is possible to
implement programs of the above kind that rely on the computability of the
underlying ring.

1.5 Hierarchy of computable structures

As noted in the previous section there is a problem when implementing mul-
tivariate polynomials by iterating the polynomial construction, i.e. by rep-
resenting R[X, Y] as (R[X])[Y]. The same problem occurs when considering
other structures where computations relies on the computability of the under-
lying ring. For instance when computing the characteristic polynomial of a
square matrix. For this, one needs to compute with matrices of polynomials

30

1.5. Hierarchy of computable structures

which will require a computation oriented implementation of matrices with
coefficients being a computation oriented implementation of polynomials.

However, both the list based matrices and polynomials have something in
common: we can guarantee the correctness of the operations on a subset of
the low-level structure. This can be used to implement another hierarchy of
computable structures corresponding to the MathComp algebraic hierarchy.

1.5.1 Design of the library

We have implemented computation-oriented counterparts to the basic proof-
oriented structures in the MathComp hierarchy, e.g. Z-modules, rings and
fields. These are implemented in the same manner as presented in [Garillot
et al., 2009] using canonical structures. Here are a few examples of the mixins
we use:

Record trans_struct (A B : Type) := Trans {
trans : A -> B;
_ : injective trans

}.

(* Mixin for "computable" Z-modules *)
Record mixin_of (V : zmodType) (T : Type) := Mixin {
zero : T;
opp : T -> T;
add : T -> T -> T;
tstruct : trans_struct V T;
_ : (trans tstruct) 0 = zero;
_ : {morph (trans tstruct) : x / - x >-> opp x};
_ : {morph (trans tstruct) : x y / x + y >-> add x y}

}.

(* Mixin for "computable" rings *)
Record mixin_of (R : ringType) (V : czmodType R) := Mixin {
one : V;
mul : V -> V -> V;
_ : (trans V) 1 = one;
_ : {morph (trans V) : x y / x * y >-> mul x y}

}.

The type czmodType is the computable Z-module type parametrized by a Z-
module. The trans function is the translation function from MathComp struc-
tures to the computation-oriented structures. The only thing required of trans
is that it is injective so that different proof-oriented objects are mapped to
different computation-oriented objects. In particular we get that the proof-
oriented types are isomorphic to a subset of the computation-oriented types.

This way we can implement all the basic operations of the algebraic struc-
tures the way we want (for example using fast matrix multiplication as an
implementation of matrix multiplication instead of a naive one). The only
thing to prove is that the implementations behave the same as MathComp’s
operations on the subset of “well-formed terms” (e.g. for polynomials, lists that

31

1. A Refinement-Based Approach to Computational Algebra in Coq

do not end with 0). This is done as above by providing the corresponding
morphism lemmas.

The operations presented in the previous sections of the paper can be im-
plemented by parametrizing by computation-oriented structures instead of
proof-oriented ones. This way polynomials represented as lists form a com-
putable ring and we hence get ring operations that can be applied on multi-
variate polynomials built by iterating the polynomial construction.

It is interesting to note that the equational behavior of an abstract structure
is carried as a parameter, but does not appear in its computable counterpart,
which depends only on the operations to be implemented. For instance, the
same computable ring structure can implement a commutative ring or an ar-
bitrary one, only its parameter varies.

1.5.2 Example: computable ring of polynomials

Let us explain how the list based polynomials can be made a computable ring.
First, we define:

Variable R : comRingType.
Variable CR : cringType R.

This says that CR is a computable ring parametrized by a commutative ring
which makes sense as any commutative ring is a ring. Next we need to im-
plement the translation function from poly R to seq CR and prove that this
translation is injective:

Definition trans_poly (p : {poly R}) : seq CR :=
map (@trans R CR) (polyseq p).

Lemma inj_trans_poly : injective trans_poly.

Assuming that computable polynomials already are an instance of the
computable Z-module structure it is possible to prove that they are com-
putable rings by implementing multiplication (exactly like above) and then
prove the corresponding morphism lemmas:

Lemma trans_poly1 : trans_poly 1 = [:: one CR].

Lemma mul_seqE :
{morph trans_poly : p q / p * q >-> mul_seq p q}.

At this point, we could also have used the karatsuba_seq implementation
of polynomial multiplication instead of mul_seq since we can prove its cor-
rectness using the karatsubaE and karatsuba_seqE lemmas. Finally this can
be used to build the CRing mixin and make it a canonical structure.

Definition seq_cringMixin := CRingMixin trans_poly1 mul_seqE.

Canonical Structure seq_cringType :=
Eval hnf in CRingType {poly R} seq_cringMixin.

32

1.6. Conclusions and future work

1.5.3 Examples of computations

This computable ring structure has also been instantiated by the Coq imple-
mentation of Z and Q which means that they can be used as basis when
building multivariate polynomials. To multiply 2 + xy and 1 + x + xy + x2y2

in Z[x, y] we write:

Definition p := [:: [:: 2]; [:: 0; 1]].
Definition q := [:: [:: 1; 1]; [:: 0; 1]; [:: 0; 0; 1]].

> Eval compute in mul p q.
= [:: [:: 2; 2]; [:: 0; 3; 1]; [:: 0; 0; 3]; [:: 0; 0; 0; 1]]

The result should be interpreted as (2 + 2x) + (3x + x2)y + 3x2y2 + x3y3. The
gcd of 1+ x + (x + x2)y and 1+ (1+ x)y + xy2 in Z[x, y] can be computed by:

Definition p := [:: [:: 1; 1] ; [:: 0; 1; 1]].
Definition q := [:: [:: 1]; [:: 1; 1]; [:: 0; 1]].

> Eval compute in gcdp_seq p q.
= [:: [:: 1]; [:: 0; 1]]

The result is 1 + xy as expected. The following is an example over Q[x, y]:

Definition p := [:: [:: 2 # 3; 2 # 3]; [:: 0; 1 # 2; 1 # 2]].
Definition q := [:: [:: 2 # 3]; [:: 2 # 3; 1 # 2];

[:: 0; 1 # 2]].

> Eval compute in gcdp_seq p q.
= [:: [:: 1 # 3]; [:: 0; 1 # 4]]

The two polynomials are

2
3
+

2
3

x +
1
2

xy +
1
2

x2y

and
2
3
+

2
3

y +
1
2

xy +
1
2

x2

The resulting gcd should be interpreted as

1
3
+

1
4

xy

1.6 Conclusions and future work

In this paper, we showed how to use high-level libraries to prove properties
of algorithms, while retaining good computational properties by providing
efficient low-level implementations. The need of modularity of the executable
structure appears naturally and the methodology explained in [Garillot et al.,
2009] works quite well. The only thing a user has to provide is a proof of an
injectivity lemma stating that the translation behaves correctly.

33

1. A Refinement-Based Approach to Computational Algebra in Coq

The methodology we suggest has already been used in other contexts, like
the CoRN library, where properties of real numbers described in [O’Connor,
2008] are obtained by proving that these real numbers are isomorphic to an
abstract, pre-existing but less efficient version. We have here showed that this
approach can be applied in a systematic and modular way.

The library we designed also helps to solve a restriction of SSReflect: due
to a lot of computations during deduction steps, many of the operations are
locked to allow type-checking to be performed in a reasonable amount of time.
This locking prevents full-scale reflection on some of the most complex types
like big operators, polynomials or matrices. Our implementation restores the
ability to perform full-scale reflection on abstract structures, and more gen-
erally to compute with them. For instance, addition of two fully instantiated
polynomials cannot be evaluated to its actual numerical result but we can re-
fine it to a computable object that will reduce. This is a first step towards
having in the same system definitions of objects on which properties can be
proved and some of the usual features of a computer algebra system.

However, in its current state, the inner structure of our library is slightly
more rigid than necessary: we create a type for computable Z-modules, but
in practice, all the operations it contains could be packaged independently.
Indeed, on each of these operations we prove only a morphism lemma linking
it to its abstract counterpart, whereas in usual algebraic structures, expressing
properties like distributivity require access to several operations at once. This
specificity would make it possible to reorganise the library and create inde-
pendent structures for each operation, instead of creating one of them for each
type.

To simplify the layout of the library we could also use other packaging
methods, like Coq type classes [Sozeau and Oury, 2008]. However, modifying
the library to use type classes on top of SSReflect’s canonical structures is still
on-going work, since we faced some incompatibilities between the different
instance resolution mechanisms.

34

2

Refinements for free!

Cyril Cohen, Maxime Dénès and Anders Mörtberg

Abstract. Formal verification of algorithms often requires that
the developer to choose between definitions that are easy to rea-
son about and definitions that are computationally efficient. One
way to reconcile both consists in adopting a high-level view when
proving correctness and then refining stepwise down to an effi-
cient low-level implementation. Some refinement steps are inter-
esting, in the sense that they improve the algorithms involved,
while others only express a switch from data representations
geared towards proofs to more efficient ones designed for com-
putation. We relieve the user of these tedious refinements by
introducing a framework where correctness is first established
in a proof-oriented context and then automatically transported
to computation-oriented data structures. Our design is general
enough to encompass a variety of mathematical objects, such as
rational numbers, polynomials and matrices over refinable struc-
tures. Moreover, the rich formalism of the Coq proof assistant
enables us to develop this within Coq, without having to main-
tain an external tool.

Keywords. Data and program refinements, formal proofs, para-
metricity, Coq, SSReflect.

2.1 Introduction

It is commonly conceived that computationally well-behaved programs and
data structures are more difficult to study formally than naive ones. Rich for-
malisms like the Calculus of Inductive Constructions, on which the Coq [Coq

Development Team, 2012] proof assistant relies, allow for several different rep-
resentations of the same mathematical object so that users can choose the one
suiting their needs.

35

2. Refinements for free!

Even simple objects like natural numbers have both a unary representa-
tion which features a very straightforward induction scheme and a binary
one which is exponentially more compact, but usually entails more involved
proofs. Their respective incarnations in the standard library of Coq are the
two inductive types nat and N along with two isomorphisms N.of_nat :
nat -> N and N.to_nat : N -> nat. Recent versions of the library make use
of ML-like modules [Chrzaszcz, 2003] and functors to factor programs and
proofs over these two types.

The traditional approach to abstraction is to first define an interface spec-
ifying operators and their properties, then instantiate it with concrete imple-
mentations of the operators with proofs that they satisfy the properties. How-
ever, this has at least two drawbacks in our context. First, it is not always
obvious how to define the correct interface, and it is not clear if a suitable one
even exists. Second, having abstract axioms goes against the type-theoretic
view of objects with computational content, which means in practice that
proof techniques like small scale reflection, as advocated by the SSReflect

extension [Gonthier et al., 2008], are not applicable.
Instead, the approach we describe here consists in proving the correct-

ness of programs on data structures designed for proofs — as opposed to an
abstract signature — and then transporting them to more efficient implemen-
tations. We distinguish two notions: program refinements and data refinements.
The first of these consists in transforming a program into a more efficient one
computing the same thing using a different algorithm, but preserving the in-
volved types. For example, standard matrix multiplication can be refined to
a more efficient implementation like Strassen’s fast matrix product [Strassen,
1969]. The correctness of this kind of refinements is often straightforward to
state. In many cases, it suffices to prove that the two algorithms are exten-
sionally equal. The second notion of refinement consists in changing the data
representation on which programs operate while preserving the algorithm, for
example a multiplication algorithm on dense polynomials may be refined to
an algorithm on sparse polynomials. This kind of refinement is more subtle to
express as it involves transporting both programs and their correctness proofs
to the new data representation.

The two kinds of refinements can be treated independently and in the fol-
lowing, we focus on data refinements. A key feature of these should be com-
positionality, meaning that we can combine multiple data refinements. For
instance, given both a refinement from dense to sparse polynomials and a re-
finement from unary to binary integers we should get a refinement from dense
polynomials over unary integers to sparse polynomials over binary integers.

In the first paper of this thesis a framework for refining algebraic struc-
tures, while still allowing a step-by-step approach to prove the correctness
of algorithms, is defined. The present work improves several aspects of this
framework by considering the following methodology:

1. relate a proof-oriented data representation with a more computationally
efficient one (section 2.2),

2. parametrize algorithms and the data on which they operate by an abstract
type and its basic operations (section 2.3),

36

2.2. Data refinements

3. instantiate these algorithms with proof-oriented data types and their ba-
sic operations, and prove the correctness of that instance,

4. use parametricity of the algorithm (with respect to the data representation
on which it operates), together with points 2 and 3, to deduce that the
algorithm instantiated with the more efficient data representation is also
correct (section 2.4).

Further, this paper also contains a detailed example of an application of this
new framework to Strassen’s algorithm for efficient matrix multiplication (sec-
tion 2.5). In section 2.6 an overview of related work is presented and the paper
is then ended with a discussion on conclusions and future work (section 2.7).

2.2 Data refinements

In this section we will study various data refinements by considering some
examples. All of these fit in a general framework of data refinements based on
heterogeneous relations which relate proof-oriented types for convenient proofs
with computation-oriented types for efficient computation.

2.2.1 Refinement relations

In some cases we can define (possibly partial) functions from proof-oriented
to computation-oriented types and vice versa. We call a function from proof-
oriented to computation-oriented types an implementation function, and a func-
tion going the other way around a specification function.

Note that a specification function alone suffices to define a refinement
relation between the two data types: a proof-oriented term p refines to a
computation-oriented term c if the specification of c is p. We write the fol-
lowing helper functions to map respectively total and partial specification
functions to the corresponding refinement relations:

Definition fun_hrel A B (f : B -> A) : A -> B -> Prop :=
fun a b => f b = a.

Definition ofun_hrel A B (f : B -> option A) : A -> B -> Prop
:= fun a b => f b = Some a.

We will now study some examples of related types that fit in this frame-
work.

Isomorphic types

Isomorphic types correspond to the simple case where the implementation
and specification functions are inverse of each other.

The introduction mentions the two types nat and N which represent unary
and binary natural numbers. These are isomorphic, which is witnessed by
the implementation function N.of_nat : nat -> N and the specification func-
tion N.to_nat : N -> nat. Here, nat is the proof-oriented type and N the

37

2. Refinements for free!

computation-oriented one. Another example of isomorphic types is the ef-
ficient binary representation Z of integers in the Coq standard library that
can be declared as a refinement of the unary, nat-based, representation int of
integers in the MathComp library.

Quotients

Quotients correspond to the case where the specification and implementa-
tion functions are total and where the specification is a left inverse of the
implementation. This means that the computation-oriented type may have
“more elements” and that the implementation function is not necessarily sur-
jective (unless the quotient is trivial). In this case the proof-oriented type can
be seen as a quotient of the computation-oriented type by an equivalence re-
lation defined by the specification function, i.e. two computation-oriented ob-
jects are related if their specifications are equal. This way of relating types by
quotients is linked to the general notion of quotient types in type theory [Co-
hen, 2013]. The specification corresponds to the canonical surjection in the
quotient, while the implementation corresponds to the choice of a canonical
representative. However, here we are not interested in studying the proof-
oriented type, which is the quotient type. Instead, we are interested in the
computation-oriented type, which is the type being quotiented.

An important example of quotients is the type of polynomials. In the
MathComp library these are represented as a record type with a list and a
proof that the last element is nonzero, however this proof is only interesting
when developing theory about polynomials and not for computation. Hence
a computation-oriented type can be just the list of coefficients and the specifi-
cation function would normalize polynomials by removing zeros in the end.

A better representation of polynomials is sparse Horner normal form [Gre-
goire and Mahboubi, 2005] which can be implemented as:

Inductive hpoly := Pc : A -> hpoly
| PX : A -> pos -> hpoly -> hpoly.

Here A is an arbitrary type and pos is the type of positive numbers, the first
constructor represents a constant polynomial and PX a n p should be inter-
preted as a + Xn p where a is a constant, n a positive number and p another
polynomial in sparse Horner normal form. However, with this representation
there are multiple ways to represent the same polynomial. For instance can
X2 be represented either by 0+ X2 · 1 or 0+ X1(0+ X1 · 1). To remedy this we
implement a specification function that normalize polynomials and translate
them to MathComp polynomials.

Partial quotients

Quotient based refinement relations cover a larger class of data refinements
than the relations defined by isomorphisms. There are still interesting exam-
ples that are not covered though, for example when the specification function
is partial. To illustrate this, let us consider rational numbers. The MathComp

library contains a definition where they are defined as pairs of coprime inte-
gers with nonzero denominator:

38

2.2. Data refinements

Record rat := Rat {
valq : int * int;
_ : (0 < valq.2) && coprime `|valq.1| `|valq.2|

}.

Here `|valq.1| and `|valq.2| denotes the absolute values of the first and
second components of the valq pair. This definition is well-suited for proofs,
notably because elements of type rat can be compared using Leibniz equality
since they are normalized. But maintaining this invariant during computa-
tions is often too costly since it requires multiple gcd computations. Besides,
the structure also contains a proof which is not interesting for computations
but only for developing the theory of rational numbers.

In order to be able to compute efficiently we would like to refine this to
pairs of integers (int * int) that are not necessarily normalized and perform
all operations on the subset of pairs with nonzero second component. The
link between the two representations is depicted in Figure 2.1:

Proof-oriented type
Valid elements

Computation-oriented type

implementation

specification

Figure 2.1: Partial quotients

In the example of rational numbers the proof-oriented type is rat while the
computation-oriented type is int * int. Computations should be performed
on the subset of valid elements of the computation-oriented type, i.e. pairs
with nonzero second component. In order to conveniently implement this, the
output type of the specification function has been extended to option A in or-
der to make it total. The key property of the implementation and specification
functions is still that the specification is a left inverse of the implementation.
This means that the proof-oriented type can be seen as a quotient of the set
of valid elements, i.e. the elements that are not sent to None by the specifi-
cation function. For rational numbers the implementation and specification
functions together with their correctness looks like:

Definition rat_to_Qint (r : rat) : int * int := valq r.
Definition Qint_to_rat (r : int * int) : option rat :=
if r.2 != 0 then Some (r.1%:Q / r.2%:Q) else None.

Lemma Qrat_to_intK :
forall (r : rat), Qint_to_rat (rat_to_Qint r) = Some r.

The notation %:Q is the cast from int to rat. Here the lemma says that the
composition of the implementation with the specification is the identity. Using

39

2. Refinements for free!

this, we get a relation between rat and int * int by using ofun_hrel defined
at the beginning of this section:

Definition Rrat : rat -> int * int -> Prop
:= ofun_hrel Qint_to_rat.

Functional relations

Partial quotients often work for the data types we define, but fails to describe
refinement relations on functions. Given two relations R : A -> B -> Prop
and R' : A' -> B' -> Prop we can define a relation on the function space:
R ==> R' : (A -> A') -> (B -> B') -> Prop. It is a heterogeneous general-
ization of the respectful functions defined for generalized rewriting [Sozeau,
2009].

This definition is such that two functions are related by R ==> R' if they
send related inputs to related outputs. We can now use this to define the
correctness of addition on rational numbers:

Lemma Rrat_addq : (Rrat ==> Rrat ==> Rrat) +rat +int∗int.

The lemma states that if the two arguments are related by Rrat then the out-
puts are also related by Rrat.

However, we have left an issue aside: we refined rat to int * int, but this
is not really what we want to do as the type int is itself proof-oriented. Thus,
taking it as the basis for our computation-oriented refinement of rat would
be inefficient. Instead, we would like to express that rat refines to C * C for
any type C that refines int. The next section will explain how to program,
generically, operations in the context of such parametrized refinements. Then,
in section 2.4, we will show that correctness can be proved in the specific
case when C is int, and automatically transported to any other refinement by
taking advantage of parametricity.

2.2.2 Comparison with the previous approach

We gain in generality with regard to the approach presented in the first paper
in several ways. The previous work assumed a total injective implementa-
tion function, which intuitively corresponds to a partial isomorphism: the
proof-oriented type is isomorphic to a subtype of the computation-oriented
type. Since we do not rely on those translation functions anymore, we can
now express refinement relations on functions. Moreover, we take advantage
of (possibly partial) specification functions, rather than implementation func-
tions.

Another important improvement is that we do not need any notion of
equality on the computation-oriented type anymore. Indeed, the development
used to rely on Leibniz equality, which prevented the use of setoids [Barthe
et al., 2003] as computation-oriented types. In section 2.2.1, we use the setoid
int * int of rational numbers, but the setoid equality is left implicit. This is
in accordance with our principle never to do proofs on computation-oriented
types. We often implement algorithms to decide equality, but these are treated
as any other operation (section 2.3).

40

2.3. Generic programming

2.2.3 Indexing and using refinements

We use the Coq type class mechanism [Sozeau and Oury, 2008] to maintain a
database of lemmas establishing refinement relations between proof-oriented
and computation-oriented terms. The way this database is used is detailed in
section 2.4.

In order to achieve this, we define a heterogeneous generalization of the
Proper relations from generalized rewriting [Sozeau, 2009]. We call this class
of relations param and define it by:

Class param (R : A -> B -> Prop) (a : A) (b : B) :=
param_rel : R a b.

Here R is meant to be a refinement relation from A to B, and we can register
an instance of this class whenever we have two elements a and b together
with a proof of R a b. For example, we register the lemma Rrat_addq from
section 2.2.1 using the following instance:

Instance Rrat_addq :
param (Rrat ==> Rrat ==> Rrat) +rat +int∗int.

Given a term x, type class resolution now searches for y together with a proof
of param R x y. If R was obtained from a specification function, then x =
spec y and we can always substitute x by spec y and compute y. This way we
can take advantage of our framework to do efficient computation steps within
proofs.

2.3 Generic programming

We usually want to provide operations on the computation-oriented type cor-
responding to operations on the proof-oriented type. For example, we may
want to define an addition operation (addQ) on computation oriented rationals
over an abstract type C, corresponding to addition (+rat) on rat. However this
computation-oriented operation relies on both addition (+C) and multiplica-
tion (*C) on C, so we parametrize addQ by (+C) and (*C):

Definition addQ C (+C) (*C) : (C * C) -> (C * C) -> (C * C) :=
fun x y => (x.1 *C y.2 +C y.1 *C x.2, x.2 *C y.2).

This operation is correct if (+rat) refines to (addQ C (+C) (*C)) whenever (+

int) refines to (+C) and (*int) refines to (*C). The refinement from (+rat)
to (addQ C (+C) (*C)) is explained in section 2.4.1.

Since we abstracted over operations of the underlying data type, only one
implementation of each algorithm suffices, the same code can be used for do-
ing both correctness proofs and efficient computations as it can be instantiated
by both proof-oriented and computation-oriented types and programs. This
means that the programs need only be written once and code is never dupli-
cated, which is another improvement compared to the previous development.

In order to ease the writing of this kind of programs and refinement state-
ments in the code, we use operational type classes [Spitters and van der Wee-
gen, 2011] for standard operations like addition and multiplication together
with appropriate notations. This means we define a class for each operator

41

2. Refinements for free!

and a generic notation referring to the corresponding operation. For example,
in the code of addQ we can always write (+) and (*) and let the system infer
the operations,

Instance addQ C `{add C, mul C} : add (C * C) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Here `{add C, mul C} means that C comes with type classes for addition and
multiplication operators. Declaring addQ as an instance of addition on C * C
enables the use of the generic (+) notation to denote it.

2.4 Parametricity

The approach presented in the above section is incomplete though: once we
have proven that the instantiation of a generic algorithm to proof-oriented
structures is correct, how can we guarantee that other instances will be correct
as well? Doing correctness proofs directly on computation-oriented types is
precisely what we are trying to avoid.

Informally, since our generic algorithms are polymorphic in their types
and operators, their behavior has to be uniform across all instances. Hence, a
correctness proof should be portable from one instance to another, as long as
the operators instances are themselves correct.

The exact same idea is behind the interpretation of polymorphism in rela-
tional models of pure type systems [Bernardy et al., 2012]. The present section
builds on this analogy to formalize the automated transport of a correctness
proof from a proof-oriented instance to other instances of the same generic
algorithm.

2.4.1 Splitting refinement relations

Let us illustrate the parametrization process by an example on rational num-
bers. For simplicity, we consider negation which is implemented by:

Instance oppQ C `{opp C} : opp (C * C) :=
fun x => (-C x.1, x.2).

The function takes a negation operation in the underlying type C and define
negation on C * C by negating the first projection of the pair (the numerator).
Now let us assume that C is a refinement of int for a relation Rint : int ->
C -> Prop and that we have:

(Rint ==> Rint) (-int) (-C)
(Rrat ==> Rrat) (-rat) (oppQ int (-int))

The first of these states that the (-C) parameter of oppQ is correctly instantiated,
while the second expresses that the proof-oriented instance of oppQ is correct.
Assuming this we want to show that (-rat) refines all the way down to oppQ,
but instantiated with C and (-C) instead of their proof-oriented counterparts
(int and (-int)).

In order to write this formally, we define the product and composition of
relations as:

42

2.4. Parametricity

R * S := fun x y => R x.1 y.1 /\ S x.2 y.2
R \o S := fun x y => exists z, R x z /\ S z y

Using this we can define the relation RratC : rat -> C * C -> Prop as:

Definition RratC := Rrat \o (Rint * Rint).

We want to show that:

(RratC ==> RratC) (-rat) (oppQ C (-C))

A small automated procedure, relying on type class instance resolution,
first splits this goal in two, following the composition \o in the definition of
RratC:

(Rrat ==> Rrat) (-rat) (oppQ int (-int))
(Rint * Rint ==> Rint * Rint) (oppQ int (-int)) (oppQ C (-C))

The first of these is one of the assumptions while the second relates the results
of the proof-oriented instance of oppQ to another instance. This is precisely
where parametricity comes into play, as we will show in the next section.

2.4.2 Parametricity for refinements

While studying the semantics of polymorphism, Reynolds introduced a re-
lational interpretation of types [Reynolds, 1983]. A reformulation of this is
parametricity [Wadler, 1989], which is based on the fact that if a type has
no free variable, its relational interpretation expresses a property shared by
all terms of this type. This result extends to pure type systems [Bernardy
et al., 2012] and provides a meta-level transformation [[·]] defined inductively
on terms and contexts. In the closed case, this transformation is such that if
` A : B, then ` [[A]] : [[B]] A A. That is, for any term A of type B, it gives a pro-
cedure to build a proof that A is related to itself for the relation interpreting
the type B.

The observation we make is that the last statement of section 2.4.1 is an
instance of such a free theorem. More precisely, we know that [[oppQ]] is a proof
of

[[∀Z, (Z→ Z)→ Z ∗ Z→ Z ∗ Z]] oppQ oppQ

which expands to

∀Z : Type, ∀Z′ : Type, ∀ZR : Z→ Z′ → Prop,
∀oppZ : Z→ Z, ∀oppZ′ : Z′ → Z′, [[Z→ Z]] oppZ oppZ′ →

[[Z ∗ Z→ Z ∗ Z]] (oppQ Z oppZ) (oppQ Z′ oppZ′).

Then, instantiating Z to int, Z’ to C and ZR to Rint gives us the exact statement
we wanted to prove, since [[Z→ Z]] is what we denoted by ZR ==> ZR.

Following the term transformation [[·]], we have designed a logic program
in order to derive proofs of closed instances of the parametricity theorem.
Indeed, it should be possible in practice to establish the parametric relation
between two terms like oppQ and itself, since oppQ is closed.

For now, we can only express and infer parametricity on polymorphic ex-
pressions (no dependent types allowed), by putting the polymorphic types
outside the relation. Hence we do not need to introduce a quantification over
relations.

43

2. Refinements for free!

2.4.3 Generating the parametricity lemma

Rather than giving the details of how we programmed the proof search using
type classes and hints in the Coq system, we instead show an execution of
this logic program on our simple example, starting from:

(Rrat ==> Rrat) (-rat) (oppQ C (-C))

Let us first introduce the variables and their relations, and we get to prove

(Rint * Rint) (oppQ int (-int) a) (oppQ C (-C) b)

knowing ((Rint ==> Rint) (-int) (-C)) and ((Rint * Rint) a b).
By unfolding oppQ, it suffices to show that:

(Rint * Rint) (-int a.1, a.2) (-C b.1, b.2)

To do this we use parametricity theorems for the pair constructor pair and
eliminators _.1 and _.2. In our context, we have to give manual proofs for
them. Indeed, we lack automation for the axioms, but the number of combi-
nators to treat by hand is negligible compared to the number of occurrences
in user-defined operations. These lemmas look like:

Lemma param_pair :
forall RA RB, (RA ==> RB ==> RA * RB) pair pair.

Lemma param_fst : forall RA RB, (RA * RB ==> RA) _.1 _.1.
Lemma param_snd : forall RA RB, (RA * RB ==> RB) _.2 _.2.

Unfolding the type of the first of these gives:

forall (RA : A -> A' -> Prop) (RB : B -> B' -> Prop)
(a : A) (a' : A') (b : B) (b' : B'),
RA a a' -> RB b b' -> (RA * RB) (a, b) (a', b')

This can be applied to the initial goal, giving two subgoals:

Rint (-int a.1) (-C b.1)
Rint a.2 b.2

The second of these follow directly from param_snd and to show the first it
suffices to prove:

(Rint ==> Rint) (-int) (-C)
Rint a.1 b.1

The first of these is one of the assumptions we started with and the second
follows directly from param_fst.

2.5 Example: Strassen’s fast matrix product

In the first paper an important application of the refinement framework was
Strassen’s algorithm for the product of two square matrices of size n with time
complexity O(n2.81) [Strassen, 1969]. We show here how we adapted it to the
new framework described in this paper.

Let us begin with one step of Strassen’s algorithm: given a function f
which computes the product of two matrices of size p, we define, generically,
a function Strassen_step f which multiplies two matrices of size p + p:

44

2.5. Example: Strassen’s fast matrix product

Variable mxA : nat -> nat -> Type.

Context `{hadd mxA, hsub mxA, hmul mxA, hcast mxA, block mxA}.
Context `{ulsub mxA, ursub mxA, dlsub mxA, drsub mxA}.

Definition Strassen_step {p : positive} (A B : mxA (p+p) (p+p))
(f : mxA p p -> mxA p p -> mxA p p) : mxA (p+p) (p+p) :=
let A11 := ulsubmx A in let A12 := ursubmx A in
let A21 := dlsubmx A in let A22 := drsubmx A in
let B11 := ulsubmx B in let B12 := ursubmx B in
let B21 := dlsubmx B in let B22 := drsubmx B in
let X := A11 - A21 in let Y := B22 - B12 in
let C21 := f X Y in let X := A21 + A22 in
let Y := B12 - B11 in let C22 := f X Y in
let X := X - A11 in let Y := B22 - Y in
let C12 := f X Y in let X := A12 - X in
let C11 := f X B22 in let X := f A11 B11 in
let C12 := X + C12 in let C21 := C12 + C21 in
let C12 := C12 + C22 in let C22 := C21 + C22 in
let C12 := C12 + C11 in let Y := Y - B21 in
let C11 := f A22 Y in let C21 := C21 - C11 in
let C11 := f A12 B21 in let C11 := X + C11 in
block_mx C11 C12 C21 C22.

The mxA variable represents the type of matrices indexed by their sizes. The
various operations on this type are abstracted over by operational type classes,
as shown in section 2.3. Playing with notations and scopes allows us to
make this generic implementation look much like an equivalent one involving
MathComp matrices.

Note that the Strassen_step function expresses matrix sizes using the
positive type. These are positive binary numbers, whose recursion scheme
matches the one of Strassen’s algorithm through matrix block decomposition.
This is made compatible with the nat-indexed mxA type thanks to a hidden
coercion nat_of_pos.

The full algorithm is expressed by induction over positive. However,
in order to be able to state parametricity lemmas, we do not use the primi-
tive Fixpoint construction. Instead, we use the recursion scheme attached to
positive:

positive_rect : forall (P : positive -> Type),
(forall p : positive, P p -> P (p˜1)) ->
(forall p : positive, P p -> P (p˜0)) ->
P 1%positive ->
forall (p : positive), P p

We thus implement three functions corresponding to the three cases given by
the constructor of the positive inductive type: Strassen_xI and Strassen_xO
for even and odd sized matrices, and Strassen_xH for matrices of size 1.

Strassen’s algorithm is then defined as:

Definition Strassen :=

45

2. Refinements for free!

(positive_rect (fun p => (mxA p p -> mxA p p -> mxA p p))
Strassen_xI Strassen_xO Strassen_xH).

The mxA type and all the associated operational type classes are then in-
stantiated with the MathComp proof-oriented matrix type and operators. In
this context, we prove the program refinement from the naive matrix product
mulmx to Strassen’s algorithm:

Lemma StrassenP p :
param (eq ==> eq ==> eq) mulmx (@Strassen p).

The proof of this is essentially unchanged from section 1.3.3, the present work
improving only the data refinement part. The last step consists in stating and
proving the parametricity lemmas. This is done in a context abstracted over
both a representation type for matrices and a refinement relation:

Context (A : ringType) (mxC : nat -> nat -> Type).
Context (RmxA : forall m n, 'M[A]_(m, n) -> mxC m n -> Prop).

Operations on matrices are also abstracted, but we require them to have an
associated refinement lemma with respect to the corresponding operation on
proof-oriented matrices. For instance, for addition we write as follows:

Context `{hadd mxC, forall m n, param (RmxA ==> RmxA ==> RmxA)
(@addmx A m n) (@hadd_op _ _ _ m n)}.

We also have to prove the parametricity lemma associated to our recursion
scheme on positive:

Instance param_elim_positive P P'
(R : forall p, P p -> P' p -> Prop)
txI txI' txO txO' txH txH' :
(forall p, param (R p ==> R (p˜1)) (txI p) (txI' p)) ->
(forall p, param (R p ==> R (p˜0)) (txO p) (txO' p)) ->
(param (R 1) txH txH') ->
forall p, param (R p) (positive_rect P txI txO txH p)

(positive_rect P' txI' txO' txH' p).

We declare this lemma as an Instance of the param type class. This allows
to automate data refinement proofs requiring induction over positive. Finally,
we prove parametricity lemmas for Strassen_step and Strassen:

Instance param_Strassen_step p :
param (RmxA ==> RmxA ==> (RmxA ==> RmxA ==> RmxA) ==> RmxA)

(@Strassen_step (@matrix A) p) (@Strassen_step mxC p).

Instance param_Strassen p :
param (RmxA ==> RmxA ==> RmxA)

(@Strassen (@matrix A) p) (@Strassen mxC p).

Here, the improvement over the first paper is twofold: only one generic
implementation of the algorithm is now required and refinement proofs are
now mostly automated, including induction steps.

A possible drawback is that our generic description of the algorithms re-
quires all the operators to take the sizes of the matrices involved as arguments.

46

2.6. Related work

These sizes are sometimes not necessary for the computation-oriented opera-
tors. However, some preliminary benchmarks seem to indicate that this does
not entail a significant performance penalty.

2.6 Related work

Our work addresses a fundamental problem: how to change data represen-
tations in a compositional way. As such, it is no surprise that it shares aims
with other work. We already mentioned ML-like modules and functors, that
are available in Coq, but forbid proof methods to have a computational con-
tent.

The most general example of refinement relations we consider are partial
quotients, which are often represented in type theory by setoids over partial
equivalence relations [Barthe et al., 2003] and manipulated using generalized
rewriting [Sozeau, 2009]. The techniques we are using are very close to a kind
of heterogeneous version of the latter. Indeed, it usually involves a relation
R : A -> A -> Prop for a given type A, whereas our refinement relations have
the shape R : A -> B -> Prop where A and B can be two different types.

Some years ago, a plugin was developed for Coq for changing data rep-
resentations and converting proofs from a type to another [Magaud, 2003].
However, this approach was limited to isomorphic types, and does not pro-
vide a way to achieve generic programming (only proofs are ported). Our
design is thus more general, and we do not rely on an external plugin which
can be costly to maintain.

In [Luo, 1994], a methodology for modular specification and development
of programs in type theory is presented. The key idea is to express algebraic
specifications using sigma-types which can be refined using refinement maps,
and realized by concrete programs. This approach is close to the use of ML-
like modules, since objects are abstracted and their behavior is represented
by a set of equational properties. A key difference to our work is that these
equational properties are stated using an abstract congruence relation, while
we aim at proving correctness on objects that can be compared with Leib-
niz equality, making reasoning more convenient. This is made possible by
our more relaxed relation between proof-oriented and computation-oriented
representations.

Another way to reconcile data abstraction and computational content is
the use of views [McBride and McKinna, 2004; Wadler, 1987]. In particular, it
allows to derive induction schemes independently of concrete representations
of data. This can be used in our setting to write generic programs utilizing
these induction schemes for defining recursive programs and proving prop-
erties for generic types, in particular param_elim_positive (section 2.5) is an
example of a view.

The closest work to ours is probably the automatic data refinement tool
Autoref implemented independently for Isabelle [Lammich, 2013]. While
many ideas, like the use of parametricity, are close to ours, the choice is made
to rely on an external tool to synthesize executable instances of generic al-
gorithms and refinement proofs. The richer formalism that we have at our
disposal, in particular full polymorphism and dependent types makes it eas-

47

2. Refinements for free!

ier to internalize the instantiation of generic programs.
Another recent work that is related to this paper is [Haftmann et al., 2013]

in which the authors explain how the Isabelle/HOL code generator uses data
refinements to generate executable versions of abstract programs on abstract
types like sets. In the paper they use a refinement relation that is very similar
to our partial quotients (they use a domain predicate instead of an option type
to denote what values are valid and which are not). The main difference is
that they apply data refinements for code generation while in our case this is
not necessary as all programs written in Coq can be executed as they are and
data refinements are only useful to perform more efficient computations.

2.7 Conclusions and future work

In this paper an approach to data refinements where the user only needs to
supply the minimum amount of necessary information and both programs
and their correctness proofs gets transported to new data representation has
been presented. The three main parts of the approach are:

1. A lightweight and general refinement interface to support any heteroge-
neous relation between two types,

2. operational type classes to increase generality of implementations and

3. parametricity to automatically transport correctness proofs.

As mentioned in the introduction of this paper, this work is an improve-
ment of the approach presented in the first paper of the thesis. More precisely
it improves the approach presented in section 1.5 in the following aspects:

1. Generality: it extends to previously unsupported data types, like the
type of non-normalized rationals (section 2.2.2).

2. Modularity: each operator is refined in isolation instead of refining
whole algebraic structures (section 2.2.3), as suggested in the future
work section of the first paper.

3. Genericity: before, every operation had to be implemented both for the
proof-oriented and computation-oriented types, now only one generic
implementation is sufficient (section 2.3).

4. Automation: the current approach has a clearer separation between the
different steps of data refinements which makes it possible to use para-
metricity (section 2.4) in order to automate proofs that previously had to
be done by hand.

The implementation of points 2, 3 and 4 relies on the type class mechanism
of Coq in two different ways: in order to support ad-hoc polymorphism of
algebraic operations, and in order to do proof and term reconstruction au-
tomatically through logic programming. The automation of proof and term
search is achieved by the same set of lemmas as in the previous paper, but
now these do not impact the interesting proofs anymore.

48

2.7. Conclusions and future work

The use of operational type classes is very convenient for generic program-
ming. But the more complicated programs get, the more arguments they need.
In particular, we may want to bundle operators in order to reduce the size of
contexts that users need to write when defining generic algorithms.

The handling of parametricity is currently done by metaprogramming but
requires some user input and deals only with polymorphic constructions. We
should address these two issues by providing a systematic method of pro-
ducing parametricity lemmas for inductive types [Bernardy et al., 2012] and
extending relation constructions with dependent types. We may adopt Keller
and Lasson’s [Keller and Lasson, 2012] way of producing parametricity theo-
rems and their proofs for closed terms. It would also be interesting to imple-
ment this approach to refinements in a system with internal parametricity like
Type Theory in Color [Bernardy and Moulin, 2013].

Currently all formalizations have been done using standard Coq, but it
would be interesting to see how Homotopy Type Theory [Univalent Founda-
tions Program, 2013] can be used for simplifying our approach to data refine-
ments. Indeed, in the presence of the univalence axiom, isomorphic structures
are equal [Ahrens et al., 2014; Coquand and Danielsson, 2013] which should
be useful when refining isomorphic types. Also in the univalent foundations
there are ways to represent quotient types (see for example [Rijke and Spitters,
2014]). This could be used to refine types that are related by quotients or even
partial quotients.

The work presented in this paper forms the current basis of the CoqEAL
library. The development presented in this paper has enabled the addition of
some new data refinements like non-normalized rational numbers and poly-
nomials in sparse Horner normal form. The next paper in the thesis discusses
the formalization of the Sasaki-Murao algorithm for efficiently computing the
characteristic polynomial of a matrix [Sasaki and Murao, 1982] which is an-
other interesting program refinement.

Acknowledgments: The authors are grateful to the anonymous reviewers for
their useful comments and feedback. We also thank Bassel Mannaa and Dan
Rosén for proof reading the final version of this paper.

49

3

A Formal Proof of the
Sasaki-Murao Algorithm

Thierry Coquand, Anders Mörtberg and Vincent Siles

Abstract. The Sasaki-Murao algorithm computes the characteris-
tic polynomial, and hence the determinant, of any square matrix
over a commutative ring in polynomial time. The algorithm itself
can be written as a short and simple functional program, but its
correctness involves nontrivial mathematics. We here represent
this algorithm in type theory with a new correctness proof, using
the Coq proof assistant and the SSReflect extension.

Keywords. Formally verified algorithms, program refinements,
Sasaki-Murao algorithm, Bareiss’ algorithm, Coq, SSReflect.

3.1 Introduction

The goal of this paper is to present a formal proof of the Sasaki-Murao algo-
rithm [Sasaki and Murao, 1982]. This is an elegant algorithm, based on Bareiss’
algorithm [Bareiss, 1968], for computing the determinant of a square matrix
over an arbitrary commutative ring in polynomial time. Usual presentations of
this algorithm are quite complex, and rely on some Sylvester identities [Ab-
deljaoued and Lombardi, 2004]. We believe that the proof presented in this
paper is simpler. The proof was obtained by formalizing the algorithm in type
theory (more precisely using the SSReflect extension [Gonthier et al., 2008]
to the Coq [Coq Development Team, 2012] proof assistant together with the
MathComp library). It does not rely on any Sylvester identities and indeed
gives a proof of some of them as corollaries.

This paper also provides an example of how one can use a library of for-
malized mathematical results to formally verify a computer algebra program.
The methodology presented in the first paper of the thesis is used to imple-
ment a version of the program that can be efficiently executed inside Coq.

51

3. A Formal Proof of the Sasaki-Murao Algorithm

3.2 The Sasaki-Murao algorithm

3.2.1 Matrices

For any n ∈ N, let In = {i ∈ N | i < n} (with I0 = ∅). If R is a set, a m× n
matrix of elements of the set R is a function Im × In → R. Such a matrix can
also be viewed as a family of elements (mij) for i ∈ Im and j ∈ In.

If M is a m× n matrix, f a function of type Ip → Im and g a function of
type Iq → In, we define the p× q submatrix1 M(f , g) by

M(f , g)(i, j) = M(f i, g j)

We often use the following operation on finite maps: if f : Ip → Im, then
f+ : I1+p → I1+m is a function such that:

f+0 = 0
f+(1 + x) = 1 + (f x)

If R is a ring, let 1n be the n× n identity matrix. Addition and multiplica-
tion of matrices can be defined as usual. Any non-empty m× n matrix M can
be decomposed in four components:

• the top-left element m00, which is an element of R

• the top-right line vector L = m01, m02, . . . , m0(n−1)

• the bottom-left column vector C = m10, m20, . . . , m(m−1)0

• the bottom-right (m− 1)× (n− 1) matrix N = m(1+i,1+j)

That is:

M =

 m00 L

C N

Using this decomposition the central operation of our algorithm can be de-
fined:

M′ = m00N − CL

This operation, M 7−→ M′, transforms a m× n matrix into a (m− 1)× (n− 1)
matrix is crucial in the Sasaki-Murao algorithm. In the special case where
m = n = 2 the matrix M′ (of size 1× 1) can be identified with the determinant
of M.

Lemma 1. For any m× n matrix M and any maps f : Ip → Im−1 and g : Iq → In−1
the following identity holds:

M′(f , g) = M(f+, g+)′

1In the usual definition of submatrix, only some lines and columns are removed, which would
be enough for the following proofs. But this more general definition make the Coq formalization
easier to achieve.

52

3.2. The Sasaki-Murao algorithm

Proof. This lemma is easy to prove once one has realized two facts:

1. Selecting a submatrix commutes with most of the basic operations on
matrices. In particular

(M− N)(f , g) = M(f , g)− N(f , g)

and
(aM)(f , g) = aM(f , g)

For multiplication, we have (MN)(f , g) = M(f , id)N(id, g) where id is
the identity function.

2. For any matrix M described as a block[
m00 L
C N

]

we have that M(f+, g+) is the block[
m00 L(id, g)

C(f , id) N(f , g)

]

From these two observations, we then have:

M′(f , g) = (m00N − CL)(f , g)
= m00N(f , g)− C(f , id)L(id, g)

M(f+, g+)′ = m00N(f , g)− C(f , id)L(id, g)

Hence we can conclude that M′(f , g) = M(f+, g+)′.

The block decomposition suggests the following possible representation of
matrices in a functional language using the data type (where [R] is the type
of lists over the type R, using Haskell notations):

data Matrix R = Empty
| Cons R [R] [R] (Matrix R)

A matrix M is hence either the empty matrix Empty or a compound matrix
Cons m L C N. It is direct, using this representation, to define the operations of
addition, multiplication on matrices, and the operation M′ on non-empty ma-
trices. From this representation, we can also compute other standard views of
a m× n matrix, such as a list of lines l1, . . . , lm or as a list of columns c1, . . . , cn.

If M is a square n× n matrix over a ring R let |M| denote the determinant
of M. A k-minor of M is a determinant |M(f , g)| for any strictly increasing
maps f : Ik → In and g : Ik → In. A leading principal minor of M is a
determinant |M(f , f)| where f is the inclusion of Ik into In.

53

3. A Formal Proof of the Sasaki-Murao Algorithm

3.2.2 The algorithm

We present the Sasaki-Murao algorithm using functional programming nota-
tions. This algorithm computes in polynomial time, not only the determinant
of a matrix, but also its characteristic polynomial. We assume that we have a
representation of polynomials over the ring R and that we are given an oper-
ation p/q on R[X] which should be the quotient of p by q when q is a monic
polynomial. This operation is directly extended to an operation M/q of type
Matrix R[X] -> R[X] -> Matrix R[X]. We define then an auxiliary function
φ of type R[X] -> Matrix R[X] -> R[X] by:

φ a Empty = a
φ a (Mat m L C N) = φ m ((mN − CL)/a)

From now on, we assume R to be a commutative ring. The correctness
proof relies on the notion of regular element of a ring: a regular element of R is
an element a such that ax = 0 implies x = 0. An alternative (and equivalent)
definition is to say that multiplication by a is injective or that a can be cancelled
from ax = ay giving x = y.

Theorem 1. Let P be a square matrix of elements of R[X]. If all leading principal
minors of P are monic, then φ 1 P is the determinant of P. In particular, if P =
X1n − M for some square matrix M of elements in R, φ 1 P is the characteristic
polynomial of M.

This gives a simple and polynomial time [Abdeljaoued and Lombardi, 2004]
algorithm that computes the characteristic polynomial χM(X) of a matrix M.
The determinant of M is then χ−M(0).

3.3 Correctness proof

We first start to prove some auxiliary lemmas:

Lemma 2. If M is a n× n matrix and n > 0, then

mn−1
00 |M| = m00|M′|

In particular, if m00 is regular and n > 1, then

mn−2
00 |M| = |M

′|

Proof. Let us view the matrix M as a list of lines l0, . . . , ln−1 and let N1 be
the matrix l0, m00l1, . . . , m00ln−1. The matrix N1 is computed from M by
multiplying all of its lines (except the first one) by m00. By the properties of
the determinant, we can assert that |N1| = mn−1

00 |M|.
Let N2 be the matrix l0, m00l1−m10l0, . . . , m00ln−1−m(n−1)0l0. The matrix

N2 is computed from N1 by subtracting a multiple of l0 from every line except
l0:

m00l1+i ← m00l1+i −m(1+i)0l0.

By the properties of the determinant, we can assert that |N2| = |N1|.

54

3.3. Correctness proof

Using the definition of the previous section, we can also view the matrix
M as the block matrix [

m00 L
C N

]
and then the matrix N2 is the block matrix[

m00 L
0 M′

]
Hence we have |N2| = m00|M′|. From this equality, we can now prove that

mn−1
00 |M| = |N1| = |N2| = m00|M′|

If m00 is regular and n > 2, this equality simplifies to mn−2
00 |M| = |M′|.

Corollary 1. Let M be a n × n matrix with n > 0. If f and g are two strictly
increasing maps from Ik to In−1, then |M′(f , g)| = mk−1

00 |M(f+, g+)| if m00 is
regular.

Proof. Using Lemma 1, we know that M′(f , g) = M(f+, g+)′, so this corollary
follows from Lemma 2.

Let a be an element of R and M a n× n matrix. We say that a and M are
related if and only if

1. a is regular,

2. ak divides each k + 1 minor of M, and

3. each principal minor of M is regular.

Lemma 3. Let a be a regular element of R and M a n× n matrix, with n > 0. If
a and M are related, then a divides every element of M′. Furthermore, if aN = M′

then m00 and N are related and if n > 1

mn−2
00 |M| = an−1|N|

Proof. Let us start by stating two trivial facts: m00 is a 1× 1 principal minor
of M and for all i, j, M′ ij is a 2 × 2 minor of M. These two identities are
easily verified by checking the related definitions. Therefore, since a and M
are related, m00 is regular and a divides all the M′ ij (by having k = 1), so a
divides M′.

Let us write M′ = aN, we now need to show that m00 and N are related,
and if n > 1,

mn−2
00 |M| = an−1|N|

Let us consider two strictly increasing maps f : Ik → In−1, g : Il →
In−1, we have |M′(f , g)| = uk−1|M(f+, g+)| by Corollary 1. From the def-
inition of related, we also know that ak divides |M(f+, g+)|. Since M′ =
aN we have |M′(f , g)| = ak|N(f , g)|. If we write bak = |M(f+, g+)|, we
have that bakuk−1 = ak|N(f , g)|. Since a is regular, this equality implies
buk−1 = |N(f , g)|, and we see that uk−1 divides each k minor of N. This

55

3. A Formal Proof of the Sasaki-Murao Algorithm

also shows that |N(f , g)| is regular whenever |M(f+, g+)| is regular. In par-
ticular, each principal minor of N is regular. Finally, since |M′| = an−1|N| we
have mn−2

00 |M| = an−1|N| by Lemma 2.

Since any monic polynomial is also a regular element of the ring of poly-
nomials, Theorem 1 follows directly from Lemma 3 by performing a straight-
forward induction over the size n. In the case where P is X1n −M for some
square matrix M over R, we can use the fact that any principal minor of
X1n −M is the characteristic polynomial of a smaller matrix, and thus is al-
ways monic. In the end, the second part of the conclusion follows directly for
the first: φ 1 (X1n −M) = χM(X).

Now, we explain how to derive some of the Sylvester identities from Lemma 3.
If we look at the computation of φ 1 P we get a chain of equalities

φ 1 P = φ u1 P1 = φ u2 P2 = · · · = φ un−1 Pn−1

and we have that uk is the k:th leading principal minor of P, while Pk is the
(n− k)× (n− k) matrix

Pk(i, j) = |P(fi,k, f j,k)|

where fi,k(l) = l if l < k and fi,k(k) = i + k. (We have P0 = P.) Lemma 3
shows that we have for k < l

|Pk|un−l−1
l = |Pl |un−k−1

k

This is a Sylvester equality for the matrix P = X1n − M. If we evaluate
this identity at X = 0, we get the corresponding Sylvester equality for the M
matrix over an arbitrary commutative ring.

3.4 Representation in type theory

The original functional program is easily described in type theory, since it is
an extension of simply typed λ-calculus:

Variable R : ringType.
Variable CR : cringType R.

Definition cpoly := seq CR. (* polynomials are lists *)

Inductive Matrix : Type :=
| eM (* the empty matrix *)
| cM of CR & seq CR & seq CR & Matrix.

Definition ex_dvd_step d (M : Matrix cpoly) :=
mapM (fun x => divp_seq x d) M.

(* main "\phi" function of the algorithm *)
Fixpoint exBareiss_rec (n : nat) (g : cpoly) (M : Matrix cpoly)
{struct n} : cpoly := match n,M with

56

3.4. Representation in type theory

| _,eM => g
| O,_ => g
| S p, cM a l c M =>
let M' := subM (multEM a M) (mults c l) in
let M'' := ex_dvd_step g M' in
exBareiss_rec p a M''

end.

(* This function computes det M for a matrix of polynomials *)
Definition exBareiss (n : nat) (M : Matrix cpoly) : cpoly :=
exBareiss_rec n 1 M.

(* Applied to xI - M, this gives another definition of the
characteristic polynomial *)

Definition ex_char_poly_alt (n : nat) (M : Matrix CR) :=
exBareiss n (ex_char_poly_mx n M).

(* The determinant is the constant part of the char poly *)
Definition ex_bdet (n : nat) (M : Matrix CR) :=
nth (zero CR) (ex_char_poly_alt n (oppM M)) 0.

The Matrix type allows to define “ill-shaped” matrices since there are no links
between the size of the blocks. When proving correctness of the algorithm, we
have to be careful and only consider valid inputs.

As we previously said, this is a simple functional program, but its correctness
involves nontrivial mathematics. We choose to use the MathComp library to
formalize the proof because it already contains many results that we need.
The main scheme is to translate this program using MathComp data types,
prove its correctness and then prove that both implementations output the
same results on valid inputs following the methodology presented in the first
paper of the thesis.

First, the MathComp data types (with their respective notations in com-
ments) needed in the formalization are:

(* 'I_n *)
Inductive ordinal (n : nat) := Ordinal m of m < n.

(* 'M[R]_(m,n) = matrix R m n *)
(* 'rV[R]_m = 'M[R]_(1,m) *)
(* 'cV[R]_m = 'M[R]_(m,1) *)
Inductive matrix R m n := Matrix of {ffun 'I_m * 'I_n -> R}.

(* {poly R} *)
Record polynomial := Polynomial {

polyseq :> seq R;
_ : last 1 polyseq != 0

}.

Here dependent types are used to express well-formedness. For example,
polynomials are encoded as lists (of their coefficients) with a proof that the

57

3. A Formal Proof of the Sasaki-Murao Algorithm

last one is not zero. With this restriction, we are sure that one list exactly
represent a unique polynomial. Matrices are described as finite functions over
the finite sets of indexes.

With this definition, it is easy to define the submatrix M(f , g) along with
minors:

(* M(f,g) *)
Definition submatrix m n p q (f : 'I_p -> 'I_m)
(g : 'I_q -> 'I_n) (A : 'M[R]_(m,n)) : 'M[R]_(p,q) :=
\matrix_(i < p, j < q) A (f i) (g j).

Definition minor m n p (f : 'I_p -> 'I_m) (g : 'I_p -> 'I_n)
(A : 'M[R]_(m,n)) : R := \det (submatrix f g A).

Using MathComp notations and types, we can now write the steps of the
functional program (where rdivp is the pseudo-division operation [Knuth,
1981] of R[X]):

Definition dvd_step (m n : nat) (d : {poly R})
(M : 'M[{poly R}]_(m,n)) : 'M[{poly R}]_(m,n) :=
map_mx (fun x => rdivp x d) M.

(* main "\phi" function of the algorithm *)
Fixpoint Bareiss_rec m a : 'M[{poly R}]_(1 + m) -> {poly R} :=
match m return 'M[_]_(1 + m) -> {poly R} with
| S p => fun (M : 'M[_]_(1 + _)) =>
let d := M 0 0 in (* up left *)
let l := ursubmx M in (* up right *)
let c := dlsubmx M in (* down left *)
let N := drsubmx M in (* down right *)
let M' := d *: N - c *m l in
let M'' := dvd_step a M' in
Bareiss_rec d M''

| _ => fun M => M 0 0
end.

Definition Bareiss (n : nat) (M : 'M[{poly R}]_(1 + n)) :=
Bareiss_rec 1 M.

Definition char_poly_alt n (M : 'M[R]_(1 + n)) :=
Bareiss (char_poly_mx M).

Definition bdet n (M : 'M[R]_(1 + n)) :=
(char_poly_alt (-M))`_0.

The main achievement of this paper is the formalized proof of correctness
(detailed in the previous section) of this program:

Lemma BareissE : forall n (M : 'M[{poly R}]_(1 + n)),
(forall p (h h' : p.+1 <= 1 + n), monic (pminor h h' M)) ->
Bareiss M = \det M.

58

3.4. Representation in type theory

Lemma char_poly_altE : forall n (M : 'M[R]_(1 + n)),
char_poly_alt M = char_poly M.

Lemma bdetE n (M : 'M[R]_(1 + n)) : bdet M = \det M.

Now we want to prove that the original functional program is correct.
Both implementations are very close to each other, so to prove the correctness
of the ex_bdet program, we just have to show that it computes the same result
as bdet on similar (valid) inputs. This is one of the advantages of formalizing
correctness of program in type theory: one can express the program and its
correctness in the same language!

Lemma exBareiss_recE :
forall n (g : {poly R}) (M : 'M[{poly R}]_(1 + n)),
trans (Bareiss_rec g M) =
exBareiss_rec (1+n) (trans g) (trans M).

Lemma exBareissE : forall n (M : 'M[{poly R}]_(1 + n)),
trans (Bareiss M) = exBareiss (1 + n) (trans M).

Lemma ex_char_poly_mxE : forall n (M : 'M[R]_n),
trans (char_poly_mx M) = ex_char_poly_mx n (trans M).

Lemma ex_detE : forall n (M : 'M[R]_(1 + n)),
trans (bdet M) = ex_bdet (1 + n) (trans M).

To link the two implementations, we rely on the version of CoqEAL pre-
sented in the first paper. It allows to mirror the main algebraic hierarchy of
MathComp with more concrete data types (e.g. here we mirror the matrix
type 'M[R]_(m,n) by the computation-oriented type Matrix CR, assuming CR
mirrors R) in order to prove the correctness of functional programs using the
whole power of the MathComp libraries.

This process is done in the same manner as in [Garillot et al., 2009] us-
ing the canonical structure mechanism of Coq to overload the trans function,
which can then be uniformly called on elements of the ring, polynomials or
matrices. This function links the MathComp structures to the one we use for
the functional program description, ensuring that the correctness properties
are translated the program that we actually run in practice.

We can easily prove that translating a MathComp matrix into a Matrix always
lead to a “valid” Matrix, and there is a bijection between MathComp matrices
and “valid” matrices, so we are sure that our program computes the correct
determinant for all valid inputs.

In the end, the correctness of ex_bdet is proved using the lemmas bdetE
and ex_bdetE, stating that for any valid input, ex_bdet outputs the determi-
nant of the matrix:

Lemma ex_bdet_correct (n : nat) (M : 'M[R]_(1 + n)) :
trans (\det M) = ex_bdet (1 + n) (trans M).

59

3. A Formal Proof of the Sasaki-Murao Algorithm

3.5 Conclusions and benchmarks

In this paper the formalization of a polynomial time algorithm for computing
the determinant over any commutative ring has been presented. In order to
be able to do the formalization in a convenient way a new correctness proof
more suitable for formalization has been found. The formalized algorithm
has also been refined to a more efficient version on simple types, following
the methodology of the first paper of the thesis. This work can be seen as
an indication that this methodology works well on more complicated exam-
ples involving many different computable structures, in this case matrices of
polynomials.

The implementation has been tested using randomly generated matrices
with Z coefficients:

(* Random 3x3 matrix *)
Definition M3 :=
cM 10%Z [:: (-42%Z); 13%Z] [:: (-34)%Z; 77%Z]

(cM 15%Z [:: 76%Z] [:: 98%Z]
(cM 49%Z [::] [::] (@eM _ _))).

Time Eval vm_compute in ex_bdet 3 M3.
= (-441217)%Z

Finished transaction in 0. secs (0.006667u,0.s)

Definition M10 := (* Random 10x10 matrix *).

Time Eval vm_compute in ex_bdet 10 M10.
= (-406683286186860)%Z

Finished transaction in 1. secs (1.316581u,0.s)

Definition M20 := (* Random 20x20 matrix *).

Time Eval vm_compute in ex_bdet 20 M20.
= 75728050107481969127694371861%Z

Finished transaction in 63. secs (62.825904u,0.016666s)

This indicates that the implementation is indeed quite efficient, we believe
that the slowdown of the last computation is due to the fact that the size of the
determinant is so large and that the intermediate arithmetic operations has to
be done on very big numbers. We have verified this by extracting the function
to Haskell and the determinant of the 20× 20 matrix can then be computed
in 0.273 seconds. The main reasons for this is that the Haskell program has
been compiled and have an efficient implementation of arithmetic operations
for large numbers.

60

Part II

Constructive Algebra in Type
Theory

61

4

Coherent and Strongly
Discrete Rings in Type
Theory

Thierry Coquand, Anders Mörtberg and Vincent Siles

Abstract. In this paper we present a formalization of coherent
and strongly discrete rings in type theory. These are fundamental
structures in constructive algebra that represents rings in which it
is possible to solve linear systems of equations. These structures
have been instantiated with Bézout domains (for instance Z and
k[x]) and Prüfer domains (generalization of Dedekind domains)
so that we get certified algorithms solving systems of equations
that are applicable on these general structures. This work can be
seen as basis for developing a formalized library of linear algebra
over rings.

Keywords. Formalization of mathematics, Constructive algebra,
Coq, SSReflect.

4.1 Introduction

One of the fundamental operations in linear algebra is the ability to solve
linear systems of equations. The concept of coherent strongly discrete rings
abstracts over this ability which makes them an important notion in construc-
tive algebra [Mines et al., 1988]. This makes these rings suitable as a basis
for developing computational homological algebra, that is, linear algebra over
rings instead of fields [Barakat and Robertz, 2008].

Another reason that these rings are important in constructive algebra is
that they generalize the notion of Noetherian rings1. Classically any Noethe-

1Rings where all ideals are finitely generated.

63

4. Coherent and Strongly Discrete Rings in Type Theory

rian ring is coherent and strongly discrete but the situation in constructive
mathematics is more complex and, in fact there is no standard constructive
definition of Noetheriannity [Perdry, 2004; Perdry and Schuster, 2011]. Log-
ically, Noetheriannity is expressed by a higher-order condition (it involves
quantification over every ideal of the ring) while both coherent and strongly
discrete are first-order notions which makes them much more suitable for for-
malization.

One important example (aside from fields) of coherent strongly discrete
rings are Bézout domains which are a non-Noetherian generalization of prin-
cipal ideal domains (rings where all ideals are generated by one element). The
two standard examples of Bézout domains are Z and k[x] where k is a field.
Another example of coherent strongly discrete rings are Prüfer domains with
decidable divisibility which are a non-Noetherian generalization of Dedekind
domains. The condition of being a Prüfer domain captures what Dedekind
thought was the most important property of Dedekind domains [Avigad,
2006], namely the ability to invert ideals (which is usually hidden in classi-
cal treatments of Dedekind domains). This property also has applications in
control theory [Quadrat, 2003].

All of these notions have been formalized using the SSReflect exten-
sion [Gonthier et al., 2008] to the Coq proof assistant [Coq Development Team,
2012] together with the MathComp library. This work can be seen as a gen-
eralization of the previous formalization of linear algebra in the MathComp

library [Gonthier, 2011].
The main motivation behind this work is that it can be seen as a basis for

a formalization of computational homological algebra. This approach is in-
spired by the one of Homalg [Barakat and Robertz, 2008] where homological
algorithms (without formalized correctness proofs) are implemented based on
a notion that they call computable rings [Barakat and Lange-Hegermann, 2011]
which in fact are the same as coherent strongly discrete rings. Another source
of inspiration is the work presented in [Lombardi and Quitté, 2011].

This paper is organized as follows: first the formalization of coherent rings,
followed by strongly discrete rings, is presented. Next Prüfer domains are
discussed together with the proofs that they are both coherent and strongly
discrete. This is followed by a section on how to implement a computationally
efficient version of the development using the methodology of the first paper.
The paper is ended by a section on conclusions and future work.

4.2 Coherent rings

Given a ring R (in our setting commutative but it is possible to consider non-
commutative rings as well [Barakat and Lange-Hegermann, 2011]) one impor-
tant problem to study is how to solve linear systems over R.

Given a rectangular matrix M over R we want to find a finite number of
solutions X1, . . . , Xn of the system MX = 0 such that any solution is of the
form a1X1 + · · ·+ anXn where a1, . . . , an ∈ R. If this is possible, we say that
the module of solutions of the system MX = 0 is finitely generated. This can

64

4.2. Coherent rings

be reformulated with matrices: we want to find a matrix L such that

MX = 0 ↔ ∃Y. X = LY

A ring is coherent if for any matrix M it is possible to compute a matrix L
such that this holds. If this is the case it follows that ML = 0.

For this it is enough to consider the case where M has only one line. In-
deed, assume that for any 1× n matrix M we can find a n×m matrix L such
that MX = 0 iff X = LY for some Y. To solve the system

M1X = · · · = MkX = 0

where each Mi is a 1 × n matrix first compute L1 such that M1X = 0 iff
X = LY1 for some Y1. Next compute L2 such that M2L1Y1 = 0 iff Y1 = L2Y2.
At the end we obtain L1, . . . , Lk such that M1X = · · · = MkX = 0 iff X is of the
form L1 · · · LkY. So L1 · · · Lk provides a system of generators for the solution
of the system.

Hence it is sufficient to formulate the condition for coherent rings as: For
any row matrix M it is possible to find a matrix L such that

MX = 0 ↔ ∃Y. X = LY

In the formal development, coherent rings have been implemented using
mixins and canonical structures as in [Garillot et al., 2009]. In the MathComp

libraries matrices are represented by finite functions over pairs of ordinals (the
indices):

(* 'I_n *)
Inductive ordinal (n : nat) := Ordinal m of m < n.

(* 'M[R]_(m,n) = matrix R m n *)
(* 'rV[R]_m = 'M[R]_(1,m) *)
(* 'cV[R]_m = 'M[R]_(m,1) *)
Inductive matrix R m n := Matrix of {ffun 'I_m * 'I_n -> R}.

Hence the size of the matrices need to be known when implementing coherent
rings. But in general the size of L cannot be predicted so we need an extra
function that computes this:

Record mixin_of (R : ringType) := Mixin {
size_solve : forall m, 'rV[R]_m -> nat;
solve_row : forall m (V : 'rV[R]_m), 'M[R]_(m,size_solve V);
_ : forall m (V : 'rV[R]_m) (X : 'cV[R]_m),
reflect (exists Y, X = solve_row V *m Y) (V *m X == 0)

}.

Here V *m X == 0 is the boolean equality of matrices and the specification says
that this is reflected by the existence statement. An alternative to having a
function computing the size would be to output a dependent pair but this has
the undesired behavior that the pair has to be destructed when stating lemmas
about it which in turn would mean that these lemmas would be cumbersome
to use as it would not be possible to rewrite with them directly.

Using this we have implemented the algorithm for computing the genera-
tors of a system of equations:

65

4. Coherent and Strongly Discrete Rings in Type Theory

Fixpoint solveMxN (m n : nat) :
forall (M : 'M_(m,n)), 'M_(n,size_solveMxN M) :=
match m with
| S p => fun (M : 'M_(1 + _,n)) =>
let L1 := solve_row (usubmx M)
in L1 *m solveMxN (dsubmx M *m L1)

| _ => fun _ => 1%:M
end.

Lemma solveMxNP : forall m n (M : 'M[R]_(m,n)) (X : 'cV[R]_n),
reflect (exists Y, X = solveMxN M *m Y) (M *m X == 0).

In order to instantiate this structure one can of course directly give an
algorithm that computes the solution of a single row system. However there
is another approach that will be used in the rest of the paper that is based on
the intersection of finitely generated ideals.

4.2.1 Ideal intersection and coherence

In the case when R is an integral domain one way to prove that R is coher-
ent is to show that the intersection of two finitely generated ideals is again
finitely generated. This amounts to given two ideals I = (a1, . . . , an) and
J = (b1, . . . , bm) compute generators (c1, . . . , ck) of I ∩ J. For I ∩ J to be the
intersection of I and J it should satisfy I ∩ J ⊆ I, I ∩ J ⊆ J and

∀x. x ∈ I ∧ x ∈ J → x ∈ I ∩ I

A convenient way to express this in Coq is to use strongly discrete rings
that is discussed in section 4.3. For now we just assume that we can find
generators of the intersection of two finitely generated ideals (represented
using row vectors) and column vectors V and W such that I *m V = I ∩ J
and J *m W = I ∩ J. Using this there is an algorithm to compute generators
of the solutions of a system:

m1x1 + · · ·+ mnxn = 0

The main idea is to compute generators, M0, of the solution for m2x2 +
· · · + mnxn = 0 by recursion and compute generators t1, . . . , tp of (m1) ∩
(−m2, . . . ,−mn) together with V and W such that

(m1)V = (t1, . . . , tp)

(−m2, . . . ,−mn)W = (t1, . . . , tp)

The generators of the module of solutions are then given by:[
V 0
W M0

]
This has been implemented by:

Fixpoint solve_int m : forall (M : 'rV_m),'M_(m,size_int M) :=
match m with

66

4.3. Strongly discrete rings

| S p => fun (M' : 'rV_(1 + p)) =>
let m1 := lsubmx M' in
let ms := rsubmx M' in
let M0 := solve_int ms in
let V := cap_wl m1 (-ms) in
let W := cap_wr m1 (-ms) in
block_mx (if m1 == 0 then delta_mx 0 0 else V) 0

(if m1 == 0 then 0 else W) M0
| 0 => fun _ => 0

end.

Lemma solve_intP : forall m (M : 'rV_m) (X : 'cV_m),
reflect (exists Y, X = solve_int M *m Y) (M *m X == 0).

Here cap_wl computes V and cap_wr computes W, their implementation will
be discussed in section 4.3.1. Note that some special care has to be taken if m1
is zero, if this is the case we output a matrix:[

1 0 · · · 0 0
0 0 · · · 0 M0

]
However it would be desirable to output[

1 0
0 M0

]
But this would not have the correct size. This could be solved by having a
more complicated function that output a sum type with matrices of two dif-
ferent sizes. This would give slightly more complicated proofs so we decided
to pad with zeros instead. In section 4.5 we will discuss how to implement a
more efficient algorithm without any padding that is more suitable for com-
putation.

4.3 Strongly discrete rings

An important notion in constructive mathematics is the notion of discrete ring,
that is, rings with decidable equality. Another important notion is strongly
discrete rings, these are rings where membership in finitely generated ideals is
decidable. This means that if x ∈ (a1, . . . , an) there is an algorithm computing
w1, . . . , wn such that x = ∑ aiwi.

Examples of such rings are multivariate polynomial rings over discrete
fields (via Gröbner bases [Cox et al., 2006; Lombardi and Perdry, 1998]) and
Bézout domains with explicit divisibility, that is, whenever a | b one can com-
pute x such that b = xa. We have represented strongly discrete rings in Coq

as:

Inductive member_spec (R : ringType) n (x : R) (I : 'rV[R]_n)
: option 'cV[R]_n -> Type :=
| Member J of x%:M = I *m J : member_spec x I (Some J)
| NMember of (forall J, x%:M != I *m J) : member_spec x I None.

67

4. Coherent and Strongly Discrete Rings in Type Theory

Record mixin_of R := Mixin {
member : forall n, R -> 'rV[R]_n -> option 'cV[R]_n;
_ : forall n x (I : 'rV[R]_n), member_spec x I (member x I)

}.

The structure of strongly discrete rings contains a function taking an element
and a row vector (with the generators of the ideal) and return an option type
with a column vector. This is Some J if x can be written as IJ and if it is None
then there should also be a proof that there cannot be any J satisfying x = IJ.

4.3.1 Ideal theory

In the development we have chosen to represent finitely generated ideals as
row vectors, so an ideal in R with n generators is represented as a row matrix
of type 'rV[R]_n. This way operations on ideals can be implemented using
functions on matrices and properties can be proved using the matrix library.

A nice property of strongly discrete rings is that the inclusion relation of
finitely generated ideals is decidable. This means that we can decide if I ⊆ J
and if this is the case express every generator of I as a linear combination of
the generators of J. This is represented in Coq by:

Definition subid m n (I : 'rV[R]_m) (J : 'rV[R]_n) :=
[forall i : 'I_m, member (I 0 i) J].

Notation "A <= B" := (subid A B).
Notation "A == B" := ((A <= B) && (B <= A)).

Lemma subidP : forall m n (I : 'rV[R]_m) (J : 'rV[R]_n),
reflect (exists W, I = J *m W) (I <= J).

Note that this is expressed using matrix multiplication, so subidP says that
if I <= J then every generator of I can be written as a linear combination of
generators of J.

Ideal multiplication is an example where it is convenient to represent ideals
as row vectors. As the product of two finitely generated ideals is generated by
all products of generators of the ideals this can be expressed compactly using
matrix operations:

Definition mulid m n (I : 'rV_m) (J : 'rV_n) : 'rV_(m * n) :=
mxvec (IˆT *m J).

Notation "I *i J" := (mulid I J).

Here mxvec flattens 'M[R]_(m,n) to a row vector 'rV[R]_(m * n) and IˆT is
the transpose of I. By representing ideals as row vectors we get compact
definitions and quite simple proofs as the theory already developed about
matrices can be used when proving properties of ideal operations.

It is also convenient to specify what the intersection of I and J is: it is an
ideal K such that K <= I, K <= J and forall (x : R), member x I -> member
x J -> member x K. So in order to prove that an integral domain is coherent

it suffices to give an algorithm that computes K and prove that it satisfies these

68

4.3. Strongly discrete rings

three properties. The cap_wr and cap_wl functions used in solve_with_int
can then be implemented easily by explicitly computing W in subidP.

4.3.2 Coherent strongly discrete rings

If a ring R is both coherent and strongly discrete it is not only possible to
solve homogeneous systems MX = 0 but also any system MX = A. The
algorithm for computing this is expressed by induction on the number of
equations where the case of one equation follow directly from the fact that the
ring is strongly discrete. In the other case the matrix looks like:[

R1
M

]
X =

[
a1
A

]
First compute generators G1 for the module of system of solutions of R1X = 0
and test if a1 ∈ R1, if this is not the case the system is not solvable and
otherwise we get W1 such that R1W1 = a1. Next compute by recursion the
solution S of MG1X = A−MW1 such that MG1S = A−MW1. The solution
to the initial system is then W1 + G1S as[

R1
M

]
(W1 + G1S) =

[
R1W1 + R1G1S
MW1 + MG1S

]
=

[
a1
A

]
This has been implemented in Coq by:

Fixpoint solveGeneral m n :
'M[R]_(m,n) -> 'cV[R]_m -> option 'cV[R]_n := match m with
| S p => fun (M: 'M[R]_(1 + _,n)) (A : 'cV[R]_(1 + _)) =>
let G1 := solve_row (usubmx M) in
let W1 := member (A 0 0) (usubmx M) in
obind (fun w1 : 'cV_n =>
obind (fun S => Some (w1 + G1 *m S))
(solveGeneral (dsubmx M *m G1)

(dsubmx A - dsubmx M *m w1))
) W1

| _ => fun _ _ => Some 0
end.

Inductive SG_spec m n (M : 'M[R]_(m,n)) (A : 'cV[R]_m)
: option 'cV[R]_n -> Type :=
| HasSol X0 of (forall (X : 'cV[R]_n),

reflect (exists Y, X = solveMxN M *m Y + X0)
(M *m X == A)) : SG_spec M A (Some X0)

| NoSol of (forall X, M *m X != A) : SG_spec M A None.

Lemma solveGeneralP m n : (M : 'M[R]_(m,n)) (A : 'cV[R]_m),
SG_spec M A (solveGeneral M A).

Here obind is the bind operation for the option type which applies the function
if the output is Some and returns None otherwise.

69

4. Coherent and Strongly Discrete Rings in Type Theory

4.3.3 Bézout domains are coherent and strongly discrete

An example of a class of rings that are coherent and strongly discrete rings are
Bézout domains with explicit divisibility. These are integral domains where
every finitely generated ideal is principal (generated by one element). The two
main examples of Bézout domains are Z and k[x] where k is a discrete field.

Bézout domains can also be characterized as rings with a gcd operation in
which there is a function computing the elements of the Bézout identity:

Inductive bezout_spec R (a b : R) : R * R -> Type :=
BezoutSpec x y of
gcdr a b %= x * a + y * b : bezout_spec a b (x,y).

Record mixin_of R := Mixin {
bezout : R -> R -> (R * R);
_ : forall a b, bezout_spec a b (bezout a b)

}.

This means that given a and b one can compute x and y such that xa + by
is associate2 to gcd(a, b). Based on this it is straightforward to implement a
function that given a finitely generated ideal (a1, . . . , an) computes g (this g
is the greatest common divisor of all the ai) such that (a1, . . . , an) ⊆ (g) and
(g) ⊆ (a1, . . . , an).

We first prove that Bézout domains are strongly discrete. To test if x ∈
(a1, . . . , an) in first compute a principal ideal (g) and then test if g | x and if
this is the case we we can construct the witness and otherwise we know that
g /∈ (a1, . . . , an). This has been implemented in Coq by:

Definition bmember n (x : R) (I : 'rV[R]_n) :=
match x %/? principal_gen I with
| Some a => Some (principal_w1 I *m a%:M)
| None => None

end.

Lemma bmember_correct : forall n (x : R) (I : 'rV[R]_n),
member_spec x I (bmember x I).

Here %/? is the explicit divisibility function of R, principal_gen is the genera-
tor of the principal ideal generating I and principal_w1 I is the witness that
(g) ⊆ I.

For showing that Bézout domains are coherent let I and J be two finitely
generated ideals and compute principal ideals such that I = (a) and J = (b).
Now it easy to prove that I ∩ J = (lcm(a, b)), where lcm(a, b) is the lowest
common multiple of a and b which is computable in our setting as any Bézout
ring is a GCD domain with explicit divisibility. Hence we have now proved
that both Z and k[x] are both coherent and strongly discrete which means that
we can solve arbitrary systems of equations over them.

2a and b are associates if a | b and b | a, or equivalently that there exists a unit u ∈ R such that
a = bu.

70

4.4. Prüfer domains

4.4 Prüfer domains

Another class of rings that are coherent are Prüfer domains. These can be seen
as non-Noetherian analogues of Dedekind domains and have many different
characterizations [Fuchs and Salce, 2001]. The one we choose here is the one
in [Lombardi and Quitté, 2011] that says that a Prüfer domain is an integral
domains where given any x and y there exist u, v and w such that

ux = vy
(1− u)y = wx

This is can be represent in Coq by:

Record mixin_of R := Mixin {
prufer: R -> R -> (R * R * R);
_ : forall x y, let: (u,v,w) := prufer x y in

u * x = v * y /\ (1 - u) * y = w * x
}.

We require that Prüfer domains have explicit divisibility so that it is possi-
ble for us to prove that they are strongly discrete. This means that we can use
the library of ideal theory developed for strongly discrete rings when proving
that they are coherent. However, it would be possible to prove that Prüfer
domains are coherent without assuming explicit divisibility [Lombardi and
Quitté, 2011].

The most basic examples of Prüfer domains are Bézout domains (in par-
ticular Z and k[x]). However there are many other examples, for instance if R
is a Bézout domain then the ring of elements integral over R is a Prüfer do-
main, this gives examples from algebraic geometry like k[x, y]/(y2 + x4 − 1)
and algebraic number theory like Z[

√
−5].

4.4.1 Principal localization matrices and strong discreteness

The key algorithm in the proof that Prüfer domains with explicit divisibility
are both strongly discrete and coherent is an algorithm computing a principal
localization matrix of an ideal [Ducos et al., 2004]. This means that given a
finitely generated ideal (x1, . . . , xn) compute a n × n matrix M = (aij) such
that:

∑
i

aii = 1

and

∀i j l. al jxi = alixj

In MathComp the first of these is a bit problematic as there is no constraint
saying that a matrix has to be nonempty and if a matrix is empty the sum will
be 0. Hence we express the property like this:

Definition P1 m (M : 'M[R]_m) :=
\big[+%R/0]_(i : 'I_m) (M i i) = (0 < m)%:R.

71

4. Coherent and Strongly Discrete Rings in Type Theory

Definition P2 m (X : 'rV[R]_m) (M : 'M[R]_m) :=
forall (i j l : 'I_m), (M l j) * (X 0 i) = (M l i) * (X 0 j).

Definition isPLM m (X : 'rV[R]_m) (M : 'M[R]_m) :=
P1 M /\ P2 X M.

The first statement uses an implicit coercion from booleans to rings where
false is coerced to 0 and true to 1. The algorithm computing a principal
localization matrix, plm, is quite involved so we have omitted it from this
presentation, the interested reader should have a look in the development and
at the proofs in [Ducos et al., 2004] and [Lombardi and Quitté, 2011]. We have
proved that this algorithm satisfies the above specification:

Lemma plmP : forall m (I : 'rV[R]_m), isPLM I (plm I).

The reason that principal localization matrices are interesting is that they
give a way to compute the inverse of a finitely generated ideal I, this is a
finitely generated ideal J such that I J is principal. In fact if I = (x1, . . . , xn)
and M = (aij) its principal localization matrix then the following property
holds:

(x1, . . . , xn)(a1i, . . . , ani) = (xi)

That is, every column of M is an inverse to I. In Coq:

Lemma col_plm_mulr n (I : 'rV[R]_n.+1) i :
I *m col i (plm I) = (I 0 i)%:M.

This means that we can define an algorithm for computing the inverse of
ideals in Prüfer domains:

Definition inv_id n (i : 'I_n) (I : 'rV[R]_n) : 'rV[R]_n :=
(col i (plm I))ˆT.

Lemma inv_idP n (I : 'rV[R]_n) i :
(inv_id i I *i I == (I 0 i)%:M).

Here *i is ideal multiplication. Using this it is possible to prove that Prüfer
domains with explicit divisibility are strongly discrete. To compute if x ∈ I
first compute J such that I J = (a). Now x ∈ I iff (x) ⊆ I iff xJ ⊆ (a).
This can be tested if we can decide when an element is divisible by a. The
implementation of this is:

Definition pmember n (x : R) : 'rV[R]_n -> option 'cV[R]_n :=
match n with
| S p => fun (I : 'rV[R]_p.+1) =>

let a := plm I in
if [forall i, I 0 i %| a i i * x]

then Some (\col_i odflt 0 (a i i * x %/? I 0 i))
else None

| _ => fun _ => if x == 0 then Some 0 else None
end.

Lemma pmember_correct : forall n (x : R) (I : 'rV[R]_n),
member_spec x I (pmember x I).

72

4.4. Prüfer domains

Here [forall i, I 0 i %| a i i * x] is a test that all of the generators of I
divides aiix. Hence our implementation of Prüfer domains is strongly discrete
which means that the theory about ideals can be used when proving that they
are coherent.

4.4.2 Coherence

The key property of ideals in Prüfer domains for computing the intersection
is that given two finitely generated ideals I and J they satisfy:

(I + J)(I ∩ J) = I J

This means that we can devise an algorithm for computing generators for the
intersection by first computing (I + J)−1 such that (I + J)−1(I + J) = (a) and
then we get that

I ∩ J =
(I + J)−1 I J

a
Note the use of division here, in fact it is possible to compute the intersection
without assuming division but then the algorithm is more complicated. Using
this the function for computing the generators of the intersection is:

Definition pcap (n m : nat) (I : 'rV[R]_n) (J : 'rV[R]_m) :
'rV[R]_(pcap_size I J).+1 := match find_nonzero (I +i J) with
| Some i => let sIJ := I +i J in

let a := sIJ 0 i in
let acap := inv_id i sIJ *i I *i J in
(0 : 'M_1) +i (\row_i (odflt 0 (acap 0 i %/? a)))

| None => 0
end.

The reason to add 0 as a generator of the ideal is simply to have the correct size
as the formalized proof that R is coherent if I ∩ J is computable requires that
I ∩ J is nonempty. Now we have an algorithm for computing the intersection,
but to prove that this is indeed the intersection we need to prove the property
that we used:

Lemma pcap_id (n m : nat) (I : 'rV[R]_n) (J : 'rV[R]_m) :
((I +i J) *i pcap I J == I *i J).

Using this it is possible to prove that pcap compute the intersection:

Lemma pcap_subidl m n (I: 'rV_m) (J: 'rV_n): (pcap I J <= I).

Lemma pcap_subidr m n (I: 'rV_m) (J: 'rV_n): (pcap I J <= J).

Lemma pcap_member m n x (I : 'rV[R]_m) (J : 'rV[R]_n) :
member x I -> member x J -> member x (pcap I J).

Hence we have now proved that Prüfer domains with explicit divisibility
are coherent and strongly discrete. We can hence not only solve homogeneous
systems over them but also any linear system of equations.

73

4. Coherent and Strongly Discrete Rings in Type Theory

4.4.3 Examples of Prüfer domains

As mentioned before any Bézout domain is a Prüfer domain. The proof of this
is straightforward:

Definition bezout_calc (x y: R) : (R * R * R) :=
let: (g,c,d,a,b) := egcdr x y in (d * b, a * d, b * c).

Lemma bezout_calcP (x y : R) :
let: (u,v,w) := bezout_calc x y in
u * x = v * y /\ (1 - u) * y = w * x.

Here egcdr is the extended Bézout algorithm where g is the gcd of x and y,
x = ag, y = bg and ca + db = 1. We have not yet formalized the proofs
that Z[

√
−5] and k[x, y]/(y2− 1+ x4) are Prüfer domains, but we have imple-

mented them in Haskell [Mörtberg, 2010].3

4.5 Computations

The algorithms in the paper are all presented on structures using rich depen-
dent types which is convenient when proving properties, but for computa-
tion this is not necessary. In fact it can be more efficient to implement the
algorithms using simple types instead, an example of this is matrices: As
explained in section 4.2 they are represented using finite functions from the
indices (represented using ordinals). But this representation is not suitable for
computation as finite functions are represented by their graph which has to
be traversed linearly each time the function is evaluated. To remedy this we
use the approach presented in the first paper where matrices are represented
using lists of lists and implement efficient versions of the algorithms on this
representations instead. These algorithms are then linked to the inefficient
versions using translation lemmas. Recall the methodology of the first paper:

1. Implement a proof-oriented version of the algorithm using MathComp

structures and use the libraries to prove properties about them.

2. Refine this algorithm into an efficient one still using MathComp struc-
tures and prove that it behaves like the proof-oriented version.

3. Translate the MathComp structures and the efficient algorithm to the
low-level data types, ensuring that they will perform the same opera-
tions as their high-level counterparts.

So far we have only presented step 1. The second step involves giving
more efficient algorithms, a good example of this is the algorithms on ideals.
A simple optimization that can be made is to ensure that there are no zeros
as generators in the output of the ideal operations. The goal would then be
to prove that the more efficient operations generates the same ideal as the
original operation. Another example is solve_int that can be implemented
without padding with zeros, this would then be proved to produce a set of

3This development can be found at
http://hackage.haskell.org/package/constructive-algebra

74

http://hackage.haskell.org/package/constructive-algebra

4.5. Computations

solution of the system and then be refined to a more efficient algorithm on list
based matrices.

The final step corresponds to implementing “computable” counterparts of
the structures that we presented so far based on simple types. For example is
computable coherent rings implemented as:

Record mixin_of (R : coherentRingType)
(CR : cstronglyDiscreteType R) := Mixin {

csize_solve : nat -> seqmatrix CR -> nat;
csolve_row : nat -> seqmatrix CR -> seqmatrix CR;
_ : forall n (V : 'rV[R]_n),
seqmx_of_mx CR (solve_row V) =
csolve_row n (seqmx_of_mx _ V);

_ : forall n (V: 'rV[R]_n),
size_solve V = csize_solve n (seqmx_of_mx _ V)

}.

Here seqmatrix is the list based representation of matrices with the translation
function seqmx_of_mx from MathComp matrices to matrices defined using
lists. Using this more efficient versions of the algorithms presented above can
be implemented simply by changing the functions on MathComp matrices to
functions on seqmatrix:

Fixpoint csolveMxN m n (M : seqmatrix CR) : seqmatrix CR :=
match m with
| S p =>
let u := usubseqmx 1 M in
let d := dsubseqmx 1 M in
let G := cget_matrix n u in
let k := cget_size n u in
let R := mulseqmx n k d G in
mulseqmx k (csize_solveMxN p k R) G (csolveMxN p k R)

| _ => seqmx1 CR n
end.

Lemma csolveMxNE : forall m n (M : 'M[R]_(m,n)),
seqmx_of_mx _ (solveMxN M) = csolveMxN m n (seqmx_of_mx _ M).

The lemma states that solving the system on MathComp matrices and
then translating is the same as first translating and then compute the solution
using the list based algorithm. The proof of this is straight-forward as all of
the functions of the algorithm have translation lemmas.

This way we have implemented all of the above algorithms and instances
and made some computations with Z using the algorithms for Bézout do-
mains: First we can compute the generators of (2) ∩ (3, 6):

Eval vm_compute in (cbcap 1 2 [::[::2]] [::[::3; 6]]).
= [:: [:: 6]]

Next we can test if 6 ∈ (2):

Eval vm_compute in (cmember 1%N 6 [::[:: 2]]).
= Some [:: [:: 3]]

75

4. Coherent and Strongly Discrete Rings in Type Theory

It is also possible to solve the homogeneous system:[
1 2
2 4

] [
x1
x2

]
=

[
0
0

]
Eval vm_compute in (csolveMxN 2 2 [::[:: 1;2];[::2;4]]).

= [:: [:: 2; 0];
[:: -1; 0]]

and the inhomogeneous system:[
2 3
4 6

] [
x1
x2

]
=

[
4
8

]
Eval vm_compute in (csolveGeneral 2 2 [::[:: 2; 3]; [:: 4; 6]]

[::[:: 4];[:: 8]]).
= Some [:: [:: -4];

[:: 4]]

We can also do some computations on the algorithms for Prüfer domains
using Z:

Eval vm_compute in (cplm 3 [::[:: 2; 3; 5]]).
= [:: [:: 8; 12; 20];

[:: 12; 18; 30];
[:: -10; -15; -25]]

Eval vm_compute in (cinv_id 2 0 [:: [:: 2; 3]]).
= [:: [:: -2; 2]]

The first computation compute the principal localization matrix of (2, 3, 5)
and the second compute the inverse of the ideal (2, 3).

4.6 Conclusions and future work

In this paper we have represented in type theory interesting and mathemati-
cally nontrivial results in constructive algebra. The algorithms based on coher-
ent and strongly discrete rings have been refined to more efficient algorithms
on simple data types, this way we get certified mathematical algorithms that
are suitable for computation. This work can hence be seen as an example that
the methodology presented in the first paper is applicable on more compli-
cated structures as well. However, this paper also shows that the method-
ology of the first paper is quite verbose. By instead doing the refinements
using the approach in the second paper we would have to only implement the
algorithms once and not duplicate any code.

The kind of normalization of the generators of ideals discussed in the pre-
vious section would be interesting to use, not only for efficient computation,
but also for doing proofs. This would involve redefining the type of ideals as
records with a proof that they do not contain any zeros (and possibly other
properties as well). By enforcing more properties like this on the generators
some corner cases could be removed in the proofs.

76

4.6. Conclusions and future work

In the future it would be interesting to prove that multivariate polynomial
rings over discrete fields are coherent and strongly discrete. This would re-
quire a formalization of Gröbner bases and the Buchberger algorithm which
has already been done in Coq [Persson, 2001; Théry, 1998]. It would be inter-
esting to reimplement this using SSReflect and compare the complexity of
the formalizations.

A consequence of the choice of using the MathComp library for the for-
malization is that it is difficult to formalize the notions in full generality, for
instance all rings are assumed to be discrete. Also in constructive algebra
ideal theory is usually developed without assuming decidable ideal member-
ship, but in our experience are both the MathComp library and the SSReflect

tactics best suited for theories with decidable functions. This is the reason that
we only consider Prüfer domains with explicit divisibility as this means that
they are strongly discrete which in turn means that we can use the library of
ideal theory when proving that they are coherent. We actually started to for-
malize the coherence proof without assuming explicit divisibility but this led
to too complicated proofs so we decided to assume divisibility as the examples
that we are primarily interested in all have explicit divisibility anyway.

It would be more natural from the point of view of constructive mathemat-
ics to represent more general structures without these decidability conditions.
A possible solution to this, using ideas from Homotopy Type Theory [Univa-
lent Foundations Program, 2013], is discussed in the conclusions of the thesis.
However, while the use of SSReflect imposes some decidability conditions,
we found that in this framework of decidable structures the notations and
tactics provided by SSReflect are particularly elegant and well-suited.

The results presented in this paper could be used as a basis for develop-
ing a library of formalized computational homological algebra inspired by the
Homalg project. In fact solveMxN and solveGeneral are the only operations
used as a basis in Homalg [Barakat and Lange-Hegermann, 2011]. The next
paper takes a step in this direction by proving that the category of finitely
presented modules over coherent strongly discrete rings form an abelian cat-
egory.

77

5

A Coq Formalization of
Finitely Presented Modules

Cyril Cohen and Anders Mörtberg

Abstract. This paper presents a formalization, in the intuitionis-
tic type theory of Coq, of constructive module theory. We build
an abstraction layer on top of matrix encodings, in order to repre-
sent finitely presented modules, and obtain clean definitions with
short proofs justifying that it forms an abelian category. The goal
is to use it as a first step to get certified programs for computing
topological invariants, like homology groups and Betti numbers.

Keywords. Formalization of mathematics, constructive algebra,
homological algebra, Coq, SSReflect.

5.1 Introduction

Homological algebra is the study of linear algebra over rings instead of fields,
this means that one considers modules instead of vector spaces. Homologi-
cal techniques are ubiquitous in many branches of mathematics like algebraic
topology, algebraic geometry and number theory. Homology was originally
introduced by Henri Poincaré in order to compute topological invariants of
spaces [Poincaré, 1895], which provides means for testing whether two spaces
cannot be continuously deformed into one another. This paper presents a for-
malization of constructive module theory in type theory, using the Coqproof
assistant [Coq Development Team, 2012] together with the Small Scale Reflec-
tion (SSReflect) extension [Gonthier et al., 2008], which provides a potential
core of a library of certified homological algebra.

Previous work, that the author of thesis was involved in, studied ways to
compute homology groups of vector spaces in Coq [Heras et al., 2012, 2013].
When generalizing this to commutative rings the universal coefficient theorem

79

5. A Coq Formalization of Finitely Presented Modules

of homology [Hatcher, 2001] states that most of the homological information
of an R-module over a ring R can be computed by only doing computations
with elements in Z. This means that if we were only interested in computing
homology it would not really be necessary to develop the theory of R-modules
in general. We could instead do it for Z-modules which are well behaved
because any matrix can be put in Smith normal form. However, by developing
the theory for general rings it should be possible to implement and reason
about other functors like cohomology, Ext and Tor as in the Homalg computer
algebra package [Barakat and Lange-Hegermann, 2011; Barakat and Robertz,
2008].

In [Gonthier, 2011], it is shown that the theory of finite dimensional vector
spaces can be elegantly implemented in Coq by using matrices to represent
subspaces and morphisms, as opposed to an axiomatic approach. The reason
why abstract finite dimensional linear algebra can be concretely represented
by matrices is because any vector space has a basis (a finite set of generators
with no relations among the generators) and any morphism can be repre-
sented by a matrix in this canonical basis. However, for modules over rings
this is no longer true: consider the ideal (X, Y) of k[X, Y], it is a module gen-
erated by X and Y which is not free because XY = YX. This means that the
matrix-based approach cannot be directly applied when formalizing module
theory.

To overcome this we restrict our attention to finitely generated modules
that are finitely presented, that is, modules with a finite set of generators and a
finite set of relations among these. In constructive module theory one usually
restricts attention to this class of modules and all algorithms can be described
by manipulating the presentation matrices [Decker and Lossen, 2006; Greuel
and Pfister, 2007; Lombardi and Quitté, 2011; Mines et al., 1988]. This paper
can hence be seen as a generalization of the formalization in [Gonthier, 2011]
to modules over rings instead over fields.

At the heart of the formalization in [Gonthier, 2011] is an implementation
of Gaussian elimination which is used in all subspace constructions. Using it
we can compute the kernel which characterizes the space of solutions of a sys-
tem of linear equations. However when doing module theory over arbitrary
rings, there is no general algorithm for solving systems of linear equations.
Because of this we restrict our attention further to modules over rings that
are coherent and strongly discrete, as is customary in constructive algebra [Lom-
bardi and Quitté, 2011; Mines et al., 1988], which means that we can solve
systems of equations.

The main contributions of this paper are the formalization of finitely pre-
sented modules over coherent strongly discrete rings (section 5.2) together
with basic operations on these (section 5.3) and the formal proof that the
collection of these modules and morphisms forms an abelian category (sec-
tion 5.4). The fact that they form an abelian category means that they provide
a suitable setting for developing homological algebra. We have also proved
that, over elementary divisor rings (i.e. rings with an algorithm to compute the
Smith normal form of matrices), it is possible to test if two finitely presented
modules represent isomorphic modules or not (section 5.5). Standard exam-
ples of such rings include principal ideal domains, in particular Z and k[X]
where k is a field.

80

5.2. Finitely presented modules

5.2 Finitely presented modules

As mentioned in the introduction, a module is finitely presented if it can be
given by a finite set of generators and relations. This is traditionally expressed
as:

Definition 1. An R-moduleM is finitely presented if there is an exact sequence:

Rm1 Rm0 M 0M π

Recall that Rm is the type of m-tuples of elements in R. More precisely, π
is a surjection and M a matrix representing the m1 relations among the m0
generators of the moduleM. This means thatM is the cokernel of M:

M' coker(M) = Rm0 / im(M)

Hence a module has a finite presentation if it can be expressed as the cokernel
of a matrix. As all information about a finitely presented module is contained
in its presentation matrix we will omit the surjection π when giving presenta-
tions of modules.

Example 1. The Z-module Z⊕Z/2Z is given by the presentation:

Z Z2 Z⊕Z/2Z 0

(
0 2

)

because if Z⊕Z/2Z is generated by (e1, e2) there is one relation, namely 0e1 +
2e2 = 2e2 = 0.

Operations on finitely presented modules can now be implemented by
manipulating the presentation matrices, for instance if M and N are finitely
presented R-modules given by presentations:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

N

the presentation ofM⊕N is:

Rm1+n1 Rm0+n0 M⊕N 0

(
M 0

0 N

)

We have represented finitely presented modules in Coq using the data
structure of matrices from the MathComp library which is defined as:

(* 'I_n *)
Inductive ordinal (n : nat) := Ordinal m of m < n.

(* 'M[R]_(m,n) = matrix R m n *)
(* 'rV[R]_m = 'M[R]_(1,m) *)
(* 'cV[R]_m = 'M[R]_(m,1) *)
Inductive matrix R m n := Matrix of {ffun 'I_m * 'I_n -> R}.

81

5. A Coq Formalization of Finitely Presented Modules

Here 'I_n is the type ordinal n which represents all natural numbers smaller
than n. This type has exactly n inhabitants and can be coerced to the type
of natural numbers, nat. Matrices are then represented as finite functions
over the finite set of indices, which means that dependent types are used to
express well-formedness. Finitely presented modules are now conveniently
represented using a record containing a matrix and its dimension:

Record fpmodule := FPModule {
nbrel : nat;
nbgen : nat;
pres : 'M[R]_(nbrel, nbgen)

}.

The direct sum of two finitely presented modules is now straightforward
to implement:

Definition dsum (M N : fpmodule R) :=
FPModule (block_mx (pres M) 0 0 (pres N)).

Here block_mx forms the block matrix consisting of the four submatrices. We
now turn our attention to morphisms of finitely presented modules.

5.2.1 Morphisms

As for vector spaces we represent morphisms of finitely presented modules
using matrices. The following lemma states how this can be done:

Lemma 4. IfM and N are finitely presented R-modules given by presentations:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

N

and ϕ : M → N a module morphism then there is a m0 × n0 matrix ϕG and
a m1 × n1 matrix ϕR such that the following diagram commutes:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

ϕR ϕG ϕ

N

For a proof of this see Lemma 2.1.25 in [Greuel and Pfister, 2007]. This means
that morphisms between finitely presented modules can be represented by
pairs of matrices. The intuition why two matrices are needed is that the mor-
phism affects both the generators and relations of the modules, hence the
names ϕG and ϕR.

In order to be able to compute for example the kernel of a morphism be-
tween finitely presented modules we need to add some constraints on the ring
R. The reason is that there, in general, is no algorithm for solving systems of
equations over arbitrary rings. The class of rings we consider are coherent and

82

5.2. Finitely presented modules

strongly discrete which means that it is possible to solve systems of equations.
In Homalg these are called computable rings [Barakat and Lange-Hegermann,
2011] and form the basis of the system.

5.2.2 Coherent and strongly discrete rings

Given a ring R (in our setting commutative but it is possible to consider
non-commutative rings as well [Barakat and Lange-Hegermann, 2011]) we
want to study the problem of solving linear systems over R. If R is a field
we have a nice description of the space of solutions by a basis of solutions.
Over an arbitrary ring R there is in general no basis. For instance over the
ring k[X, Y, Z] where k is a field, the equation pX + qY + rZ = 0 has no basis
of solutions. It can be shown that a generating system of solutions is given by
(−Y, X, 0), (Z, 0,−X), (0,−Z, Y). An important weaker property than having
a basis is that there is a finite number of solutions which generate all solutions.

Definition 2. A ring is (left) coherent if for any matrix M it is possible to compute
a matrix L such that:

XM = 0 ↔ ∃Y. X = YL

This means that L generates the module of solutions of XM = 0, hence L is
the kernel of M. For this it is enough to consider the case where M has only
one column [Lombardi and Quitté, 2011]. Note that the notion of coherent
rings is not stressed in classical presentations of algebra since Noetherian rings
are automatically coherent, but in a computationally meaningless way. It is
however a fundamental notion, both conceptually [Lombardi and Quitté, 2011;
Mines et al., 1988] and computationally [Barakat and Robertz, 2008].

A Coq formalization of coherent rings was presented in the previous paper
of the thesis. The only difference (except for name changes) is that in the first
presentation composition was read from right to left, whereas here we adopt
the SSReflect convention that composition is read in diagrammatic order (i.e.
from left to right).

Recall that in the development, coherent rings have been implemented
using the design pattern of [Garillot et al., 2009], using packed classes and the
canonical structure mechanism to help Coq automatically infer structures. As
matrices are represented using dependent types denoting their size this needs
to be known when defining coherent rings. In general the size of L cannot be
predicted, so we include an extra function to compute this:

Record mixin_of (R : ringType) := Mixin {
dim_ker : forall m n, 'M[R]_(m,n) -> nat;
ker : forall m n (M : 'M_(m,n)), 'M_(dim_ker M,m);
_ : forall m n (M : 'M_(m,n)) (X : 'rV_m),

reflect (exists Y, X = Y *m ker M) (X *m M == 0)
}.

Here *m denotes matrix multiplication and == is the boolean equality of ma-
trices, so the specification says that this equality is equivalent to the existence
statement. An alternative to having a function computing the size would be
to output a dependent pair but this has the undesirable behavior that the pair

83

5. A Coq Formalization of Finitely Presented Modules

has to be destructed when stating lemmas about it, which in turn would make
these lemmas cumbersome to use as it would not be possible to rewrite with
them directly.

An algorithm that can be implemented using ker is the kernel modulo a

set of relations, that is, computing ker(Rm M−→ coker(N)). This is equivalent
to computing an X such that ∃Y. XM + YN = 0, which is the same as solving
(X Y)(M N)T = 0 and returning the part of the solution that corresponds
to XM. In the paper this is written as kerN(M) and in the formalization as
N.-ker(M). Note that this is a more fundamental operation than taking the
kernel of a matrix as XM = 0 is equivalent to ∃Y. X = Y ker0(M)

In order to conveniently represent morphisms we also need to be able to
solve systems of the kind XM = B where B is not zero. In order to do this
we need to introduce another class of rings that is important in constructive
algebra:

Definition 3. A ring R is strongly discrete if membership in finitely generated
ideals is decidable and if x ∈ (a1, . . . , an) there is an algorithm computing w1, . . . , wn
such that x = ∑i aiwi.

Examples of such rings are multivariate polynomial rings over fields with
decidable equality (via Gröbner bases) [Cox et al., 2006; Lombardi and Perdry,
1998] and Bézout domains (for instance Z and k[X] with k a field).

If a ring is both coherent and strongly discrete it is not only possible to
solve homogeneous systems XM = 0 but also any system XM = B where B
is an arbitrary matrix with the same number of columns as M. This operation
can be seen as division of matrices as:

Lemma dvdmxP m n k (M : 'M[R]_(n,k)) (B : 'M[R]_(m,k)) :
reflect (exists X, X *m M = B) (M %| B).

Here %| is notation for the function computing the particular solution to
XM = B, returning None in the case no solution exists. We have developed a
library of divisibility of matrices with lemmas like

Lemma dvdmxD m n k (M : 'M[R]_(m,n)) (N K : 'M[R]_(k,n)) :
M %| N -> M %| K -> M %| N + K.

which follow directly from dvdmxP. This can now be used to represent mor-
phisms of finitely presented modules and the division theory of matrices gives
short and elegant proofs about operations on morphisms.

5.2.3 Finitely presented modules over coherent strongly dis-
crete rings

Morphisms between finitely presented R-modules M and N can be repre-
sented by a pair of matrices. However when R is coherent and strongly dis-
crete it suffices to only consider the ϕG matrix as ϕR can be computed by solv-
ing XN = MϕG, which is the same as testing N | MϕG. In Coq this means
that morphisms between two finitely presented modules can be implemented
as:

84

5.3. Monos, epis and operations on morphisms

(* 'Mor(M,N) := morphism_of M N *)
Record morphism_of (M N : fpmodule R) := Morphism {
matrix_of_morphism : 'M[R]_(nbgen M,nbgen N);
_ : pres N %| pres M *m matrix_of_morphism

}.

Using this representation we can define the identity morphism (idm) and com-
position of morphisms (phi ** psi) and show that these form a category. We
also define the zero morphism (0) between two finitely presented modules,
the sum (phi + psi) of two morphisms and the negation (- phi) of a mor-
phism, respectively given by the zero matrix, the sum and the negation of the
underlying matrices. It is straightforward to prove, using the divisibility the-
ory of matrices, that this is a pre-additive category (i.e. that the hom-sets form
abelian groups).

However, morphisms are not uniquely represented by an element of type
'Mor(M,N), but it is possible to test if two morphisms ϕ ψ : M → N are equal
by checking if ϕ− ψ is zero modulo the relations of N.

(* phi %= psi = eqmor phi psi *)
Definition eqmor (M N : fpmodule R) (phi psi : 'Mor(M,N)) :=
pres N %| phi%:m - psi%:m.

As this is an equivalence relation it would be natural to either use the Coq se-
toid mechanism [Barthe et al., 2003; Sozeau, 2009] or quotients [Cohen, 2013]
in order to avoid applying symmetry, transitivity and compatibility with op-
erators (e.g. addition and multiplication) by hand where it would be more
natural to use rewriting. We have begun to rewrite the library with quotients
as we would get a set of morphisms (instead of a setoid), which is closer to
the standard category theoretic notion.

5.3 Monos, epis and operations on morphisms

A monomorphism is a morphism ϕ : B → C such that whenever there are
ψ1, ψ2 : A→ B with ψ1 ϕ = ψ2 ϕ then ψ1 = ψ2. When working in pre-additive
categories the condition can be simplified to, whenever ψϕ = 0 then ψ = 0.

Definition is_mono (M N : fpmodule R) (phi : 'Mor(M,N)) :=
forall (P : fpmodule R) (psi : 'Mor(P, M)),
psi ** phi %= 0 -> psi %= 0.

It is convenient to think of monomorphisms B → C as defining B as a sub-
object of C, so a monomorphism ϕ : M → N can be thought of as a repre-
sentation of a submodule M of N. However, submodules are not uniquely
represented by monomorphisms even up to equality of morphisms (%=). In-
deed, multiple monomorphisms with different sources can represent the same
submodule. Although “representing the same submodule” is decidable in our
theory, we chose not to introduce the notion of submodule, because it is not
necessary to develop the theory.

Intuitively monomorphisms correspond to injective morphisms (i.e. with
zero kernel). The dual notion to monomorphisms are epimorphisms, which
intuitively correspond to surjective morphisms (i.e. with zero cokernel). For

85

5. A Coq Formalization of Finitely Presented Modules

finitely presented modules, mono- (resp. epi-) morphisms coincide with in-
jective (resp. surjective) morphisms, but this is not clear a priori. The goal
of this section is to clarify this by defining when a finitely presented module
is zero, showing how to define kernels and cokernels, and explicit the corre-
spondence between injective (resp. surjective) morphisms and mono- (resp.
epi-) morphisms.

5.3.1 Testing if finitely presented modules are zero

As a finitely presented module is the cokernel of a presentation matrix we
have that if the presentation matrix of a module is the identity matrix of di-
mension n× n (denoted by In) the module is isomorphic to n copies of the zero
module. In fact it suffices that the module is presented by a matrix equivalent
to a diagonal matrix with only units on the diagonal in order to be isomorphic
to the zero module. Now consider the following diagram:

Rn Rn 0n 0

Rm Rn M 0

In

X In

M

which commutes if ∃X. XM = In, i.e. when M | In. Hence this gives a
condition that can be tested in order to see if a module is zero or not.

5.3.2 Kernels

In order to compute the kernel of a morphism the key observation is that there
is a commutative diagram:

0

Rk1 Rk0 ker(ϕ) 0

Rm1 Rm0 M 0

Rn1 Rn0 N 0

kerM(κ)

X kerN(ϕG) = κ

M

ϕR ϕG ϕ

N

It is easy to see that κ is a monomorphism, which means that the kernel is
a submodule ofM as expected. In Coq this is easy to define:

Definition kernel (M N : fpmodule R) (phi : 'Mor(M,N)) :=
mor_of_mx ((pres N).-ker phi).

Where mor_of_mx takes a matrix K with as many columns as N and builds a
morphism from kerN(K) to M. Using this it is possible to test if a morphism
is injective:

86

5.3. Monos, epis and operations on morphisms

Definition injm (M N : fpmodule R) (phi : 'Mor(M,N)) :=
kernel phi %= 0.

We have proved that a morphism is injective if and only if it is a monomor-
phism:

Lemma monoP (M N : fpmodule R) (phi : 'Mor(M,N)) :
reflect (is_mono phi) (injm phi).

Hence we can define monomorphisms as:

(* 'Mono(M,N) = monomorphism_of M N *)
Record monomorphism_of (M N : fpmodule R) := Monomorphism {
morphism_of_mono :> 'Mor(M, N);
_ : injm morphism_of_mono

}.

The reason why we use injm instead of is_mono is that injm is a boolean pred-
icate, which makes monomorphisms a subtype of morphisms, by Hedberg’s
theorem [Hedberg, 1998].

5.3.3 Cokernels

The presentation of the cokernel of a morphism can also be found using a
commutative diagram:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

Rm0+n1 Rn0 coker(ϕ) 0

0

M

ϕR ϕG ϕ

N

X In0
(

ϕG

N

)

Note that the canonical surjection onto the cokernel is given by the iden-
tity matrix. The fact that this is a morphism is clear as X may be

(
0 In1

)
.

However, before defining this we can define the more general operation of
quotienting a module by the image of a morphism by stacking matrices:

Definition quot_by (M N : fpmodule R) (phi : 'Mor(M, N)) :=
FPModule (col_mx (pres N) phi)

So the cokernel is the canonical surjection from N to quot_by phi. Since it
maps each generator to itself, the underlying matrix is the identity matrix.

Definition coker : 'Mor(N, quot_by) :=
Morphism1 (dvd_quot_mx (dvdmx_refl _)).

We can now test if a morphism is surjective by comparing the cokernel of
phi with the zero morphism, which coincides with epimorphisms:

87

5. A Coq Formalization of Finitely Presented Modules

Definition surjm (M N : fpmodule R) (phi : 'Mor(M,N)) :=
coker phi %= 0.

Lemma epiP (M N : fpmodule R) (phi : 'Mor(M,N)) :
reflect (is_epi phi) (surjm phi).

As we have algorithms for deciding both if a morphism is injective and
surjective we can easily test if it is an isomorphism:

Definition isom (M N : fpmodule R) (phi : 'Mor(M,N)) :=
injm phi && surjm phi.

A natural question to ask is if we get an inverse from this notion of isomor-
phism. In order to show this we have introduced the notion of isomorphisms
that take two morphisms and express that they are mutual inverse of each
other, in the sense that given ϕ : M → N and ψ : N → M then ϕψ = 1M
modulo the relations in M. Using this we have proved:

Lemma isoP (M N : fpmodule R) (phi : 'Mor(M,N)) :
reflect (exists psi, isomorphisms phi psi) (isom phi).

Hence isomorphisms are precisely the morphisms that are both mono and
epi. Note that this does not mean that we can decide if two modules are
isomorphic, what we can do is testing if a given morphism is an isomorphism
or not.

5.3.4 Homology

The homology at N is defined as the quotient ker(ψ)/ im(ϕ), in

M N K
ϕ ψ

where ϕψ = 0. Because of this we have that im(ϕ) ⊂ ker(ψ) so the quotient
makes sense and we have an injective map ι : im(ϕ)→ ker(ψ). The homology
at N is the cokernel of this map. We can hence write:

Hypothesis mul_phi_psi (M N K : fpmodule R) (phi : 'Mor(M,N))
(psi : 'Mor(N,K)) : phi ** psi %= 0.

Definition homology (M N K : fpmodule R) (phi : 'Mor(M,N))
(psi : 'Mor(N,K)) := kernel psi %/ phi.

Where %/ is a notation for taking the quotient of a monomorphism by a mor-
phism with the same target.

In the next section, we show that these operations satisfy the axioms of
abelian categories.

5.4 Abelian categories

As mentioned in the end of section 5.2 the collection of morphisms between
two finitely presented modules forms an abelian group. This means that the
category of finitely presented modules and their morphisms is a pre-additive

88

5.4. Abelian categories

category. It is easy to show that the dsum construction provides both a product
and coproduct. This means that the category is also additive.

In order to show that we have a pre-abelian category we need to show that
morphisms have both a kernel and cokernel in the sense of category theory. A
morphism ϕ : M→ N has a kernel κ : K → M if κϕ = 0 and for all ψ : L→ M
with ψϕ = 0 the following diagram commutes:

L M N

K

0

ψ

∃! Y

ϕ

κ

This means that any morphism ψ with ψϕ = 0 factors uniquely through the
kernel κ. The dual statement for cokernels state that any morphism ψ with
ϕψ = 0 factors uniquely through the cokernel of ϕ. The specification of the
kernel can be written.

Definition is_kernel (M N K : fpmodule R) (phi : 'Mor(M,N))
(k : 'Mor(K,M)) :=
(k ** phi %= 0) *
forall L (psi : 'Mor(L,M)),
reflect (exists Y, Y ** k %= psi) (psi ** phi %= 0).

We have proved that our definition of kernel satisfies this specification:

Lemma kernelP (M N : fpmodule R) (phi : 'Mor(M,N)) :
is_kernel phi (kernel phi).

We have also proved the dual statement for cokernels. The only properties
left in order to have an abelian category is that every mono- (resp. epi-)
morphism is normal which means that it is the kernel (resp. cokernel) of some
morphism. We have shown that if ϕ is a monomorphism then its cokernel
satisfies the specification of kernels:

Lemma mono_ker (M N : fpmodule R) (phi : 'Mono(M,N)) :
is_kernel (coker phi) phi.

This means that ϕ is a kernel of coker(ϕ) if ϕ is a monomorphism, hence
are all monomorphisms normal. We have also proved the dual statement for
epimorphisms which means that we indeed have an abelian category.

It is interesting to note that many presentations of abelian categories say
that phi is kernel(coker phi), but this is not even well-typed as:

M N C

K

ϕ coker(ϕ)

ker(coker(ϕ))

One cannot just subtract ϕ and ker(coker(ϕ)) as they have different sources.
This abuse of language is motivated by the fact that kernels are limits which

89

5. A Coq Formalization of Finitely Presented Modules

are unique up to unique isomorphism which is why many authors speak of
the kernel of a morphism. However, in order to express this formally we need
to exhibit the isomorphism between M and K explicitly and insert it in the
equation.

Note that if we introduced a notion of submodule, we could have defined
the kernel as a unique submodule of N. The reason is that the type of submod-
ules of N would be the quotient of monomorphisms into N by the equivalence
relation which identifies them up to isomorphism.

5.5 Smith normal form

As mentioned before, it is in general not possible to decide if two presentations
represent isomorphic modules, even when working over coherent strongly
discrete rings. When the underlying ring is a field it is possible to represent
a finite dimensional vector space in a canonical way as they are determined
up to isomorphism by their dimension (i.e. the rank of the underlying matrix)
which can be computed by Gaussian elimination. A generalization of this is
a class of rings, called elementary divisor rings in [Kaplansky, 1949], where any
matrix is equivalent to a matrix in Smith normal form. Recall that a matrix M
is equivalent to a matrix D if there exist invertible matrices P and Q such
that PMQ = D.

Definition 4. A matrix is in Smith normal form if it is a diagonal matrix of the
form:

d1 0 · · · · · · 0
. . .

...
0 dk 0 · · · 0
... 0 0

...
...

...
. . .

...
0 · · · 0 · · · · · · 0

where di | di+1 for all i.

The connection between elementary divisor rings and finitely presented
modules is that the existence of a Smith normal form for the presentation
matrix gives us:

Rm1 Rm0 M 0

Rm1 Rm0 D 0

M

P−1 Q ϕ

D

Now ϕ is an isomorphism as P and Q are invertible. In order to represent
this in Coq we need to represent diagonal matrices. For this we use the func-
tion diag_mx_seq. It is a function that takes two numbers m and n, a list s and
returns a matrix of type 'M[R]_(m,n) where the elements of the diagonal are
the elements of s. It is defined as follows:

90

5.6. Conclusions and future work

Definition diag_mx_seq m n (s : seq R) :=
\matrix_(i < m, j < n) (s`_i *+ (i == j :> nat)).

This means that the i:th diagonal element of the matrix is the i:th element
of the list and the rest are zero. Now if M is a matrix, our algorithm for
computing the Smith normal form should return a list s and two matrices P
and Q such that:

1. s is sorted by division,

2. P *m M *m Q = diag_mx_seq m n s and

3. P and Q are invertible.

Any elementary divisor ring is coherent as the existence of an algorithm
computing Smith normal form implies that we can compute kernels. Elemen-
tary divisor rings are also Bézout domains which means that they are strongly
discrete as well (see section 4.3.3). This means that they provide a suitable in-
stance for the theory of finitely presented modules presented in this paper.

In the next paper these ideas are developed further and we provide in-
stances of elementary divisor rings based on Bézout domains. In particular
we give a proof that Bézout domains of Krull dimension less than or equal
to 1 (e.g. principal ideal domains like Z and k[X] with k a field) are elemen-
tary divisor rings. The reason why we restrict our attention to Krull dimension
less than or equal to 1 is that it is still an open problem whether all Bézout
domains are elementary divisor rings or not [Lorenzini, 2012].

Combining this with finitely presented modules we get a constructive gen-
eralization to the classification theorem of finitely generated modules over
principal ideal domains. This theorem states that any finitely generated R-
module M over a principal ideal domain R can be decomposed into a direct
sum of a free module and cyclic modules, that is, there exists n ∈ N and
nonzero elements d1, . . . , dk ∈ R such that:

M' Rn ⊕ R/(d1)⊕ · · · ⊕ R/(dk)

with the additional property that di | di+1 for 1 6 i < k.
The next paper also presents a formal proof that the Smith normal form

is unique up to multiplication by units for rings with a gcd operation. This
means that for any matrix M equivalent to a diagonal matrix D in Smith
normal form, each of the diagonal elements of the Smith normal form of M
will be associate to the corresponding diagonal element in D. This implies that
the decomposition of finitely presented modules over elementary divisor rings
is unique up to multiplication by units. This also gives a way for deciding if
two finitely presented modules are isomorphic: compute the Smith normal
form of the presentation matrices and then test if they are equivalent up to
multiplication by units.

5.6 Conclusions and future work

In this paper we have presented a formalization of the category of finitely
presented modules over coherent strongly discrete rings and shown that it is

91

5. A Coq Formalization of Finitely Presented Modules

an abelian category. The fact that we can represent everything using matri-
ces makes is possible for us to reuse basic results on these when building the
abstraction layer of modules on top. The division theory of matrices over co-
herent strongly discrete rings makes it straightforward for us to do reasoning
modulo a set of relations.

It is not only interesting that we have an abelian category because it pro-
vides us with a setting to do homological algebra, but also because it is proved
in [Coquand and Spiwack, 2007] that in order to show that abelian groups (and
hence the category of R-modules) form an abelian category in Coq one needs
the principle of unique choice. As our formalization is based on the Mathe-
matical Components hierarchy [Garillot et al., 2009] of algebraic structures, we
inherit a form of axiom of choice in the structure of discrete rings. However,
we speculate that this axiom is in fact not necessary for our proof that the
category of finitely presented modules over coherent strongly discrete rings
is abelian.

In Homotopy Type Theory [Univalent Foundations Program, 2013] there
is a distinction between pre-categories and univalent categories (just called
categories in [Ahrens et al., 2014]). A pre-category is a category where the
collection of morphisms forms a set in the sense of Homotopy Type Theory,
that is, they satisfy the uniqueness of identity proofs principle. Our category
of finitely presented modules satisfy the uniqueness of morphism equivalence
(phi %= psi) proofs (by Hedberg’s theorem [Hedberg, 1998]), but morphisms
form a setoid instead of a set. If we quotiented morphisms by the equivalence
relation on morphisms we would get a set, and thus our category of finitely
presented modules would become a pre-category.

A univalent category on the other hand is a pre-category where the equality
of objects coincides with isomorphism. As we have shown that for elementary
divisor rings there is a way to decide isomorphism, we speculate that we
would also get a univalent category by quotienting modules by isomorphisms.
It would be interesting to develop these ideas further and define the notion of
univalent abelian category and study its properties. Note that in Homotopy
Type Theory, it may be no longer necessary to have the decidability of the
equivalence relation to form the quotient, so we would not need to be in an
elementary divisor ring to get a univalent category.

Since we have shown that we have an abelian category it would now be
very interesting to formally study more complex constructions from homo-
logical algebra. It would for instance be straightforward to define resolutions
of modules. We can then define define the Hom and tensor functors in order
to get derived functors like Tor and Ext. It would also be interesting to define
graded objects like chain complexes and graded finitely presented modules,
and prove that they also form abelian categories.

Acknowledgments: The authors are grateful to Bassel Mannaa for his comments
on early versions of the paper, and to the anonymous reviewers for their help-
ful comments.

92

6

Formalized Linear Algebra
over Elementary Divisor
Rings in Coq

Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg
and Vincent Siles

Abstract. This paper presents a Coq formalization of linear al-
gebra over elementary divisor rings, that is, rings where every
matrix is equivalent to a matrix in Smith normal form. The main
results are the formalization that these rings support essential
operations of linear algebra, the classification theorem of finitely
presented modules over such rings and the uniqueness of the
Smith normal form up to multiplication by units. We present for-
mally verified algorithms computing this normal form on a va-
riety of coefficient structures including Euclidean domains and
constructive principal ideal domains. We also study different
ways to extend Bézout domains in order to be able to compute
the Smith normal form of matrices. The extensions we consider
are: adequacy (i.e. the existence of a gdco operation), Krull di-
mension ≤ 1 and well-founded strict divisibility.

Keywords. Formalization of mathematics, constructive algebra,
Smith normal form, elementary divisor rings, Coq, SSReflect.

6.1 Introduction

The goal of this paper is to develop linear algebra for elementary divisor rings,
that is, rings where there is an algorithm for computing the Smith normal
form of matrices. The algorithms we present for computing this normal form

93

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

can be seen as generalizations of Gaussian elimination that can, in particu-
lar, be defined for the ring of integers. The main source of inspiration for
this work is the formalization of finite-dimensional vector spaces by Georges
Gonthier [Gonthier, 2011] in which spaces are represented using matrices and
all subspace constructions can be elegantly defined from Gaussian elimina-
tion. This enables a concrete and point-free presentation of linear algebra
which is suitable for formalization as it takes advantage of the small scale re-
flection methodology of the SSReflect extension and the Mathematical Com-
ponents library (MathComp) [Gonthier et al., 2008] for the Coq proof assis-
tant [Coq Development Team, 2012]. When generalizing this to elementary
divisor rings there are two essential problems that need to be resolved before
the theory may be formalized:

1. What do we get when we generalize finite-dimensional vector spaces by
considering more general classes of rings than fields as coefficients?

2. What rings are elementary divisor rings?

An answer to the first problem is finitely generated R-modules, i.e. finite-
dimensional vector spaces with coefficients in a general ring instead of a field.
However these are not as well behaved as finite-dimensional vector spaces as
there might be relations among the generators. In other words, not all finitely
generated modules are free. To overcome this, we restrict our attention further
and consider finitely presented modules, which are modules specified by a finite
set of generators and a finite set of relations between these. This class of
modules may be represented concretely using matrices, which in turn means
that we can apply the same approach as in [Gonthier, 2011] and implement all
operations by manipulating the presentation matrices.

A standard answer to the second problem is principal ideal domains like the
ring of integers (denoted by Z) and the ring of univariate polynomials over
a field (denoted by k[x]). The classical definition of principal ideal domains
is integral domains where all ideals are principal (i.e. generated by one ele-
ment). In particular it means that principal ideal domains are Noetherian as
all ideals are finitely generated. Classically this is equivalent to the ascending
chain condition for ideals, however in order to prove this equivalence classi-
cal reasoning is used in essential ways. In fact, if these definitions are read
constructively they are so strong that no ring except the trivial ring satisfies
them [Perdry, 2004]. Principal ideal domains are hence problematic from a
constructive point of view as they are Noetherian.

A possible solution is to restrict the attention to Euclidean domains (which
include both Z and k[x]) and show how to compute the Smith normal form of
matrices over these rings. This approach is appealing as it allows for a simple
definition of the Smith normal form algorithm that resembles the one of Gaus-
sian elimination. While Euclidean domains are important, we would like to
be more general. In order to achieve this we consider an alternative approach
that is customary in constructive algebra: to generalize all statements and not
assume Noetheriannity at all [Lombardi and Quitté, 2011]. If we do this for
principal ideal domains we get Bézout domains, which are rings where every
finitely generated ideal is principal. However, it is an open problem whether all
Bézout domains are elementary divisor rings or not [Lorenzini, 2012]. Hence

94

6.2. Rings with explicit divisibility

we study different assumptions that we can add to Bézout domains in order
to prove that they are elementary divisor rings. The properties we define and
study independently are:

1. Adequacy (i.e. the existence of a gdco operation);

2. Krull dimension ≤ 1;

3. Strict divisibility is well-founded.

The last one can be seen as a constructive approximation to the ascending
chain condition for principal ideals, so this kind of Bézout domains will be
referred to as constructive principal ideal domains.

The main contributions of this paper are the formalization, using the Coq

proof assistant with the SSReflect extension, of:

• Rings with explicit divisibility, GCD domains, Bézout domains, con-
structive principal ideal domains and Euclidean domains (section 6.2);

• An algorithm computing the Smith normal form of matrices with co-
efficients in Euclidean domains and the generalization to constructive
principal ideal domains (section 6.3);

• Linear algebra over elementary divisor rings and the classification the-
orem for finitely presented modules over elementary divisor rings (sec-
tion 6.4);

• Proofs that Bézout domains extended with one of the three proper-
ties above are elementary divisor rings and how these notions are re-
lated (section 6.5).

The paper ends with an overview of related work (section 6.6), followed by
conclusions and future work (section 6.7).

6.2 Rings with explicit divisibility

In this section we recall definitions and basic properties of rings with explicit
divisibility, GCD domains, Bézout domains, constructive principal ideal do-
mains and Euclidean domains.

6.2.1 Rings with explicit divisibility

Throughout the paper all rings are discrete integral domains, i.e. commutative
rings with a unit, decidable equality and no zero divisors. This section is
loosely based on the presentation of divisibility in discrete domains of Mines,
Richman and Ruitenberg in [Mines et al., 1988]. The central notion we consider
is:

Definition 5. A ring R has explicit divisibility if it has a divisibility test that
produces witnesses.

95

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

That is, given a and b we can test if a | b and if this is the case get x such
that b = xa. Two elements a, b ∈ R are associates if a | b and b | a, which is
equivalent to b = ua for some unit u because we have cancellation. Note that
this gives rise to an equivalence relation. This notion will play an important
role later as we will show that the Smith normal form of a matrix is unique
up to multiplication by units, that is, up to associated elements.

A GCD domain is an example of a ring with explicit divisibility:

Definition 6. A GCD domain R is a ring with explicit divisibility in which every
pair of elements has a greatest common divisor, that is, for a, b ∈ R there is gcd(a, b)
such that gcd(a, b) | a, gcd(a, b) | b and ∀g, (g | a) ∧ (g | b)→ g | gcd(a, b).

Note first that we make no restriction on a and b, so they can both be zero. In
this case the greatest common divisor is zero. This makes sense as zero is the
maximum element for the divisibility relation. Note also that as R is assumed
to be a ring with explicit divisibility we get that gcd(a, b) | a means that there
is a′ such that a = a′ gcd(a, b). By Euclid’s algorithm we know that both Z

and k[x] are GCD domains.
With the above definition the greatest common divisor of two elements is

not necessarily unique, e.g. the greatest common divisor of 2 and 3 in Z is
either 1 or −1. But if we consider equality up to multiplication by units (i.e.
up to associatedness) the greatest common divisor is unique, so in the rest
of the paper equality will denote equality up to associatedness when talking
about the gcd.

Most of the rings we will study in this paper are Bézout domains:

Definition 7. A Bézout domain is a GCD domain R such that for any two elements
a, b ∈ R there is x, y ∈ R such that ax + by = gcd(a, b).

Let a and b be two elements in a ring R. If R is a GCD domain we
can compute g = gcd(a, b) together with witnesses to the ideal inclusion
(a, b) ⊆ (g). Further, if R is a Bézout domain we can compute witnesses
for the inclusion (g) ⊆ (a, b) as well. This can be generalized to multiple ele-
ments a1, . . . , an ∈ R to obtain witnesses for the inclusions (a1, . . . , an) ⊆ (g)
and (g) ⊆ (a1, . . . , an) where g is the greatest common divisor of the ai. Bézout
domains can hence be characterized as rings in which every finitely generated
ideal is principal, which means that they are non-Noetherian generalizations
of principal ideal domains.

Note that, on the one hand there exists a′ and b′ such that a = a′ gcd(a, b)
and b = b′ gcd(a, b), and on the other hand we have x and y such that ax +
by = gcd(a, b). Therefore, by dividing with gcd(a, b), we obtain a Bézout
relation between a′ and b′, namely a′x + a′y = 1.

This definition can be extended to give a constructive version of principal
ideal domains. We say that a divides b strictly if a | b but b - a, using this we
can define:

Definition 8. A constructive principal ideal domain is a Bézout domain in which
the strict divisibility relation is well-founded.

By well-founded we mean that any descending chain of strict divisions is
finite. This can be seen as a constructive approximation to the ascending chain

96

6.2. Rings with explicit divisibility

condition for principal ideals and hence to Noetheriannity. Both Z and k[x]
can be proved to be Bézout domains and satisfy the condition of constructive
principal ideal domains. In fact, this can be done for any ring on which the
extended Euclidean algorithm can be implemented. These rings are called
Euclidean domains:

Definition 9. A Euclidean domain is a ring R with a Euclidean normN : R→N

such that for any a ∈ R and nonzero b ∈ R we have N (a) 6 N (ab). Further, for
any a ∈ R and nonzero b ∈ R we can find q, r ∈ R such that a = bq + r and either
r = 0 or N (r) < N (b).

In the case of Z and k[x] we can take respectively the absolute value function
and the degree function as Euclidean norm. The standard division algorithms
for these rings can then be used to compute q and r.

6.2.2 Formalization of algebraic structures

The algebraic structures have been formalized in the same manner as in the
MathComp library [Garillot et al., 2009] using packed classes (implemented
by mixins and canonical structures). We will now discuss the formalization of
these new structures starting with the definition of rings with explicit divisi-
bility:

Inductive div_spec (R : ringType)
(a b : R) : option R -> Type :=

| DivDvd x of a = x * b : div_spec a b (Some x)
| DivNDvd of (forall x, a != x * b) : div_spec a b None.

Record mixin_of R := Mixin {
div : R -> R -> option R;
_ : forall a b, div_spec a b (div a b)

}.

This structure is denoted by DvdRing and for a ring to be an instance it needs
to have a function div that returns an option type, such that if div a b =
Some x then x is the witness that a | b, and if div a b = None then a - b.
The notation used for div a b in the formalization is a %/? b. There is also
a notation for the div function that returns a boolean which is written as a
%| b. This relies on a coercion from option to bool defined in the SSReflect

libraries (mapping None to false and Some x to true for any x). Using this we
have implemented the notion of associatedness, denoted by %=, and the basic
theory of divisibility.

Next we have the GCDDomain structure which is implemented as:

Record mixin_of R := Mixin {
gcdr : R -> R -> R;
_ : forall d a b, (d %| gcdr a b) = (d %| a) && (d %| b)

}.

For a ring to be a GCDDomain it needs to have a gcd function, denoted by gcdr,
satisfying the property above. This property is sufficient as it implies gives
that gcdr a b %| a and gcdr a b %| b since divisibility is reflexive.

The BezoutDomain structure looks like:

97

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

Inductive bezout_spec (R : gcdDomainType)
(a b : R) : R * R -> Type :=

BezoutSpec x y of
gcdr a b %= x * a + y * b : bezout_spec a b (x,y).

Record mixin_of R := Mixin {
bezout : R -> R -> R * R;
_ : forall a b, bezout_spec a b (bezout a b)

}.

Recall that a constructive principal ideal domain is a Bézout domain where
strict divisibility is well-founded. This is denoted by PID and is implemented
by:

Definition sdvdr (R : dvdRingType) (x y : R) :=
(x %| y) && ˜˜(y %| x).

Record mixin_of R := Mixin {
_ : well_founded (@sdvdr R)

}.

The notation x %<| y will be used to denote sdvdr x y. We will see more pre-
cisely in section 6.3.2 how well_founded is defined formally in Coq’s standard
library when we use it to prove the termination of our Smith normal form
algorithm.

We also have the EuclideanDomain structure:

Inductive edivr_spec (R : ringType) (norm : R -> nat)
(a b : R) : R * R -> Type :=

EdivrSpec q r of
a = q * b + r & (b != 0) ==> (norm r < norm b)
: edivr_spec norm a b (q,r).

Record mixin_of R := Mixin {
enorm : R -> nat;
ediv : R -> R -> R * R;
_ : forall a b, a != 0 -> enorm b <= enorm (a * b);
_ : forall a b, edivr_spec enorm a b (ediv a b)

}.

This structure contains the Euclidean norm and the Euclidean division func-
tion together with their proofs of correctness. We have implemented the ex-
tended version of Euclid’s algorithm for Euclidean domains and proved that
it satisfies bezout_spec. Hence we get that Euclidean domains are Bézout do-
mains. We have also proved that any EuclideanDomain is a PID which means
that strict divisibility is well-founded in both Z and k[x].

The relationship between the algebraic structures presented in this section
can be depicted by:

EuclideanDomain ⊂ PID ⊂ BezoutDomain ⊂

GCDDomain ⊂ DvdRing ⊂ IntegralDomain

98

6.3. A verified algorithm for the Smith normal form

where IntegralDomain is already present in the MathComp hierarchy. In the
next section we consider an algorithm for computing the Smith normal form of
matrices over the first two algebraic structures in the chain of inclusions. This
means that these two structures are elementary divisor rings. In section 6.5
we will generalize to Bézout domains of Krull dimension ≤ 1 and adequate
domains that fit in between PID and BezoutDomain in the chain of inclusions.

6.3 A verified algorithm for the Smith normal form

In [Kaplansky, 1949] Kaplansky introduced the notion of elementary divisor
rings as rings where every matrix is equivalent to a matrix in Smith normal
form, that is, given a m× n matrix M there exist invertible matrices P and Q of
size m×m and n× n respectively, such that PMQ = D where D is a diagonal
matrix of the form:

d1 0 · · · · · · 0
. . .

...
0 dk 0 · · · 0
... 0 0

...
...

...
. . .

...
0 · · · 0 · · · · · · 0

with the additional property that di | di+1 for all i.

Let us first explain how we formalized the notion of Smith normal form in
Coq, with the following representation of matrices taken from the MathComp

library:

Inductive matrix R m n := Matrix of {ffun 'I_m * 'I_n -> R}.

Here 'I_m is the type of ordinals (i.e. natural numbers bounded by m) which
has exactly m inhabitants and can be coerced to nat. Matrices are then im-
plemented as finite functions over finite sets of indices, with dependent types
being used to ensure well-formedness. We use the notation 'M[R]_(m,n) for
the type matrix R m n, the notation 'rV[R]_m for the type of row vectors of
length m and the notation 'cV[R]_m for column vectors of height m. The ring R
is often omitted from these notations when it can be inferred from the context.

In order to express that a matrix is in Smith normal form, we define
diag_mx_seq, which rebuilds a diagonal matrix from a list (note that the type
of lists is called seq in the SSReflect library) of diagonal coefficients:

Definition diag_mx_seq m n (s : seq R) :=
\matrix_(i < m, j < n) s`_i *+ (i == j :> nat).

The notation x *+ n, where x belongs to a ring and n is a natural number,
stands for the sum x + . . .+ x iterated n times. In the expression of the gen-
eral coefficients of the matrix above, i and j are ordinals of type 'I_m and
'I_n respectively. The notation i == j :> nat tells Coq to compare them as
natural numbers and returns a boolean. A coercion then sends this boolean

99

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

to a natural number (true is interpreted by 1 and false by 0). Thus s`_i *+
(i == j :> nat) denotes the element of index i in s if i and j have the same
value, 0 otherwise.

Now if M is a matrix, an algorithm for computing the Smith normal form
should return a list s and two matrices P and Q such that:

• The list s is sorted for the divisibility relation.

• The matrix diag_mx_seq m n s is equivalent to M, with transition matri-
ces P and Q.

Which translates formally to an inductive predicate:

Inductive smith_spec R m n (M : 'M[R]_(m,n)) :
'M[R]_m * seq R * 'M[R]_n -> Type :=
SmithSpec P s Q of P *m M *m Q = diag_mx_seq m n s

& sorted %| s
& P \in unitmx
& Q \in unitmx : smith_spec M (P,s,Q).

We have packaged this in the same manner as above in order to represent
elementary divisor rings:

Record mixin_of R := Mixin {
smith : forall m n, 'M[R]_(m,n) -> 'M[R]_m * seq R * 'M[R]_n;
_ : forall m n (M : 'M[R]_(m,n)), smith_spec M (smith M)

}.

In the rest of this section we will see direct proofs that Euclidean domains and
constructive principal ideal domains provide instances of this structure.

6.3.1 Smith normal form over Euclidean domains

We mentioned in the introduction that constructive finite dimensional linear
algebra over a field can be reduced to matrix encodings. Information like the
rank and determinant is then reconstructed from the encoding using Gaussian
elimination, which involves three kinds of operations on the matrix:

1. Swapping two rows (resp. columns)

2. Multiplying one row (resp. column) by a nonzero constant

3. Adding to a row (resp. column) the product of another one by a constant

These three operations are interesting because they are compatible with
matrix equivalence. In particular, they can be expressed as left (resp. right)
multiplication by invertible matrices.

The same algorithm fails to apply in general to a matrix over a ring, since
it may require a division by the pivot, which could be not exact. The content
of this section can thus be seen as a generalization of Gaussian elimination to
Euclidean domains.

To make this extension possible, a new kind of elementary operations
needs to be introduced. Let a and b be elements of a Euclidean domain R.

100

6.3. A verified algorithm for the Smith normal form

Bézout’s identity gives u and v such that ua + vb = γ where γ = gcd(a, b).
Let us note a′ = a

γ and b′ = b
γ , these divisions being exact by definition of the

gcd. We get the identity: ua′ + vb′ = 1. Consider the following square matrix
of size n:

EBezout(a, b, n, k) =

(col. k)

u v
1

. . .
1

(row k) −b′ a′

1
. . .

1

The coefficients not explicitly shown in EBezout are assumed to be zeros. Note
that det(EBezout(a, b, n, k)) = ua′ + vb′ = 1, so in particular the matrix above is
invertible. We formalize these matrices as follows:

Definition combine_mx (a b c d : R) (m : nat) (k : 'I_m) :=
let k' := lift 0 k in
let d := \row_j (a *+ (j == 0) + d *+ (j == k') +

((j != 0) && (j != k'))%:R) in
diag_mx d + c *: delta_mx k' 0 + b *: delta_mx 0 k'.

Definition Bezout_mx (a b : R) (m : nat) (k : 'I_m) :=
let: (_,u,v,a1,b1) := egcdr a b in
combine_mx u v (-b1) a1 k.

For an ordinal i of type 'I_m, lift 0 i represents the ordinal 1 + i of type
'I_(1 + m). The notation \row_(j < m) (r j) corresponds to the row matrix
[r 0, ..., r (m-1)], if the dimension can be automatically inferred then we
can just write \row_j (r j). If b is a boolean, the term b%:R reduces to 1
if b is true, 0 otherwise. The matrix diag_mx d correspond to the diagonal
matrix where diagonal coefficients are the coefficients of the row matrix d, and
delta_mx i j is the matrix which has only zeros except at position (i, j), where
the coefficient is 1. Finally, a *: A is the matrix A multiplied by the scalar a.
Note that the Bézout identity between a and b is given by the function egcdr,
which is exported by the underlying Euclidean ring.

Like other elementary operations, multiplication by EBezout(a, b, n, k) on the
left corresponds to an operation on the rows:

EBezout(a, b, n, k)×

L1
L2
...

Lk−1
Lk

Lk+1
...

Ln

=

uL1 + vLk
L2
...

Lk−1
−b′L1 + a′Lk

Lk+1
...

Ln

101

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

These row operations are described formally by:

Definition combine_step (a b c d : R) (m n : nat)
(M : 'M[R]_(1+m,1+n)) (k : 'I_m) :=

let k' := lift 0 k in
let r0 := a *: row 0 M + b *: row k' M in
let rk := c *: row 0 M + d *: row k' M in
\matrix_i (r0 *+ (i == 0) + rk *+ (i == k') +

row i M *+ ((i != 0) && (i != k'))).

Definition Bezout_step (a b : R) (m n : nat)
(M : 'M[R]_(1+m,1+n)) (k : 'I_m) :=

let: (_,u,v,a1,b1) := egcdr a b in
combine_step u v (-b1) a1 M k.

Here row i M represents the i:th row of M. A lemma connects these row oper-
ations to the corresponding elementary matrices:

Lemma Bezout_stepE a b (m n : nat) (M : 'M[R]_(1+m,1+n)) k :
Bezout_step a b M k = Bezout_mx a b k *m M.

Let M = (ai,j) be a matrix with coefficients in R. We will now show
how to reduce M to its Smith normal form using elementary operations. As
for Gaussian elimination, we start by finding a nonzero pivot g in M, which
is moved to the upper-left corner (if M = 0, M already is in Smith normal
form). We search the first column for an element which is not divisible by
g. Let us assume that g - ak,1, we then multiply the matrix on the left by
EBezout(g, ak,1, n, k):

EBezout(g, ak,1, n, k)×

g L1
a2,1 L2

...
...

ak,1 Lk
...

...
an,1 Ln

=

γ uL1 + vLk
a2,1 L2

...
−g′g + a′ak,1 −g′L1 + a′Lk

...
...

an,1 Ln

with the Bézout identity ug + vak,1 = γ = gcd(g, ak,1) and posing as previ-
ously g′ = g

γ , we have a′ = ak,1
γ .

By definition of γ, we have: γ | −g′g + a′ak,1. Moreover, all the coefficients
in the first column of M which were divisible by g are also by γ. We can
therefore repeat this process until we get a matrix whose upper-left coefficient
(which we still name g) divides all the coefficients in the first column. Linear
combinations on rows can thence lead to a matrix B of the following shape:

B =

g b1,2 · · · b1,n

g
...

...

...
...

...
g bm,2 · · · bm,n

102

6.3. A verified algorithm for the Smith normal form

We then search the indicated submatrix of B for an element that is not
divisible by g. If such a coefficient bi,j is found, it is moved to the top by
permuting rows 1 and i. Thus g is still the upper-left coefficient1 and multi-
plications on the right by EBezout matrices allow, like previously, to obtain a
matrix whose upper-left coefficient divides all the others.

This first step is implemented by the function improve_pivot_rec:

1 Fixpoint improve_pivot_rec k {m n} :
2 'M[R]_(1 + m) -> 'M[R]_(1 + m, 1 + n) -> 'M[R]_(1 + n) ->
3 'M[R]_(1 + m) * 'M[R]_(1 + m, 1 + n) * 'M[R]_(1 + n) :=
4 match k with
5 | 0 => fun P M Q => (P,M,Q)
6 | p.+1 => fun P M Q =>
7 let a := M 0 0 in
8 if find1 M a is Some i then
9 let Mi0 := M (lift 0 i) 0 in

10 let P := Bezout_step a Mi0 P i in
11 let M := Bezout_step a Mi0 M i in
12 improve_pivot_rec p P M Q
13 else
14 let u := dlsubmx M in let vM := ursubmx M in
15 let vP := usubmx P in
16 let u' := map_mx (fun x => 1 - odflt 0 (x %/? a)) u in
17 let P := col_mx (usubmx P) (u' *m vP + dsubmx P) in
18 let M := block_mx a%:M vM
19 (const_mx a) (u' *m vM + drsubmx M) in
20 if find2 M a is Some (i,j) then
21 let M := xrow 0 i M in let P := xrow 0 i P in
22 let a := M 0 0 in
23 let M0ij := M 0 (lift 0 j) in
24 let Q := (Bezout_step a M0ij QˆT j)ˆT in
25 let M := (Bezout_step a M0ij MˆT j)ˆT in
26 improve_pivot_rec p P M Q
27 else (P, M, Q)
28 end.

If A, B, C and D are four matrices (with matching dimensions) then the matrix
block_mx A B C D is:

M =

[
A B
C D

]
with submatrices denoted by A = ulsubmx M, B = ursubmx M, C = dlsubmx

M and D = drsubmx M. Similarly C = col_mx A B is a column matrix with
submatrices A = usubmx C and B = dsubmx C (the functions for constructing
and destructing row matrices have similar names). The matrix const_mx a is
the matrix where each coefficient is equal to a and xrow i j M is the matrix M
with the rows i and j exchanged.

1This trick has been inspired to the authors by a proof-oriented formalization of a similar
algorithm by Georges Gonthier.

103

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

The function improve_pivot_rec takes as arguments a natural number k
that represents the number of remaining steps, the original matrix and two
current transition matrices. If the number of remaining steps is zero, the
matrices are returned unchanged (line 5). If not, the first column is searched
for an element that is not divisible by the pivot (function find1, line 8). If such
an element is found on a row of index i, a Bézout step is performed between
the first row and the one of index i, and the function is called recursively
(lines 9 to 12). If, on the contrary, the pivot divides all the elements in the first
column, some linear combinations (lines 14 to 19) bring us back to a matrix of
the shape of the matrix B seen above. Finally, the remaining lines search the
whole matrix for an element that is not divisible by the pivot (function find2),
perform a Bézout step on the columns if appropriate, and call the function
recursively.

We have made several choices when implementing this function. First, the
argument k bounding the number of steps makes it easy to have a structural
recursion (this natural number decreases by 1 at each step). In this usual
technique, k is often called the fuel of the recursion. The flip side is that in
order to call the function, an a priori bound on the number of steps has to be
provided. It is at this point that the hypothesis we made that R is a Euclidean
domain comes in handy: we can take as a bound the Euclidean norm of the
upper-left coefficient of the original matrix.

We also chose to abstract over initial transition matrices, which are updated
as the process goes on. From a computational standpoint, this approach has
two benefits. First, it avoids the need for products by transition matrices,
asymptotically more costly than to perform the elementary operations directly.
Then, it makes the function improve_pivot_rec tail-recursive, which can have
a good impact on performance.

The flip side is that it is slightly more difficult to express and manipulate
formally the link between the matrices taken as arguments and those returned
by the function. Indeed, the specification of this function involves inverses of
transition matrices:

Inductive improve_pivot_rec_spec m n P M Q :
'M[R]_(1+m) * 'M[R]_(1+m,1+n) * 'M[R]_(1+n) -> Type :=
ImprovePivotRecSpec P' M' Q' of

Pˆ-1 *m M *m Qˆ-1 = P'ˆ-1 *m M' *m Q'ˆ-1
& (forall i j, M' 0 0 %| M' i j)
& (forall i, M' i 0 = M' 0 0)
& M' 0 0 %| M 0 0
& P' \in unitmx
& Q' \in unitmx : improve_pivot_rec_spec P M Q (P',M',Q').

The statement above can be read as follows: given three matrices P, M and Q,
a triple (P',M',Q') satisfies the specification if applying to M the inverse of
elementary operations represented by the initial transition matrices P and Q
gives the same result as applying the inverses of the transition matrices P'
and Q' to M'.

The correctness lemma of the function improve_pivot_rec states that for
an initial matrix M whose upper-left coefficient is nonzero and has a norm
smaller than a natural number k, and for invertible matrices P and Q, the triple

104

6.3. A verified algorithm for the Smith normal form

returned by improve_pivot_rec k P M Q satisfies the specification represented
by improve_pivot_rec_spec:

Lemma improve_pivot_recP k m n
(P : 'M[R]_(1+m)) (M : 'M[R]_(1+m,1+n)) (Q : 'M[R]_(1+n)) :
enorm (M 0 0) <= k -> M 0 0 != 0 ->
P \in unitmx -> Q \in unitmx ->
improve_pivot_rec_spec P M Q (improve_pivot_rec k P M Q).

Initially, we call the function improve_pivot_rec with identity transition ma-
trices:

Definition improve_pivot k m n (M : 'M[R]_(1 + m, 1 + n)) :=
improve_pivot_rec k 1%:M M 1%:M.

By successive subtractions of the first row from all the others and then by
linear combinations of columns, we get a matrix C:

C =

g 0 · · · 0
0
... C′

0

where g divides all coefficients of C′.

The global algorithm computing the Smith normal form proceeds as fol-
lows: it stores the pivot g obtained after the previous step, then divides all
coeficients of C′ by g and is applied recursively to the resulting matrix. Let us
pose k = min(m, n). From the pivots g1, . . . , gk obtained, the final output of
the algorithm is given by the following sequence d1, . . . , dk:

d1, d2, . . . , dk = g1, g1g2, . . . ,
k

∏
i=1

gi

The Smith normal form of the original matrix is then the following diagonal
matrix of size m× n:

d1
d2

. . .
dk

0
. . .

0

This global procedure is implemented by the function Smith :

1 Fixpoint Smith m n : 'M[R]_(m,n) ->
2 'M[R]_(m) * seq R * 'M[R]_(n) :=
3 match m, n with
4 | _.+1, _.+1 => fun M : 'M[R]_(1 + _, 1 + _) =>
5 if find_pivot M is Some (i, j) then

105

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

6 let a := M i j in let M := xrow i 0 (xcol j 0 M) in
7 let: (P,M,Q) := improve_pivot (enorm a) M in
8 let a := M 0 0 in
9 let u := dlsubmx M in let v := ursubmx M in

10 let v' := map_mx (fun x => odflt 0 (x %/? a)) v in
11 let M := drsubmx M - const_mx 1 *m v in
12 let: (P',d,Q') :=
13 Smith (map_mx (fun x => odflt 0 (x %/? a)) M) in
14 (lift0_mx P' *m block_mx 1 0 (- const_mx 1) 1 *m
15 xcol i 0 P,
16 a :: [seq x * a | x <- d],
17 xrow j 0 Q *m block_mx 1 (- v') 0 1 *m lift0_mx Q')
18 else (1%:M, [::], 1%:M)
19 | _, _ => fun M => (1%:M, [::], 1%:M)
20 end.

If M has type 'M[R]_n then lift0_mx M = block_mx 1 0 0 M which has the type
'M[R]_(1 + n). The notation [seq f x | x <- xs] is like a list comprehension
in Haskell and means map f xs.

The function Smith takes as argument a matrix and returns a sequence
made of the nonzero diagonal coefficients of its Smith form, as well as the
corresponding transition matrices. The first step (lines 5 and 6) consists in
searching for a nonzero pivot in the whole matrix and moving it in the upper-
left position. If no pivot is found, all the coefficients are zero and an empty
sequence is therefore returned. Otherwise, the function improve_pivot de-
fined previously is called (line 7), then some elementary row operations are
performed (lines 9 to 11) to get a matrix of the shape of the matrix C shown
above. The bottom-right submatrix is then divided by the pivot and a re-
cursive call is performed (lines 12 and 13). The sequence of coefficients and
transition matrices obtained are then updated (lines 14 to 17).

We have stated and proved the following correctness lemma:

Lemma SmithP m n (M : 'M[R]_(m,n)) : smith_spec M (Smith M).

Using this we have instantiated the structure of elementary divisor rings on
Euclidean domains.

6.3.2 Extension to principal ideal domains

We mentioned in section 6.2 that constructive principal ideal domains were
Bézout domains with a well-founded divisibility relation. Well-foundedness is
defined in Coq’s standard library using an accessibility predicate [Nordström,
1988]:

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=
Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x.

The idea is that all objects of the inductive type Acc have to be built by a finite
number of applications of the constructor Acc_intro. Hence, for any a such
that Acc R a, all chains (xn) such that R xn+1 xn and x0 = a have to be finite.
Note however that there can be infinitely many elements x such that R x a.

106

6.3. A verified algorithm for the Smith normal form

Using this definition of accessibility, we can now state that a relation over a
type A is well-founded if all elements in A are accessible:

Definition well_founded (A : Type) (R : A -> A -> Prop) :=
forall a, Acc R a.

Remember that in the previous section, we used the hypothesis that the
ring of coefficients was Euclidean when we computed an a priori bound on the
number of steps the function improve_pivot needed to perform. To extend the
algorithm to principal ideal domains, we replace the recursion on this bound
with a well-founded induction on the divisibility relation.

Fixpoint improve_pivot_rec m n (P : 'M_(1 + m))
(M : 'M_(1 + m, 1 + n)) (Q : 'M_(1 + n))
(k : Acc (@sdvdr R) (M 0 0)) :
'M_(1 + m) * 'M_(1 + m, 1 + n) * 'M_(1 + n) :=

match k with Acc_intro IHa =>
if find1P M (M 0 0) is Pick i Hi then
let Ai0 := M (lift 0 i) 0 in
let P := Bezout_step (M 0 0) Ai0 P i in
improve_pivot_rec P Q (IHa _ (sdvd_Bezout_step Hi))

else
let u := dlsubmx M in let vM := ursubmx M in
let vP := usubmx P in
let u' := map_mx (fun x => 1 - odflt 0 (x %/? M 0 0)) u in
let P := col_mx (usubmx P) (u' *m vP + dsubmx P) in
let A := block_mx (M 0 0)%:M vM (const_mx (M 0 0))

(u' *m vM + drsubmx M) in
if find2P A (M 0 0) is Pick (i,j) Hij then
let A := xrow 0 i A in
let P := xrow 0 i P in
let a := A 0 0 in
let A0j := A 0 (lift 0 j) in
let Q := (Bezout_step a A0j QˆT j)ˆT in
improve_pivot_rec P Q (IHa _ (sdvd_Bezout_step2 Hij))

else (P, A, Q)
end.

The main difference with the improve_pivot_rec function defined in sec-
tion 6.3.1 is that we need to prove that the upper-left element of the matrix on
which we make the recursive call is strictly smaller than the one of the orig-
inal matrix. To build these proofs, we use the functions find1P and find2P
which have more expressive (dependent) types than their counterparts find1
and find2 that we used previously. They return not only an element of the
matrix given as argument, but also a proof that the pivot does not divide this
element.

This proof is then used to show that the upper-left coefficient of the matrix
decreases, thanks to the following two lemmas:

Lemma sdvd_Bezout_step m n (M : 'M[R]_(1+m,1+n)) (k : 'I_m) :
˜˜ (M 0 0 %| M (lift 0 k) 0) ->
(Bezout_step (M 0 0) (M (lift 0 k) 0) M k) 0 0 %<| M 0 0.

107

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

Lemma sdvd_Bezout_step2 m n i j u' vM (M : 'M[R]_(1+m,1+n)) :
let B : 'M[R]_(1 + m, 1 + n) :=

block_mx (M 0 0)%:M vM (const_mx (M 0 0))
(u' *m vM + drsubmx M) in

let C := xrow 0 i B in
˜˜ (M 0 0 %| B i (lift 0 j)) ->
(Bezout_step (C 0 0) (C 0 (lift 0 j)) CˆT j)ˆT 0 0 %<|
M 0 0.

Now, to define the improve_pivot function, we use the hypothesis sdvdr_wf
that the divisibility relation is well-founded:

Definition improve_pivot m n (M : 'M[R]_(1 + m, 1 + n)) :=
improve_pivot_rec 1 1 (sdvdr_wf (M 0 0)).

The function Smith of section 6.3.1 is essentially unchanged, the only dif-
ference being that we removed the first argument of improve_pivot (which
was a bound on the number of steps of improve_pivot_rec).

We have in this section shown how to compute the Smith normal form
on Euclidean domains and more generally on constructive principal ideal do-
mains. In the next section, we will explain how to develop a constructive
theory of linear algebra based on the existence of such an algorithm.

6.4 Elementary divisor rings

The goal of this section is to develop some theory about linear algebra over
elementary divisor rings and discuss the formalization of the classification
theorem for finitely presented modules over these rings.

6.4.1 Linear algebra over elementary divisor rings

One of the key operations in linear algebra is to compute solutions to systems
of equations. A suitable algebraic setting for doing so is rings where every
finitely generated ideal is finitely presented. These rings are called coherent:

Definition 10. A ring is coherent if for any matrix M it is possible to compute a
matrix L such that:

XM = 0 ↔ ∃Y. X = YL

This means that L generates the module of solutions of XM = 0, i.e. that
L generates the kernel of M. The notion of coherent rings is usually not
mentioned in classical presentations of algebra since Noetherian rings are au-
tomatically coherent, but in a computationally meaningless way. It is how-
ever a fundamental notion, both conceptually [Lombardi and Quitté, 2011;
Mines et al., 1988] and computationally [Barakat and Lange-Hegermann, 2011;
Barakat and Robertz, 2008]. The formalization of coherent rings have already
been presented in section 4.2 , so we will not discuss the details of this here.
Instead we show that elementary divisor rings are coherent.

108

6.4. Elementary divisor rings

Let M be a m × n matrix with coefficients in an elementary divisor ring.
There are invertible matrices P and Q such that PMQ = D where D is a
diagonal matrix in Smith normal form. The rank of M, denoted r(M), is the
number of nonzero elements of D. The kernel of M can be computed by:

ker(M) = (Im − Ir(M))P

where Im is a m × m identity matrix and Ir(m) is a m × m partial identity
matrix with r(M) ones on the diagonal and then zeros. The idea behind this
definition is that:

0
. . . 0

0
1

0
. . .

1

d1
. . . 0

dk
0

0
. . .

0

= 0

So ker(M)MQ = 0 and since Q is invertible, we have ker(M)M = 0. We
can implement the rank operator and state its correctness by:

Definition mxrank m n (M : 'M[R]_(m,n)) :=
let: (P,d,Q) := smith M in size [seq x <- d | x != 0].

Definition kermx m n (M : 'M[R]_(m,n)) : 'M[R]_m :=
let: (P,d,Q) := smith M in copid_mx (mxrank M) *m P.

Lemma kermxP m n (M : 'M[R]_(m,n)) (X : 'rV[R]_m) :
reflect (exists Y, X = Y *m kermx M) (X *m M == 0).

where copid_mx corresponds to the partial identity matrix. The reflect state-
ment should be read as: the boolean equality X *m M == 0 holds if and only if
there exists Y : 'rV[R]_m such that X = Y *m kermx M.

An algorithm computing the cokernel of a matrix can be implemented in a
similar fashion. This way we have implemented a small library inspired by the
library of matrix algebra for fields of MathComp [Gonthier, 2011], but based
on Smith normal form instead of Gaussian elimination.

Another important notion in constructive algebra is strongly discrete rings:

Definition 11. A ring is strongly discrete if membership in finitely generated ideals
is decidable and if whenever x ∈ (x1, . . . , xn), there exists y1, . . . , yn such that x =
∑i xiyi.

If a ring is both coherent and strongly discrete it is not only possible to
solve homogeneous systems of equations but also arbitrary systems of the
kind XM = B where X is a m× n matrix, M a n× k matrix and B a nonzero
m× k matrix.

It is easy to see that Bézout domains are strongly discrete as any finitely
generated ideal is principal. To test if x ∈ (a1, . . . , an) first compute a principal
ideal (g) equivalent to (a1, . . . , an) and then test if g | x. If this is the case we
may construct the witness and otherwise we know that x /∈ (a1, . . . , an).

109

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

It is also straightforward to prove that any elementary divisor ring is a
Bézout domain. Given a, b ∈ R we can compute the Smith normal form of a
row matrix containing a and b. This gives us an invertible 1× 1 matrix P, an
invertible 2× 2 matrix Q, and g ∈ R such that:

P
[
a b

]
Q =

[
g 0

]
As P and Q are invertible we get that g is the greatest common divisor of a

and b. The Bézout coefficients are then found by performing the matrix mul-
tiplications on the left-hand side of the equality. Hence, as Bézout domains
are strongly discrete (see section 4.3.3), we get that elementary divisor rings
are not only coherent but also strongly discrete. Note that this gives an al-
ternative proof that elementary divisor rings are coherent, however the proof
presented above using the Smith normal form is more direct as we don’t have
to go through the intersection of finitely generated ideals.

In section 6.5 we consider extensions to Bézout domains that make them
elementary divisor rings and hence form a good setting for doing linear alge-
bra. The next subsection shows that the existence of an algorithm for comput-
ing the Smith normal form makes finitely presented modules over elementary
divisor rings especially well-behaved.

6.4.2 Finitely presented modules and elementary divisor rings

Recall that a module is said to be finitely presented if it can be described using
a finite set of generators and a finite set of relations among these. A convenient
way to express this is:

Definition 12. An R-moduleM is finitely presented if there is an exact sequence:

Rm1 Rm0 M 0M π

This means that π is a surjection and M a matrix representing the m1 rela-
tions among the m0 generators of the moduleM. Another way to think ofM
is as the cokernel of M, that is, M ' coker(M) = Rm0 / im(M). So a module
has a finite presentation if it can be expressed as the cokernel of a matrix. As
all information of finitely presented modules is contained in its presentation
matrix we get that all algorithms on finitely presented modules can be de-
scribed by manipulating the presentation matrices [Decker and Lossen, 2006;
Greuel and Pfister, 2007; Lombardi and Quitté, 2011].

A morphism ϕ between finitely presented modules M and N given by
presentations:

Rm1 Rm0 M 0 Rn1 Rn0 N 0M N

is represented by a m0 × n0 matrix ϕG and a m1 × n1 matrix ϕR such that the
following diagram commutes:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

ϕR ϕG ϕ

N

110

6.4. Elementary divisor rings

The intuition why two matrices are needed is that the morphism affects
both the generators and relations of the modules, hence the names ϕG and ϕR.
In this paper we adopt the SSReflect convention that composition is read in
diagrammatic order (i.e. from left to right) when writing equations obtained
from commutative diagrams. This means that the equation related to the
above diagram is written MϕG = ϕRN.

In order for us to be able to compute kernels of morphisms we need to
assume that the underlying ring is coherent so that we can solve systems of
equations involving the underlying matrices. If the underlying ring is also
strongly discrete, it is possible to represent morphisms using only ϕG and a
proof that ∃X. XN = MϕG as any system of equations of the kind XM = B
is solvable. In the previous paper of the thesis the formalization of finitely
presented modules over coherent and strongly discrete rings is presented.

It is in general not possible to decide if two finitely presented modules are
isomorphic or not. However, if the underlying ring is an elementary divisor
ring, it becomes possible. Indeed, let R be an elementary divisor ring and
M be a m1 × m0 matrix presenting an R-module M. As M is equivalent to
a diagonal matrix D, there are invertible matrices P and Q such that MQ =
P−1D. This gives a commutative diagram:

Rm1 Rm0 M 0

Rm1 Rm0 D 0

M

P−1 Q ϕ

D

We can further prove that ϕ is an isomorphism as P and Q are invertible,
and hence get that M ' D ' coker(D). Now, since D is a diagonal matrix
with nonzero elements d1, . . . , dn ∈ R on the diagonal, we get that:

M' Rm0−n ⊕ R/(d1)⊕ · · · ⊕ R/(dn) (6.1)

with the additional property that di | di+1 for all 1 6 i < n. Note that if di
is a unit then R/(di) ' 0. This means that the theory of finitely presented
modules over elementary divisor rings R is particularly well-behaved as any
finitely presented R-moduleM can be decomposed into a direct sum of a free
module and cyclic modules. This is the first part of the classification theorem
for finitely presented modules over elementary divisor rings, the second part
is the fact that the di are unique up to multiplication by units which makes
the decomposition unique.

The uniqueness part is also necessary in order to get a decision procedure
for the isomorphism of finitely presented modules over elementary divisor
rings. So far we only know that any module may be decomposed as above,
but there is, a priori, no reason why two isomorphic modules should have
related decompositions.

In the next section we will see that the Smith normal form is unique up to
multiplication by units if the underlying ring has a gcd operation, which in
turn completes the classification theorem and gives us a decision procedure
for module isomorphism.

111

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

6.4.3 Uniqueness of the Smith normal form

The formal proof that the Smith normal form is unique up to multiplication by
units presented here is based on [Cano and Dénès, 2013]. In order to formalize
this proof we need to represent minors (determinants of submatrices) in Coq.
This notion was defined in section 3.4, but we recall it here again:

Definition submatrix m n p q (f : 'I_p -> 'I_m)
(g : 'I_q -> 'I_n) (M : 'M[R]_(m,n)) : 'M[R]_(p,q) :=
\matrix_(i < p, j < q) M (f i) (g j).

Definition minor m n p (f : 'I_p -> 'I_m) (g : 'I_p -> 'I_n)
(M : 'M[R]_(m,n)) : R := \det (submatrix f g M).

For example, the rows (resp. columns) of the submatrix M(f , g) are the
rows (resp. columns) f (0), f (1), ... (resp. g(0), g(1), ...) of M. It would be nat-
ural to define submatrices only when f and g are strictly increasing, however
this is not necessary as many theorems are true for arbitrary functions. We
denote p in the definition of minor above as the order of the minor, that is, a
minor of order p is the determinant of a submatrix of dimension p× p.

The key result in order to prove the uniqueness theorem for the Smith
normal form is that the product of the k first elements of the diagonal in the
Smith normal form is associated to the gcd of the minors of order k of the
original matrix. More precisely, let M be the original matrix and di the i:th
element of the diagonal in the Smith normal form of M, also let −→m k be the
minors of order k of M, then the statement is:

k

∏
i=1

di = gcd(−→m k)

Using the big operators library of MathComp [Bertot et al., 2008] this can be
expressed compactly as:

Lemma Smith_gcdr_spec :
\prod_(i < k) d`_i %=
\big[gcdr/0]_f \big[gcdr/0]_g minor f g M.

The order of the minors that we consider are given by the types of f and
g. For the sake of readability, we have omitted these types.

The first step in proving this is by showing that it holds for the Smith
normal form of M, namely the diagonal matrix D. Since it is a diagonal
matrix, the only nonzero minors of order k are the determinants of diagonal
matrices of dimension k× k, that are products of k elements of the diagonal of
D. Also, since each element of the diagonal divides the next one, the greatest
common divisor of the minors of order k is the product of the k first elements
of the diagonal. For example, if the diagonal is (a, b, c) with a | b and b | c
then gcd(ab, bc, ac) = ab.

The next step is to prove that the gcd of the minors of order k of M are
associated to the gcd of the minors of D (which we already know is associated
to the product of the elements on the diagonal). To prove this it suffices to
show that these two divide each other, as the proofs in both directions are

112

6.4. Elementary divisor rings

very similar we only show that the gcd of the minors of order k of M divides
the gcd of the minors of order k of D.

By definition, x divides gcd(−→y) if and only if x divides every y in −→y .
So we must show that the gcd of the minors of order k of M divides each
minor of order k of the diagonal matrix D. Now, there are invertible matrices
P and Q such that PMQ = D. Hence we must show that gcd(−→m k) divides
det((PMQ)(f , g)) for all f and g. The right-hand side is the determinant of a
product of matrices of different sizes whose product is square, which can be
simplified with the Binet-Cauchy formula:

det(MN) = ∑
I∈P({1,...,l})

#|I|=k

det(MI)det(NI)

where M is a k× l matrix and N is a l × k matrix. MI (resp. NI) is the matrix
of the k columns (resp. rows) with indices in I.

The formalization of this formula builds on the work in the third paper
and follows the proof presented in [Zeng, 1993]. Note that the standard de-
terminant identity for products of square matrices of the same size follows as
a special case of the above formula. Once again the theorem can be expressed
compactly using the big operators of SSReflect:

Lemma BinetCauchy :
\det (M *m N) = \sum_(f : {ffun 'I_k -> 'I_l} | strictf f)

((minor id f M) * (minor f id N)).

Here the sum is taken over all strictly increasing functions from {1, . . . , k}
to {1, . . . , l}. We require the functions to be strictly increasing so that the
minors that we consider in the sum correspond to the mathematical concept
of minor.

This theorem makes enables us to transform det((PMQ)(f , g)) to a sum
of minors and, once again, it suffices to show that gcd(−→m k) divides each of
the summands. Hence, after some simplifications, we must show that for all h
and i we have:

\big[gcdr/0]_f \big[gcdr/0]_g minor f g M %| minor h i M

which is true by definition of the gcd. Note that it is not necessary to require
that f and g are strictly increasing. Indeed, if they are not, there are two cases:

• Either f or g is not injective and so minor f g M = 0.

• If both f and g are injective there exist permutations r and s such that
f' = f \o r and g' = g \o s are strictly increasing. As the permuta-
tion of rows or columns of a matrix just leads to the determinant being
multiplied by the signature of the permutation we get minor f g M %=
minor f' g' M.

But for all a we have gcd(a, 0) = a and gcd(a, a) = a, so in each case the terms
corresponding to the minors obtained from not strictly increasing f and g does
not change the value of the gcd of the minors.

Now if the above result is applied with k = 1, the uniqueness of the first
diagonal element is proved, and then by induction all of the diagonal elements

113

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

are showed to be unique (up to multiplication by units). This means that for
any matrix M equivalent to a diagonal matrix D in Smith normal form, each of
the diagonal elements of the Smith normal form of M will be associate to the
corresponding diagonal element in D. The uniqueness of the Smith normal
form is expressed formally as follows:

Lemma Smith_unicity m n (M : 'M[R]_(m,n)) (d : seq R) :
sorted %| d -> equivalent M (diag_mx_seq m n d) ->
forall i, i < minn m n -> (smith_seq M)`_i %= d`_i.

Hence we have proved that the Smith normal form is unique up to mul-
tiplication by units. This gives a test to know if two matrices are equivalent.
Indeed, since the Smith normal form of a matrix is equivalent to it, two matri-
ces are equivalent if and only if they have the same normal form. Moreover,
we know that the decomposition in equation (6.1) is unique up to multiplica-
tion by units. Hence we get am algorithm for deciding if two finitely presented
modules are isomorphic or not: compute the Smith normal form of the pre-
sentation matrices and then test if they are equivalent up to multiplication by
units.

This concludes the classification theorem for finitely presented modules
over elementary divisor rings. It can be seen as a constructive version of
the classification theorem for finitely generated modules over principal ideal
domains. Classical proofs of this use the fact that a principal ideal domain
R is Noetherian which implies that any R-module is coherent, i.e. that any
finitely generated module is also finitely presented. But this proof has no
computational content (see exercise 3 in chapter III.2 of [Mines et al., 1988]),
so instead we have to restrict to finitely presented modules. In section 6.3.2 we
showed that constructive principal ideal domains are elementary divisor rings
which gives us the classical result in the case of finitely presented modules. In
the next section we will prove that more general classes of rings than principal
ideal domains are elementary divisor rings which gives more instances of the
classification theorem.

6.5 Extensions to Bézout domains that are elemen-
tary divisor rings

As mentioned in the introduction, it is an open problem whether all Bézout
domains are elementary divisor rings or not. In order to overcome this, we
study different properties that we can extend Bézout domains with to make
them elementary divisor rings. The properties we define and discuss in this
section are:

1. Adequacy (i.e. the existence of a gdco operation);

2. Krull dimension ≤ 1;

3. Strict divisibility is well-founded (constructive principal ideal domains).

We have already considered the last one of these in section 6.3.2, but here
we formalize an alternative proof that constructive principal ideal domains

114

6.5. Extensions to Bézout domains that are elementary divisor rings

are elementary divisor rings, using a reduction due to Kaplansky [Kaplansky,
1949]. It consists in first simplifying the problem of computing Smith normal
form for m × n matrices to the 2× 2 case and then showing that any 2× 2
matrix over a Bézout domain R has a Smith normal form if and only if R
satisfies the “Kaplansky condition”. This means that it suffices for us to prove
that the three different extensions all imply this condition in order to show
that they are elementary divisor rings.

6.5.1 The Kaplansky condition

The reduction of the computation of Smith normal form of arbitrary m × n
matrices to 2× 2 matrices is done by extracting an algorithm from the proof
of theorem 5.1 in [Kaplansky, 1949]. The formalization is done by first imple-
menting this algorithm, called smithmxn, computing the Smith normal form of
arbitrary sized matrices assuming an operation computing it for 2× 2 matrices
and then proving that this algorithm satisfies smith_spec:

Lemma smithmxnP :
forall (smith2x2 : 'M[R]_2 -> 'M[R]_2 * seq R * 'M[R]_2),
(forall (M : 'M[R]_2), smith_spec M (smith2x2 M)) ->
forall m n (M : 'M[R]_(m,n)),
smith_spec M (smithmxn smith2x2 M).

This algorithm has no assumptions on the underlying ring except that it is
an integral domain. It can be generalized to arbitrary commutative rings but
then we also need to be able to put 1× 2 and 2× 1 matrices in Smith normal
form.

In order to explain the reduction to the Kaplansky condition consider a
2× 2 matrix [

a b
c d

]
with coefficients in a Bézout domain. We can compute g = gcd(a, c) and
a′ and c′ such that a = a′g and c = c′g. We also have u and v such that
ua′ + vc′ = 1. Using this we can form:[

u v
−c′ a′

] [
a b
c d

]
=

[
ua + vc ub + vd
−c′a + a′c −c′b + a′d

]
=

[
ua + vc ub + vd

0 −c′b + a′d

]
So it suffices to consider matrices of the following shape:[

a b
0 c

]
and without loss of generality we can assume that gcd(a, b, c) = 1. Now, such
a matrix has a Smith normal form if and only if it satisfies the Kaplansky
condition: for all a, b, c ∈ R with gcd(a, b, c) = 1 there exist p, q ∈ R with
gcd(pa, pb + qc) = 1.

115

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

The interesting step for the reduction is the right to left direction of the “if
and only if”, so let us sketch how it is proved: assume that R is a Bézout do-
main that satisfies the Kaplansky condition and consider an upper triangular
matrix with elements a, b and c with gcd(a, b, c) = 1. From the Kaplansky
condition we get p and q such that gcd(pa, pb + qc) = 1. This means that we
also have x1 and y1 such that pax1 + (pb + qc)y1 = 1. By reorganizing this we
get p(ax1 + by1) + qcy1 = 1, let x = ax1 + by1 and y = cy1. We can form the
product: [

p q
−y x

] [
a b
0 c

] [
x1 pb + qc
y1 −pa

]
=

[
1 0
0 −ac

]
In order to formalize this proof we assume that we have an operation

taking a, b and c computing p and q satisfying the Kaplansky condition:

Variable kap : R -> R -> R -> R * R.

Hypothesis kapP : forall (a b c : R), gcdr a (gcdr b c) %= 1 ->
let: (p,q) := kap a b c in coprimer (p * a) (p * b + q * c).

We then define a function kapW : R -> R -> R -> R * R to extract the two
witnesses x1 and y1 from above, i.e. x1 and y1 such that x1 pa+ y1(pb+ qc) = 1.
To do this we first prove:

Lemma coprimerP (a b : R) :
reflect (exists (xy : R * R), xy.1 * a + xy.2 * b = 1)

(coprimer a b).

and we can then define a function computing (x1, y1) by turning the existential
statement in coprimerP into a Σ-type (i.e. a dependent pair). More precisely,
we have defined it by:

Definition kapW a b c : R * R :=
let: (p,q) := kap a b c in
if coprimerP (p * a) (p * b + q * c) is ReflectT P

then projT1 (sig_eqW P) else (0,0).

Here sig_eqW is a function from the SSReflect library that transforms our
existential statement into a Σ-type, the first component of the resulting Σ-
type is then extracted using projT1. This is possible because R is taken to be
an SSReflect “choice type”, i.e. a type with a choice operator.

Once we have defined kapW, we can easily write the function computing
Smith normal form of 2× 2 matrices, called kap_smith, and prove that it sat-
isfies smith_spec:

Definition kap_smith (M : 'M_2) : 'M[R]_2 * seq R * 'M[R]_2 :=
let A := Bezout_step (M 0 0) (M 1 0) M 0 in
let a00 := A 0 0 in let a01 := A 0 1 in let a11 := A 1 1 in
let: (d,_,_,_,a,b,c) := egcdr3 a00 a01 a11 in
if d == 0 then (Bezout_mx (M 0 0) (M 1 0) 0,[::],1%:M) else
let: (p,q) := kap a b c in
let: (x1,y1) := kapW a b c in
let: (x,y) := (a * x1 + y1 * b, c * y1) in
(mx2 p q (- y) x *m Bezout_mx (M 0 0) (M 1 0) 0,

116

6.5. Extensions to Bézout domains that are elementary divisor rings

map (fun x => d * x) [:: 1; - a * c],
mx2 x1 (p * b + q * c) y1 (- p * a)).

Lemma kap_smithP (M : 'M[R]_2) : smith_spec M (kap_smith M).

Here mx2 is a notation to define 2× 2 matrices and egcdr3 computes the Bézout
coefficients for 3 elements.

We have also formalized the other direction, so for a Bézout domain, sat-
isfying the Kaplansky condition is equivalent to being an elementary divisor
ring. Hence it suffices to prove that the various extensions to Bézout domains
satisfy the Kaplansky condition in order to get that they are elementary divi-
sor rings.

6.5.2 The three extensions to Bézout domains

In this section we discuss three extensions to Bézout domains that imply the
Kaplansky condition.

Adequate domains

In [Helmer, 1943] the notion of adequate domains is introduced2. This notion
extends Bézout domains by assuming that where for any a, b ∈ R, with b 6= 0,
exists r ∈ R such that:

1. r | b,

2. r is coprime with a, and

3. for all non unit d such that dr | b we have that d is not coprime with a.

We have proved that this notion is equivalent to having a “gdco” function.
This function has previously been introduced in [Cohen and Mahboubi, 2010]
to implement quantifier elimination for algebraically closed fields. This op-
eration has also many other applications in algebra, see [Lüneburg, 1986]. It
takes two elements a, b ∈ R, with b 6= 0, and computes r such that:

1. r | b,

2. r is coprime with a , and

3. for all divisors d of b that is coprime to a we have d | r.

This means that r is the greatest divisor of b that is coprime to a. These notions
are expressed in Coq as:

Inductive adequate_spec (a b : R) : R -> Type :=
| AdequateSpec0 of b = 0 : adequate_spec a b 0
| AdequateSpec r of

b != 0
& r %| b
& coprimer r a

2Interestingly Helmer refers to what is here called Bézout domains as “Prüfer rings”.

117

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

& (forall d, d * r %| b -> d \isn't a unit ->
˜˜ coprimer d a)

: adequate_spec a b r.

Inductive gdco_spec (a b : R) : R -> Type :=
| GdcoSpec0 of b = 0 : gdco_spec a b 0
| GdcoSpec r of

b != 0
& r %| b
& coprimer r a
& (forall d, d %| b -> coprimer d a -> d %| r)
: gdco_spec a b r.

Lemma adequate_gdco a b r :
adequate_spec a b r -> gdco_spec a b r.

Lemma gdco_adequate a b r :
gdco_spec a b r -> adequate_spec a b r.

We have implemented an algorithm called gdco_kap that computes p and
q in the Kaplansky condition using the gdco operation. Using this we have
proved:

Lemma gdco_kapP (a b c : R) : gcdr a (gcdr b c) %= 1 ->
let: (p,q) := gdco_kap a b c
in coprimer (p * a) (p * b + q * c).

Using this we can define a function that computes the Smith normal form
for any matrix over an adequate domain:

Definition gdco_smith := smithmxn (kap_smith gdco_kap).

Lemma gdco_smithP : forall m n (M : 'M[R]_(m,n)),
smith_spec M (gdco_smith M).

Hence we get that adequate domains are elementary divisor rings.

Krull dimension ≤ 1

The next class of rings we study are Bézout domains of Krull dimension ≤ 1.
Classically Krull dimension is defined as the supremum of the length of all
chains of prime ideals, this means that a ring has Krull dimension n ∈ N if
there is a chain of prime ideals:

p0 (p1 (· · · (pn

but no such chain of length n + 1. For example, a field has Krull dimension 0
and any principal ideal domain (that is not a field) has Krull dimension 1. This
can be defined constructively using an inductive definition as in [Lombardi
and Quitté, 2011]. Concretely an integral domain R is of Krull dimension ≤ 1
if for any a, u ∈ R there exists n ∈N and v ∈ R such that

a | un(1− uv)

118

6.5. Extensions to Bézout domains that are elementary divisor rings

In order to prove that Bézout domains of Krull dimension ≤ 1 are adequate
we first prove:

Hypothesis krull1 : forall a u,
exists n v, a %| u ˆ+ n * (1 - u * v).

Lemma krull1_factor a b : exists n b1 b2,
[&& 0 < n, b == b1 * b2, coprimer b1 a & b2 %| a ˆ+ n].

This means that given a and b we can compute n ∈ N and b1, b2 ∈ R such
that n 6= 0, b = b1b2, b1 is coprime with a and b2 | an. If we set r to b1 in the
definition of adequate domains we have to prove:

1. b1 | b1b2,

2. b1 is coprime with a, and

3. for all d that are not units such that db1 | b1b2 we have that d is not
coprime with a.

The first two are obvious. For the third point, we have to prove that any non-
unit d that divides b2 is not coprime with a. So it suffices to prove that any d
coprime with a that divides b2 is a unit. Now as n 6= 0 we get that d is coprime
with an, but d | b2 and b2 | an so d must be a unit. We have formalized this
argument in:

Lemma krull1_adequate a b : { r : R & adequate_spec a b r }.

This means that Bézout domains of Krull dimension ≤ 1 are adequate and
hence satisfy the Kaplansky condition, which in turn means that they are
elementary divisor rings:

Definition krull1_gdco a b := projT1 (krull1_adequate a b).

Definition krull1_smith := gdco_smith krull1_gdco.

Lemma krull1_smithP : forall m n (M : 'M[R]_(m,n)),
smith_spec M (krull1_smith M).

Constructive principal ideal domains

Finally, we have showed that constructive principal ideal domains are ade-
quate domains by proving that given a and b we can compute r satisfying
gdco_spec:

Lemma pid_gdco (R : pidType) (a b : R) :
{r : R & gdco_spec a b r}.

The construction of the greatest divisor of a coprime to b in a constructive prin-
cipal ideal domain is done as in the particular case of polynomials in [Cohen
and Mahboubi, 2010]. If gcd(a, b) is a unit, then a is trivially the result, oth-
erwise we get a′ by dividing a by gcd(a, b) and we repeat the process with a′

and b. This process terminates because when gcd(a, b) is not a unit, a′ strictly

119

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

divides a and by our definition of constructive principal ideal domains, there
cannot be an infinite decreasing sequence for strict divisibility.

This way we get an alternative proof that constructive principal ideal do-
mains are elementary divisor rings:

Definition pid_smith :=
gdco_smith (fun a b => projT1 (pid_gdco a b)).

Lemma pid_smithP m n (M : 'M[R]_(m,n)) :
smith_spec M (pid_smith M).

This proof is simpler than the one presented in section 6.3.2 in the sense that
we first reduce the problem of computing the Smith normal form to comput-
ing the gdco of two elements. This way, the part of the proof based on well-
founded recursion is concentrated to pid_gdco instead of being interleaved in
the algorithm computing the Smith normal form of arbitrary m× n matrices.

6.6 Related work

Most proof assistants have one or more libraries of formalized linear algebra.
However, the specificity of our work is that it is more general than the usual
study of vector spaces (we do not require scalars to be in a field, but only in an
elementary divisor ring) while still retaining an algorithmic basis, as opposed
to a purely abstract and axiomatized development. In particular, this work
constitutes to our knowledge the first formal verification of an algorithm for
the Smith normal form of matrices.

A fair amount of module theory and linear algebra has been formalized
in Mizar [Rudnicki et al., 2001]. But it is based on classical logic and does
not account for underlying algorithmic aspects. Likewise, a HOL Light li-
brary [Harrison, 2013] proves significant results in linear algebra and on the
topology of vector spaces, but it is specialized to Rn and also classical.

Some other developments focus more on the algebra of vectors and ma-
trices, without providing support for point-free reasoning on subspaces. Let
us cite [Obua, 2005] in Isabelle, which aims primarily to certify linear in-
equalities and [Gamboa et al., 2003; Hendrix, 2003] in ACL2, formalizing only
matrix algebra.

In Coq too, older developments focus on the representation of matri-
ces [Magaud, 2005], or classical linear algebra over a field [Stein, 2001], based
on [Pottier, 1999]. One exception is of course the more recent work [Gonthier,
2011] that we already mentioned and on which we based this work, extend-
ing it from finite-dimensional vector spaces to finitely presented modules over
elementary divisor rings.

6.7 Conclusions and future work

The relationships between the notions introduced in this paper are depicted
in Figure 6.1. The numbers on the edges denote the sections in which the
different implications and inclusions are proved:

120

6.7. Conclusions and future work

Euclidean domain Coherent GCD domain

PID EDR Bézout domain

Kdim ≤ 1 Adequate Strongly discrete

6.2 6.3.1

6.5.2

6.3.2

6.4.1

6.4.1

6.4.1

6.2

6.5.2

6.5.2
6.5

Figure 6.1: Relationship between the defined notions

The arrow between PID and Kdim ≤ 1 is dashed because it has not been
formally proved yet. A constructive proof of this can be found in [Lombardi
and Quitté, 2011]. We currently see two options to formalize it: either we try to
develop more extensively the theory of ideals to stick close to the paper proof,
or we expand statements on ideals to statements on elements. Unlike the
former, the latter option would require no further infrastructure, but it is likely
that the size of the proof would explode, as in some proofs where we already
had to talk about elements instead of ideals (e.g. the lemma krull1_factor in
the current state of the formalization).

It has been mentioned that Z and k[x] where k is a field are the basic
examples for all of these rings. Many more examples of Bézout domains are
presented in the chapters on Bézout domains and elementary divisor rings
in [Fuchs and Salce, 2001] (for instance, Bézout domains of arbitrary finite
Krull dimension and an example of a Bézout domain that is not adequate). It
would be interesting see which of these could be done in a constructive setting
and formalize them in order to get more instances than Z and k[x].

An important application of this work is to compute the homology of chain
complexes which provides a means to study properties of mathematical ob-
jects like topological spaces. By computing homology one associates modules
to these kinds of objects, giving a way to distinguish between them. The Smith
normal form of matrices with coefficients in Z is at the heart of the computa-
tion of homology as the universal coefficient theorem for homology [Hatcher,
2001] states that homology with coefficients in Z determines homology with
coefficients in any other abelian group.

Note that the Kaplansky condition in section 6.5 is expressed using first-
order logic. It means that the open problem whether all Bézout domains are
elementary divisor rings can be expressed using first-order logic. We have for-
mulated the problem this way and applied various automatic theorem provers
in order to try to find a proof that Bézout domains, alone, and with the two
other assumptions (adequacy or Krull dimension ≤ 1) are elementary divisor
rings. However, none managed so far.

We have in this paper presented the formalization of many results on el-
ementary divisor rings. This way we get interesting examples of coherent

121

6. Formalized Linear Algebra over Elementary Divisor Rings in Coq

strongly discrete rings and concrete algorithms for studying finitely presented
modules. All of the proofs have been performed in a constructive setting, and
except for principal ideal domains, without chain conditions.

Acknowledgments: The authors would like to thank Thierry Coquand and
Henri Lombardi for interesting discussions. The authors are also grateful to
Dan Rosén and Jean-Christophe Filliâtre for their help in the study of the Ka-
plansky condition using various automatic theorem provers. Finally we would
also like to thank Claire Tête for useful comments on a preliminary version of
the paper.

122

Conclusions and future
directions

This thesis provides a step in the direction of bridging the gap between al-
gorithms in computer algebra systems and proof assistants. This has been
achieved by considering techniques for formalizing efficient programs and
theories from constructive algebra in the interactive theorem prover Coq.

1 Conclusions

Constructive algebra is especially well-suited for formalization in intuitionistic
type theory because of its computational nature. The possibility to implement
constructive proofs as programs that can be run inside Coq is convenient,
especially when combined with the CoqEAL approach so that the programs
can be made efficient as well.

The use of the SSReflect tactic language has enabled compact and ro-
bust formal proofs, while the MathComp library has made the formalization
efforts feasible. By basing the developments on this library we avoid reimple-
menting fundamental mathematical notions and can start building on what
has already been done. The developments presented in this thesis mainly rely
on the basic algebraic theories provided by the MathComp library, in par-
ticular the algebraic hierarchy and the theories on polynomials and matrices.
These theories constitute the basis of the MathComp library, which means
that they have been very carefully implemented and using them is a pleasure.

However, although MathComp has a well designed library, it imposes
some limitations on the user. One thing I found inconvenient when start-
ing to use the library was that some definitions are locked. The reason for
this is to prevent the definitions from being expanded in order to make type
checking feasible, but the consequence is that computation is blocked. I would
have preferred being able to first run my programs on simple examples before
trying to prove them correct, but if they used some locked definitions this was
not possible. In fact, this was one of the reason why I first got interested in
developing CoqEAL – I wanted to run my programs.

A general insight I have reached, while developing libraries of formalized
mathematics, is that one of the hardest parts is to find good abstractions and
definitions of basic notions that makes it possible to conveniently develop
more complicated notions. If not enough thought and effort is spent on de-
veloping the basic notions, the complexity of developing more complicated

123

Conclusions and future directions

notions can become unmanageable. This kind of careful engineering requires
lots of training, but is both useful and interesting. For instance, our first for-
malization of the Sasaki-Murao algorithm required about 1200 lines of code,
about one year later I rewrote it and managed to cut it down to less than 400
lines. The main difference was that the latter version used the proper oper-
ations from the MathComp library instead of ad hoc operations that we had
defined ourselves.

During my PhD I had to learn lots of mathematics. The best way for
me to really understand something has been to formalize it, since all notions
and proofs have to be made completely clear and explicit for Coq to accept
them. In fact, my understanding has often been greatly increased by just
implementing the algorithmic content of a proof. This is one reason why I
prefer constructive mathematics to classical mathematics: In order to really
understand a proof I need to be able to implement it. Another reason has
been nicely formulated by Kraftwerk:

“It’s more fun to compute” [Kraftwerk, 1981]

2 Future directions

There are many potential ways for extending the work and further developing
the results presented in this thesis. Some ideas on how to do this are discussed
below.

2.1 Refinements and constructive algebra

A possible way to extend this work is to add more data and program refine-
ments to the CoqEAL library. It would for example be useful to have efficient
representations of matrices and polynomials using arrays in Coq [Armand
et al., 2010; Boespflug et al., 2011]. One could also consider further optimiz-
ing the algorithms for computing the multivariate gcd and multiplication of
polynomials presented in the first paper. The first would involve developing
the theory of subresultants [Knuth, 1981] and has been studied previously
in Coq [Mahboubi, 2006]. The second would involve generalizing the Karat-
suba method to Toom-Cook based methods [Bodrato, 2007], and then further
to even more efficient methods based on the fast Fourier transform [Knuth,
1981].

The CoqEAL approach has so far only been applied for formalizing algo-
rithms from mathematics and computer algebra. However, there is no funda-
mental reason why it could not be used for implementing efficient algorithms
from computer science as well. Recently a similar framework was used to
formalize Hopcroft’s algorithm for automata minimization in Isabelle/HOL
[Lammich and Tuerk, 2012]. This kind of formalization should be possible to
do using the CoqEAL approach as well and it would be interesting to compare
with the Isabelle/HOL development.

A very important example of coherent and strongly discrete rings are mul-
tivariate polynomial rings, k[x1, . . . , xn], over a discrete field k. Proving that
these are coherent would involve the formalization of the theory of Gröbner

124

2. Future directions

bases and Buchberger’s algorithm. This theory has been represented previ-
ously in Coq [Persson, 2001; Théry, 1998], but not with the aim of proving
that k[x1, . . . , xn] is coherent. It would also be interesting to study this as
there is a rich theory on optimizing the Buchberger algorithm for computing
Gröbner bases [Cox et al., 2006].

The results presented in the paper on finitely presented modules could be
further developed and used to implement algorithms for computing more ho-
mological functors like cohomology, Ext and Tor. A possible future direction
would be to use this to further develop a library of formally verified com-
putational homological algebra inspired by the Homalg project [Barakat and
Robertz, 2008].

2.2 Improving the refinement methodology

Another extension of this work would be to improve the methodology of Co-
qEAL. An obstacle when implementing the approach presented in the second
paper is that there is no internal parametricity in Coq. A possible solution
would be to use a tactic like the one presented in [Keller and Lasson, 2012]
to derive proofs that closed Coq terms satisfy their parametricity relations.
This could be used to improve the proof search algorithm and make it more
robust. A more elegant solution would be to work in a system with internal
parametricity, like Type Theory in Color [Bernardy and Moulin, 2013], where
the parametricity theorems could be obtained for free. Parametricity can also
be used for obtaining free theorems in algebra [Garillot, 2011], it would be
interesting to investigate this further and see if the developments on construc-
tive algebra could be simplified in a system with internal parametricity.

Ideas from Homotopy Type Theory could also be used to devise an alter-
native way for doing refinements in type theory. Recall that Homotopy Type
Theory extends ordinary type theory with the univalence axiom. This axiom
provides a new way to construct equalities between types from isomorphisms,
hence extending the notion of equality in type theory in a very interesting way.
This axiom implies the structure identity principle [Univalent Foundations Pro-
gram, 2013, Chapter 9.8] which says that not only isomorphic types can be
considered as equal, but also isomorphic structures (e.g. commutative rings
or vector spaces). This means that by proving that two structures are isomor-
phic (e.g. the rings of unary and binary integers) we get that they are equal.
To prove an equality relying on computations with unary integers, it suffices
to do the computations using binary integers and then transport the proof
along the equality. This approach has been discussed by Dan Licata on the
Homotopy Type Theory blog [Licata, 2014]. Note that it is possible to do this
in traditional type theory as well, but then the user has to transport along
the isomorphism manually. In an implementation of Homotopy Type Theory
with a computational interpretation of univalence this kind of proofs would
instead be for free.

However, this approach to refinements based on univalence would be re-
stricted to isomorphic types and there are many examples where this is not
enough (e.g. list based and sparse polynomials). But with the use of higher
inductive types, quotients can be implemented in Homotopy Type Theory [Ri-
jke and Spitters, 2014]. Sparse polynomials could then be implemented as a

125

Conclusions and future directions

quotient using higher inductive types and would then be isomorphic to the
list based polynomials.

2.3 Constructive algebra in Homotopy Type Theory

In many places in the formalizations we have encountered equivalence re-
lations that we would like to quotient with, for example associate elements
in rings with explicit divisibility or equality of morphisms between finitely
presented modules. The traditional solution in type theory is to use se-
toids [Barthe et al., 2003] and generalized rewriting [Sozeau, 2009], but this
is usually not efficient enough. It is also not very natural compared to stan-
dard practices in mathematics where quotienting is a very common operation.
In the SSReflect approach to formalization, that heavily relies on rewriting,
it would instead be desirable to be able to work with quotient types directly.
The fact that quotient types can be defined in Homotopy Type Theory would
hence be very useful, not only for doing refinements, but also for representing
algebra in type theory.

A peculiarity in the formalizations from the point of view of constructive
algebra is that the algebraic hierarchy of MathComp only captures discrete
structures (i.e. with decidable equality). One reason for this is that types with
decidable equality satisfy the uniqueness of identity proofs principle, that is, any
two proofs of equality are equal [Hedberg, 1998]. However, this means that
the algebraic hierarchy is not closed by localization, that is, the localization of
a discrete ring need not have decidable equality. In Homotopy Type Theory
it would be more natural to generalize the algebraic hierarchy to types that
are sets in the Homotopy Type Theory sense, i.e. that satisfies the uniqueness
of identity proofs principle. An algebraic hierarchy based on this notion of
set would hence be a generalization to the one in MathComp. Localization
could then be defined in such a way that the localization of a set is again a
set. It would be very interesting to pursue these ideas further and develop
constructive algebra in this more general setting.

Abelian categories are never explicitly defined as separate structures in
the paper on finitely presented modules. The reason for this is that category
theory is an especially complicated branch of mathematics to formalize in
intuitionistic type theory. This is because of equality: what are good notions of
equality on objects, hom-sets and between categories? The traditional way was
to represent these using setoids. Homotopy Type Theory offers an alternative
approach where the hom-sets are taken to be sets in the above sense (i.e. types
that satisfy the uniqueness of identity proofs principle) and a category needs
to satisfy a version of the univalence axiom [Univalent Foundations Program,
2013, Chapter 9]. We could represent abelian categories based on this and
develop homological algebra in this general setting. This would be related to
the formalization of elementary algebraic K-theory in Coq by Dan Grayson, in
the UniMath implementation of univalent foundations [UniMath, 2014], that
also uses abelian categories [Dan Grayson, 2014].

Yet another interesting consequence of working in Homotopy Type The-
ory is that one can define propositional truncation (or squash types) [Univalent
Foundations Program, 2013, Chapter 3.7] using higher inductive types. This
way any type can be turned into a proposition in the sense of Homotopy

126

2. Future directions

Type Theory: a type is an h-proposition if any two elements are equal. Using
propositional truncation it is possible to give an alternative definition of the
classical logical connectives internally in type theory. Existential quantifica-
tion can for example be encoded by truncating the Σ-type. This way many
properties that traditionally were formulated using Σ-types can be expressed
using this kind of existential quantifier instead. For example can the notion
of divisibility be expressed by saying that there exists an x such that b = ax,
and this x could then be extracted if a is regular. Similarly we could express
that an ideal is finitely generated or that a module is finitely presented using
a predicate returning an h-proposition. The generators of the ideal or the pre-
sentation of the module may then be extracted if and only if the construction
do not depend on the choice of the representative.

In the MathComp library there is an alternative approach for extracting
witnesses from existence statements, namely the choiceType infrastructure.
By assuming that a type has a choice operator one can turn an exist into a
Σ-type. We use this in various places of the formalizations, for example in
section 6.5.1 to define a function extracting witnesses that two elements are
coprime. The notion of existential quantification defined using propositional
truncation could be used as a substitute for this. It would be interesting to
develop constructive algebra using this notion of existence and see what is
gained.

2.4 Computing in Homotopy Type Theory

Regardless of the potentials of formalizing refinements and constructive al-
gebra in Homotopy Type Theory there is a fundamental problem from the
point of view of intuitionistic type theory. It is not yet completely clear what
the computational interpretation of the univalence axiom or higher inductive
types should be. There is however a constructive model that gives a computa-
tional justification for univalence and many higher inductive types using cubi-
cal sets [Coquand et al., 2014]. The author has taken part in implementing this
model using Haskell in order to develop a system called cubical [Cubical,
2014] in which notions like univalence, propositional truncation and quotients
compute. The implementation is based on a connection between cubical sets
and nominal sets with 01-substitutions developed in [Pitts, 2014].

The cubical system is at the time of writing not a fully fledged proof
assistant. A possible solution would be to implement the necessary features
for turning it into one. This would involve adding unification, implicit argu-
ments, tactics, proof automation, etc. An alternative approach would be to use
cubical as a new core for an already existing proof assistant based on type
theory, like Coq or Agda.

The connection between Homotopy Type Theory and parametricity could
also be further explored. It seems possible to use ideas from cubical and
nominal sets to construct a type theory with internal parametricity similar
to Type Theory in Color [Bernardy and Moulin, 2013]. Using this one could
hope to one day having a system with good computational properties that
has internal parametricity, univalence and higher inductive types. This would
then be ideal for further developing the ideas presented in this thesis.

127

128

Bibliography

J. Abdeljaoued and H. Lombardi. Méthodes matricielles - Introduction à la com-
plexité algébrique. Springer-Verlag, 2004.
↪→ 4 citations on pages: 12, 27, 51, and 54.

ACM. Software System Award 2013. http://awards.acm.org/software
system/, Accessed November 2014a.
↪→ 1 citation on page: 4.

ACM. Software System Award 2001. http://www.acm.org/announcements/
ss 2001.html, Accessed November 2014b.
↪→ 1 citation on page: 3.

B. Ahrens, C. Kapulkin, and M. Shulman. Univalent categories and the Rezk
completion, 2014. Preprint. http://arxiv.org/abs/1303.0584.
↪→ 2 citations on pages: 49 and 92.

K. I. Appel. The Use of the Computer in the Proof of the Four Color Theo-
rem. Proceedings of the American Philosophical Society, 128(1):35–39, 1984. URL
http://www.jstor.org/stable/986491.
↪→ 1 citation on page: 6.

M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extending Coq with
Imperative Features and Its Application to SAT Verification. In Interactive
Theorem Proving, volume 6172 of Lecture Notes in Computer Science, pages 83–
98. Springer-Verlag, Berlin, Heidelberg, 2010. URL http://dx.doi.org/10.
1007/978-3-642-14052-5 8.
↪→ 1 citation on page: 124.

J. Avigad. Methodology and metaphysics in the development of Dedekind’s
theory of ideals. In The architecture of modern mathematics, pages 159–186.
Oxford University Press, 2006.
↪→ 1 citation on page: 64.

J. Avigad and J. Harrison. Formally Verified Mathematics. Communications
of the ACM, 57(4):66–75, Apr. 2014. URL http://doi.acm.org/10.1145/
2591012.
↪→ 1 citation on page: 6.

J. Avigad, K. Donnelly, D. Gray, and P. Raff. A Formally Verified Proof of
the Prime Number Theorem. ACM Transactions on Computational Logic, 9(1),
Dec. 2007. URL http://doi.acm.org/10.1145/1297658.1297660.

129

http://awards.acm.org/software_system/
http://awards.acm.org/software_system/
http://www.acm.org/announcements/ss_2001.html
http://www.acm.org/announcements/ss_2001.html
http://arxiv.org/abs/1303.0584
http://www.jstor.org/stable/986491
http://dx.doi.org/10.1007/978-3-642-14052-5_8
http://dx.doi.org/10.1007/978-3-642-14052-5_8
http://doi.acm.org/10.1145/2591012
http://doi.acm.org/10.1145/2591012
http://doi.acm.org/10.1145/1297658.1297660

↪→ 1 citation on page: 5.

M. Barakat and M. Lange-Hegermann. An Axiomatic Setup for Algorithmic
Homological Algebra and an Alternative Approach to Localization. Journal
of Algebra and Its Applications, 10(2):269–293, 2011.
↪→ 6 citations on pages: 14, 64, 77, 80, 83, and 108.

M. Barakat and D. Robertz. homalg – A Meta-Package for Homological Al-
gebra. Journal of Algebra and Its Applications, 7(3):299–317, 2008.
↪→ 7 citations on pages: 14, 63, 64, 80, 83, 108, and 125.

E. H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaussian
Elimination. Mathematics of Computation, 22(103):565 – 578, 1968.
↪→ 2 citations on pages: 12 and 51.

H. Barendregt, H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. The
“Fundamental Theorem of Algebra” Project, Accessed November 2014.
http://www.cs.ru.nl/∼freek/fta/.
↪→ 1 citation on page: 19.

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In Computer Aided Verification, volume
6806 of Lecture Notes in Computer Science, pages 171–177. Springer Berlin Hei-
delberg, 2011. URL http://dx.doi.org/10.1007/978-3-642-22110-1 14.
↪→ 1 citation on page: 3.

G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal of Functional
Programming, 13(2):261–293, 2003.
↪→ 4 citations on pages: 40, 47, 85, and 126.

J. Bernardy and G. Moulin. Type-Theory in Color. In ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 61–72. ACM, 2013. URL
http://doi.acm.org/10.1145/2500365.2500577.
↪→ 4 citations on pages: 12, 49, 125, and 127.

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free. Journal of Functional
Programming, 22:107–152, 2 2012. URL http://journals.cambridge.org/
article S0956796812000056.
↪→ 3 citations on pages: 42, 43, and 49.

Y. Bertot, G. Gonthier, S. Biha, and I. Pasca. Canonical big operators. In
Theorem Proving in Higher-Order Logics (TPHOLs’08), volume 5170 of Lectures
Notes in Computer Science, pages 86–101, 2008.
↪→ 2 citations on pages: 26 and 112.

M. Bezem, T. Coquand, and S. Huber. A Model of Type Theory in Cubi-
cal Sets. In 19th International Conference on Types for Proofs and Programs
(TYPES 2013), volume 26 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 107–128, 2014. URL http://drops.dagstuhl.de/opus/
volltexte/2014/4628.
↪→ 1 citation on page: 127.

130

http://www.cs.ru.nl/~freek/fta/
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://doi.acm.org/10.1145/2500365.2500577
http://journals.cambridge.org/article_S0956796812000056
http://journals.cambridge.org/article_S0956796812000056
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628

M. Bodrato. Towards Optimal Toom-Cook Multiplication for Univariate and
Multivariate Polynomials in Characteristic 2 and 0. In WAIFI’07 proceedings,
volume 4547 of Lecture Notes in Computer Science, pages 116–133. Springer,
2007.
↪→ 1 citation on page: 124.

M. Boespflug, M. Dénès, and B. Grégoire. Full Reduction at Full Throttle.
In Certified Programs and Proofs, volume 7086 of Lecture Notes in Computer
Science, pages 362–377. Springer-Verlag, Berlin, Heidelberg, 2011. URL http:
//hal.inria.fr/hal-00650940/fr/.
↪→ 1 citation on page: 124.

E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23(5):552–
593, 2013. URL http://dx.doi.org/10.1017/S095679681300018X.
↪→ 1 citation on page: 6.

D. Bridges and E. Palmgren. Constructive Mathematics. The Stanford En-
cyclopedia of Philosophy. http://plato.stanford.edu/archives/win2013/
entries/mathematics-constructive/, 2013.
↪→ 1 citation on page: 5.

G. Cano and M. Dénès. Matrices à blocs et en forme canonique. In JFLA -
Journées francophones des langages applicatifs, 2013. URL http://hal.inria.
fr/hal-00779376.
↪→ 1 citation on page: 112.

G. Cano, C. Cohen, M. Dénès, A. Mörtberg, and V. Siles. Formalized Linear
Algebra over Elementary Divisor Rings in Coq, 2014. Preprint.
↪→ 1 citation on page: 16.

J. Chrzaszcz. Implementing Modules in the Coq System. In TPHOLs, volume
2758 of Lectures Notes in Computer Science, pages 270–286. Springer, 2003.
↪→ 1 citation on page: 36.

A. Church. A Formulation of the Simple Theory of Types. The Journal of
Symbolic Logic, 5(2):56–68, 1940.
↪→ 1 citation on page: 5.

F. Chyzak, A. Mahboubi, T. Sibut-Pinote, and E. Tassi. A Computer-Algebra-
Based Formal Proof of the Irrationality of ζ(3). In Interactive Theorem Proving,
volume 8558 of Lecture Notes in Computer Science, pages 160–176. Springer,
2014. URL http://dx.doi.org/10.1007/978-3-319-08970-6 11.
↪→ 1 citation on page: 10.

B. Cipra. How number theory got the best of the pentium chip. Science, 267
(5195):175, January 1995.
↪→ 1 citation on page: 1.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In International Conference on Functional Pro-
gramming, pages 268–279. ACM, 2000. URL http://doi.acm.org/10.1145/
351240.351266.
↪→ 2 citations on pages: 1 and 2.

131

http://hal.inria.fr/hal-00650940/fr/
http://hal.inria.fr/hal-00650940/fr/
http://dx.doi.org/10.1017/S095679681300018X
http://plato.stanford.edu/archives/win2013/entries/mathematics-constructive/
http://plato.stanford.edu/archives/win2013/entries/mathematics-constructive/
http://hal.inria.fr/hal-00779376
http://hal.inria.fr/hal-00779376
http://dx.doi.org/10.1007/978-3-319-08970-6_11
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266

C. Cohen. Pragmatic Quotient Types in Coq. In Interactive Theorem Proving,
volume 7998 of Lectures Notes in Computer Science, pages 213–228, 2013.
↪→ 2 citations on pages: 38 and 85.

C. Cohen and A. Mahboubi. A formal quantifier elimination for algebraically
closed fields. In Proceedings of the 10th ASIC and 9th MKM international
conference, and 17th Calculemus conference on Intelligent computer mathemat-
ics, pages 189–203. Springer-Verlag, 2010. URL http://portal.acm.org/
citation.cfm?id=1894483.1894502.
↪→ 2 citations on pages: 117 and 119.

C. Cohen and A. Mörtberg. A Coq Formalization of Finitely Presented Mod-
ules. In Interactive Theorem Proving, volume 8558 of Lecture Notes in Computer
Science, pages 193–208. Springer, 2014. URL http://dx.doi.org/10.1007/
978-3-319-08970-6 13.
↪→ 1 citation on page: 15.

C. Cohen, M. Dénès, and A. Mörtberg. Refinements for free! In Certified
Programs and Proofs, volume 8307 of Lecture Notes in Computer Science, pages
147–162. Springer International Publishing, 2013. URL http://dx.doi.org/
10.1007/978-3-319-03545-1 10.
↪→ 1 citation on page: 12.

C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical. https://github.
com/simhu/cubical, Accessed November 2014.
↪→ 1 citation on page: 127.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation, 9(3):251–280, Mar. 1990.
↪→ 1 citation on page: 24.

Coq Development Team. The Coq Proof Assistant Reference Manual, version
8.4. Technical report, INRIA, 2012.
↪→ 6 citations on pages: 1, 35, 51, 64, 79, and 94.

T. Coquand and N. A. Danielsson. Isomorphism is equality. Indagationes
Mathematicae, 24(4):1105–1120, 2013. In memory of N.G. (Dick) de Bruijn
(1918–2012).
↪→ 1 citation on page: 49.

T. Coquand and G. Huet. The Calculus of Constructions. Technical Report
RR-0530, INRIA, May 1986. URL http://hal.inria.fr/inria-00076024.
↪→ 1 citation on page: 5.

T. Coquand and C. Paulin. Inductively defined types. In COLOG-88, vol-
ume 417 of Lecture Notes in Computer Science, pages 50–66. Springer Berlin
Heidelberg, 1990. URL http://dx.doi.org/10.1007/3-540-52335-9 47.
↪→ 1 citation on page: 5.

T. Coquand and A. Spiwack. Towards Constructive Homological Algebra in
Type Theory. In Proceedings of the 14th symposium on Towards Mechanized
Mathematical Assistants: 6th International Conference, Calculemus ’07 / MKM
’07, pages 40–54, 2007.
↪→ 1 citation on page: 92.

132

http://portal.acm.org/citation.cfm?id=1894483.1894502
http://portal.acm.org/citation.cfm?id=1894483.1894502
http://dx.doi.org/10.1007/978-3-319-08970-6_13
http://dx.doi.org/10.1007/978-3-319-08970-6_13
http://dx.doi.org/10.1007/978-3-319-03545-1_10
http://dx.doi.org/10.1007/978-3-319-03545-1_10
https://github.com/simhu/cubical
https://github.com/simhu/cubical
http://hal.inria.fr/inria-00076024
http://dx.doi.org/10.1007/3-540-52335-9_47

T. Coquand, A. Mörtberg, and V. Siles. A Formal Proof of Sasaki-Murao
Algorithm. Journal of Formalized Reasoning, 5(1):27–36, 2012a. URL http:
//dx.doi.org/10.6092/issn.1972-5787/2615.
↪→ 1 citation on page: 13.

T. Coquand, A. Mörtberg, and V. Siles. Coherent and Strongly Discrete Rings
in Type Theory. In Certified Programs and Proofs, volume 7679 of Lecture Notes
in Computer Science, pages 273–288. Springer Berlin Heidelberg, 2012b. URL
http://dx.doi.org/10.1007/978-3-642-35308-6 21.
↪→ 1 citation on page: 14.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms: An introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, 2006.
ISBN 0387946802.
↪→ 3 citations on pages: 67, 84, and 125.

Dan Grayson. K-theory. https://github.com/UniMath/UniMath/tree/master/
UniMath/Ktheory, Accessed November 2014.
↪→ 1 citation on page: 126.

L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340.
Springer-Verlag, 2008. URL http://dl.acm.org/citation.cfm?id=1792734.
1792766.
↪→ 1 citation on page: 3.

W. Decker and C. Lossen. Computing in Algebraic Geometry: A Quick Start using
SINGULAR. Springer, 2006.
↪→ 2 citations on pages: 80 and 110.

M. Dénès, A. Mörtberg, and V. Siles. A Refinement-Based Approach to Com-
putational Algebra in Coq. In Interactive Theorem Proving, volume 7406 of
Lectures Notes in Computer Science, pages 83–98. Springer, 2012.
↪→ 1 citation on page: 11.

E. W. Dijkstra. Notes on Structured Programming. http://www.cs.utexas.
edu/users/EWD/ewd02xx/EWD249.PDF, Apr. 1970.
↪→ 1 citation on page: 2.

E. W. Dijkstra. On the role of scientific thought. http://www.cs.utexas.edu/
users/EWD/ewd04xx/EWD447.PDF, Aug. 1974.
↪→ 1 citation on page: 10.

L. Ducos, H. Lombardi, C. Quitté, and M. Salou. Théorie algorithmique des
anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind.
Journal of Algebra, 281(2):604–650, 2004.
↪→ 2 citations on pages: 71 and 72.

A. J. Durán, M. Pérez, and J. L. Varona. The Misfortunes of a Trio of Mathe-
maticians Using Computer Algebra Systems. Can We Trust in Them? Notices
of the American Mathematical Society, 61(10):1249–1252, 2014.
↪→ 1 citation on page: 1.

133

http://dx.doi.org/10.6092/issn.1972-5787/2615
http://dx.doi.org/10.6092/issn.1972-5787/2615
http://dx.doi.org/10.1007/978-3-642-35308-6_21
https://github.com/UniMath/UniMath/tree/master/UniMath/Ktheory
https://github.com/UniMath/UniMath/tree/master/UniMath/Ktheory
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

L. Fuchs and L. Salce. Modules Over Non-Noetherian Domains. Mathemati-
cal surveys and monographs. American Mathematical Society, 2001. ISBN
9780821819630.
↪→ 2 citations on pages: 71 and 121.

R. Gamboa, J. Cowles, and J. V. Baalen. Using ACL2 arrays to formalize matrix
algebra. In Fourth International Workshop on the ACL2 Theorem Prover and Its
Applications (ACL2 ’03), 2003.
↪→ 1 citation on page: 120.

F. Garillot. Generic Proof Tools and Finite Group Theory. PhD Thesis,
Ecole Polytechnique, 2011. URL https://pastel.archives-ouvertes.fr/
pastel-00649586.
↪→ 1 citation on page: 125.

F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical
structures. In Proceedings 22nd International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’09), volume 5674 of Lectures Notes in Computer
Science, pages 327–342, 2009.
↪→ 7 citations on pages: 31, 33, 59, 65, 83, 92, and 97.

G. Gonthier. A computer-checked proof of the Four Colour Theorem. http://
research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf, 2005.
↪→ 2 citations on pages: 6 and 19.

G. Gonthier. Formal Proof—The Four-Color Theorem. In Notices of the Ameri-
can Mathematical Society, volume 55, pages 1382–1393, 2008.
↪→ 2 citations on pages: 6 and 19.

G. Gonthier. Point-Free, Set-Free Concrete Linear Algebra. In Inter-
active Theorem Proving, volume 6898 of Lectures Notes in Computer Sci-
ence, pages 103–118, 2011. URL http://www.springerlink.com/content/
wx57781461004625/.
↪→ 6 citations on pages: 21, 64, 80, 94, 109, and 120.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension
for the Coq System. Technical report RR-6455, INRIA, 2008. URL http:
//hal.inria.fr/inria-00258384.
↪→ 7 citations on pages: 8, 26, 36, 51, 64, 79, and 94.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux,
A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev,
E. Tassi, and L. Théry. A Machine-Checked Proof of the Odd Order
Theorem. In Interactive Theorem Proving, volume 7998 of Lecture Notes in
Computer Science, pages 163–179. Springer Berlin Heidelberg, 2013. URL
http://dx.doi.org/10.1007/978-3-642-39634-2 14.
↪→ 2 citations on pages: 6 and 20.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993. URL
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html.
↪→ 1 citation on page: 5.

134

https://pastel.archives-ouvertes.fr/pastel-00649586
https://pastel.archives-ouvertes.fr/pastel-00649586
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://www.springerlink.com/content/wx57781461004625/
http://www.springerlink.com/content/wx57781461004625/
http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html

Gowers’s Weblog. Recent news concerning the Erdos dis-
crepancy problem. http://gowers.wordpress.com/2014/02/11/
recent-news-concerning-the-erdos-discrepancy-problem/, Accessed
November 2014.
↪→ 1 citation on page: 3.

B. Grégoire and X. Leroy. A Compiled Implementation of Strong Reduc-
tion. SIGPLAN Not., 37(9):235–246, 2002. URL http://doi.acm.org/10.
1145/583852.581501.
↪→ 1 citation on page: 28.

B. Gregoire and A. Mahboubi. Proving Equalities in a Commutative Ring
Done Right in Coq. In TPHOLs, Lectures Notes in Computer Science, pages
98–113. Springer, 2005.
↪→ 1 citation on page: 38.

B. Grégoire and L. Théry. A Purely Functional Library for Modular Arithmetic
and Its Application to Certifying Large Prime Numbers. In IJCAR, volume
4130 of Lectures Notes in Computer Science, pages 423–437. Springer, 2006.
↪→ 1 citation on page: 27.

G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra.
Springer, 2nd edition, 2007. ISBN 3540735410, 9783540735410.
↪→ 3 citations on pages: 80, 82, and 110.

F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data Refinement in Is-
abelle/HOL. In Interactive Theorem Proving, Lectures Notes in Computer
Science. Springer, 2013.
↪→ 1 citation on page: 48.

T. C. Hales. The Jordan Curve Theorem, Formally and Informally. The Amer-
ican Mathematical Monthly, 114(10):882–894, 2007. URL http://www.jstor.
org/stable/27642361.
↪→ 2 citations on pages: 5 and 19.

J. Harrison. HOL light: A tutorial introduction. In Proceedings of the First Inter-
national Conference on Formal Methods in Computer-Aided Design (FMCAD’96),
volume 1166 of Lecture Notes in Computer Science, pages 265–269. Springer-
Verlag, 1996.
↪→ 1 citation on page: 5.

J. Harrison. Formalizing an analytic proof of the Prime Number Theorem.
Journal of Automated Reasoning, 43:243–261, 2009.
↪→ 1 citation on page: 5.

J. Harrison. The HOL Light Theory of Euclidean Space. Journal of Au-
tomated Reasoning, 50(2):173–190, 2013. URL http://dx.doi.org/10.1007/
s10817-012-9250-9.
↪→ 1 citation on page: 120.

A. Hatcher. Algebraic Topology. Cambridge University Press, 1st edition,
2001. ISBN 0521795400. URL http://www.math.cornell.edu/∼hatcher/AT/
AT.pdf.
↪→ 2 citations on pages: 80 and 121.

135

http://gowers.wordpress.com/2014/02/11/recent-news-concerning-the-erdos-discrepancy-problem/
http://gowers.wordpress.com/2014/02/11/recent-news-concerning-the-erdos-discrepancy-problem/
http://doi.acm.org/10.1145/583852.581501
http://doi.acm.org/10.1145/583852.581501
http://www.jstor.org/stable/27642361
http://www.jstor.org/stable/27642361
http://dx.doi.org/10.1007/s10817-012-9250-9
http://dx.doi.org/10.1007/s10817-012-9250-9
http://www.math.cornell.edu/~hatcher/AT/AT.pdf
http://www.math.cornell.edu/~hatcher/AT/AT.pdf

M. Hedberg. A Coherence Theorem for Martin-Löf’s Type Theory. Journal of
Functional Programming, 8(4):413–436, 1998.
↪→ 3 citations on pages: 87, 92, and 126.

O. Helmer. The Elementary Divisor Theorem for Certain Rings Without Chain
Condition. Bulletin of the American Mathematical Society, 49:225–236, 1943.
↪→ 2 citations on pages: 15 and 117.

J. Hendrix. Matrices in ACL2. In Fourth International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 ’03), 2003.
↪→ 1 citation on page: 120.

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a
certified computation of homology groups for digital images. In CTIC’12,
volume 7309 of Lectures Notes in Computer Science, pages 49–57, 2012.
↪→ 1 citation on page: 79.

J. Heras, T. Coquand, A. Mörtberg, and V. Siles. Computing Persistent Ho-
mology Within Coq/SSReflect. ACM Transactions on Computational Logic, 14
(4):1–26, November 2013. URL http://doi.acm.org/10.1145/2528929.
↪→ 1 citation on page: 79.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communi-
cations of the ACM, 12(10):576–580, Oct 1969. URL http://doi.acm.org/10.
1145/363235.363259.
↪→ 1 citation on page: 20.

G. J. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-
Wesley, 2004. ISBN 978-0-321-22862-8.
↪→ 1 citation on page: 3.

I. Kaplansky. Elementary Divisors and Modules. Transactions of the American
Mathematical Society, 66:464–491, 1949.
↪→ 5 citations on pages: 14, 15, 90, 99, and 115.

A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by auto-
matic computers. In USSR Academy of Sciences, volume 145, pages 293–294,
1962.
↪→ 1 citation on page: 27.

C. Keller and M. Lasson. Parametricity in an Impredicative Sort. In Computer
Science Logic, volume 16, pages 381–395, 2012. URL http://hal.inria.fr/
hal-00730913.
↪→ 2 citations on pages: 49 and 125.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal Verification of an OS Kernel. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, pages
207–220. ACM, 2009. URL http://doi.acm.org/10.1145/1629575.1629596.
↪→ 1 citation on page: 4.

136

http://doi.acm.org/10.1145/2528929
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://hal.inria.fr/hal-00730913
http://hal.inria.fr/hal-00730913
http://doi.acm.org/10.1145/1629575.1629596

D. E. Knuth. Notes on the van Emde Boas construction of priority deques: an
instructive use of recursion. https://staff.fnwi.uva.nl/p.vanemdeboas/
knuthnote.pdf, March 1977.
↪→ 1 citation on page: 2.

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, 1981. ISBN 0201038226.
↪→ 6 citations on pages: 11, 12, 29, 30, 58, and 124.

B. Konev and A. Lisitsa. A SAT Attack on the Erdos Discrepancy Conjecture.
ArXiv e-prints, February 2014.
↪→ 1 citation on page: 3.

L. Kovacs and A. Voronkov. First-Order Theorem Proving and Vampire. In
Computer Aided Verification, Lecture Notes in Computer Science, pages 1–35.
Springer, 2013.
↪→ 1 citation on page: 3.

Kraftwerk. Computer World, 1981.
↪→ 1 citation on page: 124.

P. Lammich. Automatic Data Refinement. In Interactive Theorem Proving, vol-
ume 7998 of Lectures Notes in Computer Science, pages 84–99, 2013.
↪→ 1 citation on page: 47.

P. Lammich and T. Tuerk. Applying Data Refinement for Monadic Programs to
Hopcroft’s Algorithm. In Interactive Theorem Proving, volume 7406 of Lecture
Notes in Computer Science, pages 166–182. Springer Berlin Heidelberg, 2012.
URL http://dx.doi.org/10.1007/978-3-642-32347-8 12.
↪→ 1 citation on page: 124.

X. Leroy. Formal Certification of a Compiler Back-end or: Programming a
Compiler with a Proof Assistant. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’06, pages 42–54. ACM, 2006. URL http://doi.acm.org/10.1145/1111037.
1111042.
↪→ 1 citation on page: 4.

D. Licata. Abstract Types with Isomorphic Types, Accessed
November 2014. http://homotopytypetheory.org/2012/11/12/
abstract-types-with-isomorphic-types/.
↪→ 1 citation on page: 125.

H. Lombardi and H. Perdry. The Buchberger Algorithm as a Tool for Ideal
Theory of Polynomial Rings in Constructive Mathematics. In B. Buchberger
and F. Winkler, editors, Gröbner Bases and Applications, pages 393–407. Cam-
bridge University Press, 1998. ISBN 9780511565847.
↪→ 2 citations on pages: 67 and 84.

H. Lombardi and C. Quitté. Algèbre commutative, Méthodes constructives: Mod-
ules projectifs de type fini. Calvage et Mounet, 2011.
↪→ 13 citations on pages: 8, 13, 16, 64, 71, 72, 80, 83, 94, 108, 110, 118,

and 121.

137

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
http://dx.doi.org/10.1007/978-3-642-32347-8_12
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-types/
http://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-types/

D. Lorenzini. Elementary Divisor domains and Bézout domains. Journal of
Algebra, 371(0):609–619, 2012.
↪→ 3 citations on pages: 15, 91, and 94.

H. Lüneburg. On a Little but Useful Algorithm. In Proceedings of the 3rd Inter-
national Conference on Algebraic Algorithms and Error-Correcting Codes, pages
296–301. Springer-Verlag, 1986. URL http://dl.acm.org/citation.cfm?id=
646022.676247.
↪→ 1 citation on page: 117.

Z. Luo. Computation and reasoning: a type theory for computer science. Oxford
University Press, Inc., New York, NY, USA, 1994. ISBN 0-19-853835-9.
↪→ 1 citation on page: 47.

N. Magaud. Changing Data Representation within the Coq System. In
TPHOLs, volume 2758 of Lectures Notes in Computer Science, pages 87–102.
Springer, 2003.
↪→ 1 citation on page: 47.

N. Magaud. Programming with Dependent Types in Coq: a Study of Square
Matrices, Jan 2005. Unpublished. A preliminary version appeared in Coq
contributions.
↪→ 1 citation on page: 120.

A. Mahboubi. Proving Formally the Implementation of an Efficient gcd Al-
gorithm for Polynomials. In 3rd International Joint Conference on Automated
Reasoning, Lecture Notes in Artificial Intelligence, pages 438–452. Springer-
Verlag, 2006.
↪→ 2 citations on pages: 30 and 124.

E. Marshall. Fatal Error: How Patriot Overlooked a Scud. Science, 255(5050):
1347, March 1992.
↪→ 1 citation on page: 1.

P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984a. ISBN 88-7088-105-9.
↪→ 1 citation on page: 5.

P. Martin-Löf. Constructive Mathematics and Computer Programming. Royal
Society of London Philosophical Transactions, 312:501–518, 1984b.
↪→ 1 citation on page: 5.

Mathematical Components Project. http://www.msr-inria.fr/projects/
mathematical-components-2/, Accessed November 2014.
↪→ 1 citation on page: 8.

C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.
↪→ 1 citation on page: 47.

W. McCune. Solution of the Robbins Problem. Journal of Automated Reasoning,
19:263–276, 1997.
↪→ 1 citation on page: 3.

138

http://dl.acm.org/citation.cfm?id=646022.676247
http://dl.acm.org/citation.cfm?id=646022.676247
http://www.msr-inria.fr/projects/mathematical-components-2/
http://www.msr-inria.fr/projects/mathematical-components-2/

R. Mines, F. Richman, and W. Ruitenburg. A Course in Constructive Algebra.
Springer-Verlag, 1988.
↪→ 10 citations on pages: 8, 11, 14, 30, 63, 80, 83, 95, 108, and 114.

A. Mörtberg. Constructive Algebra in Functional Programming and Type The-
ory. Master’s thesis, Chalmers University of Technology, 2010.
↪→ 1 citation on page: 74.

R. Nederpelt, H. Geuvers, and R. de Vrijer, editors. Selected Papers on Automath,
volume 133 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1994.
↪→ 1 citation on page: 4.

Nicely, Thomas. Pentium FDIV flaw FAQ. http://www.trnicely.net/
pentbug/pentbug.html, August 2011. Accessed November 2014.
↪→ 1 citation on page: 1.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of Lectures Notes in Computer Science.
Springer, 2002.
↪→ 2 citations on pages: 4 and 5.

B. Nordström. Terminating general recursion. BIT, 28(3):605–619, 1988.
↪→ 1 citation on page: 106.

U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden, Septem-
ber 2007.
↪→ 1 citation on page: 6.

S. Obua. Proving Bounds for Real Linear Programs in Isabelle/HOL. In The-
orem Proving in Higher Order Logics, 18th International Conference, TPHOLs
2005, Oxford, UK, volume 3603 of Lecture Notes in Computer Science, pages
227–244. Springer, 2005.
↪→ 1 citation on page: 120.

R. O’Connor. Karatsuba’s multiplication, Accessed November 2014. http:
//coq.inria.fr/V8.2pl1/contribs/Karatsuba.html.
↪→ 1 citation on page: 27.

R. O’Connor. Certified Exact Transcendental Real Number Computation in
Coq. In Theorem Proving in Higher Order Logics (TPHOLs’08), volume 5170 of
Lectures Notes in Computer Science, pages 246–261. Springer, 2008.
↪→ 1 citation on page: 34.

F. Palomo-Lozano, I. Medina-Bulo, and J. Alonso-Jiménez. Certification of
Matrix Multiplication Algorithms. Strassen’s Algorithm in ACL2. In Pro-
ceedings of the 14th International Conference on Theorem Proving in Higher Order
Logics, 2001.
↪→ 1 citation on page: 25.

139

http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html
http://coq.inria.fr/V8.2pl1/contribs/Karatsuba.html
http://coq.inria.fr/V8.2pl1/contribs/Karatsuba.html

Á. Pelayo and M. A. Warren. Homotopy type theory and Voevodsky’s uni-
valent foundations. Bulletin of the American Mathematical Society, 51:597–648,
2014.
↪→ 1 citation on page: 7.

H. Perdry. Strongly Noetherian rings and constructive ideal theory. Journal of
Symbolic Computation, 37(4):511–535, 2004.
↪→ 3 citations on pages: 13, 64, and 94.

H. Perdry and P. Schuster. Noetherian orders. Mathematical. Structures in Comp.
Sci., 21(1):111–124, 2011.
↪→ 1 citation on page: 64.

H. Persson. An Integrated Development of Buchberger’s Algorithm in
Coq. Technical report, INRIA, 2001. URL https://hal.inria.fr/
inria-00072316.
↪→ 2 citations on pages: 77 and 125.

A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Cate-
gory of Cubical Sets, 2014. Preprint. http://arxiv.org/abs/1401.7807.
↪→ 1 citation on page: 127.

H. Poincaré. Analysis situs. Journal de l’École Polytechnique, 1:1–123, 1895.
↪→ 1 citation on page: 79.

L. Pottier. User contributions in Coq: Algebra, 1999.
↪→ 1 citation on page: 120.

A. Quadrat. The Fractional Representation Approach to Synthesis Problems:
An Algebraic Analysis Viewpoint Part II: Internal Stabilization. SIAM Jour-
nal on Control and Optimization, 42(1):300–320, 2003.
↪→ 1 citation on page: 64.

M. Raussen and C. Skau. Interview with Jean-Pierre Serre. Notices of the
American Mathematical Society, 51(2):210–214, 2004.
↪→ 1 citation on page: 7.

J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, pages 513 – 523, 1983.
↪→ 1 citation on page: 43.

E. Rijke and B. Spitters. Sets in Homotopy Type Theory, 2014. Preprint. http:
//arxiv.org/abs/1305.3835.
↪→ 2 citations on pages: 49 and 125.

P. Rudnicki, C. Schwarzweller, and A. Trybulec. Commutative Algebra in the
Mizar System. Journal of Symbolic Computation, 32(1/2):143–169, 2001. URL
http://dx.doi.org/10.1006/jsco.2001.0456.
↪→ 1 citation on page: 120.

T. Sasaki and H. Murao. Efficient Gaussian Elimination Method for Symbolic
Determinants and Linear Systems. ACM Transactions on Mathematical Soft-
ware, 8(3):277–289, Sept. 1982. URL http://doi.acm.org/10.1145/356004.
356007.
↪→ 4 citations on pages: 9, 12, 49, and 51.

140

https://hal.inria.fr/inria-00072316
https://hal.inria.fr/inria-00072316
http://arxiv.org/abs/1401.7807
http://arxiv.org/abs/1305.3835
http://arxiv.org/abs/1305.3835
http://dx.doi.org/10.1006/jsco.2001.0456
http://doi.acm.org/10.1145/356004.356007
http://doi.acm.org/10.1145/356004.356007

K. Slind and M. Norrish. A Brief Overview of HOL4. In Theorem Proving in
Higher Order Logics, volume 5170 of Lecture Notes in Computer Science, pages
28–32. Springer Berlin Heidelberg, 2008. URL http://dx.doi.org/10.1007/
978-3-540-71067-7 6.
↪→ 1 citation on page: 5.

M. Sozeau. A New Look at Generalized Rewriting in Type Theory. Journal of
Formalized Reasoning, 2(1):41–62, 2009. URL http://jfr.unibo.it/article/
view/1574.
↪→ 5 citations on pages: 40, 41, 47, 85, and 126.

M. Sozeau and N. Oury. First-Class type classes. In Theorem Proving
in Higher Order Logics, volume 5170 of Lectures Notes in Computer Sci-
ence, pages 278–293, 2008. URL http://www.springerlink.com/content/
628177q55v3v7306/.
↪→ 3 citations on pages: 12, 34, and 41.

B. Spitters and E. van der Weegen. Type Classes for Mathematics in Type
Theory. MSCS, special issue on ‘Interactive theorem proving and the formalization
of mathematics’, 21:1–31, 2011.
↪→ 1 citation on page: 41.

J. Stein. Documentation of my formalization of Linear Algebra, 2001.
↪→ 1 citation on page: 120.

A. Steingart. A group theory of group theory: Collaborative mathematics
and the ‘uninvention’ of a 1000-page proof. Social Studies of Science, 42(2):
185–213, April 2012.
↪→ 1 citation on page: 6.

C. Strachey. Fundamental concepts in programming languages. Higher-Order
and Symbolic Computation, 13(1-2):11–49, 2000.
↪→ 1 citation on page: 2.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug. 1969. URL http://www.springerlink.com/content/
w71w4445t7m71gm5/.
↪→ 3 citations on pages: 24, 36, and 44.

The FlySpeck Project. https://code.google.com/p/flyspeck/wiki/
AnnouncingCompletion, Accessed November 2014.
↪→ 1 citation on page: 6.

The ForMath Project. http://wiki.portal.chalmers.se/cse/pmwiki.php/
ForMath/, Accessed November 2014.
↪→ 1 citation on page: 8.

L. Théry. A Certified Version of Buchberger’s Algorithm. In Proceedings of the
15th International Conference on Automated Deduction: Automated Deduction,
CADE-15, pages 349–364. Springer-Verlag, 1998. URL http://dl.acm.org/
citation.cfm?id=648234.753471.
↪→ 2 citations on pages: 77 and 125.

141

http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://jfr.unibo.it/article/view/1574
http://jfr.unibo.it/article/view/1574
http://www.springerlink.com/content/628177q55v3v7306/
http://www.springerlink.com/content/628177q55v3v7306/
http://www.springerlink.com/content/w71w4445t7m71gm5/
http://www.springerlink.com/content/w71w4445t7m71gm5/
https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion
https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/
http://dl.acm.org/citation.cfm?id=648234.753471
http://dl.acm.org/citation.cfm?id=648234.753471

UniMath. Univalent Mathematics. https://github.com/UniMath/UniMath, Ac-
cessed November 2014.
↪→ 1 citation on page: 126.

T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. http://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.
↪→ 6 citations on pages: 7, 49, 77, 92, 125, and 126.

P. Wadler. Views: A Way for Pattern Matching to Cohabit with Data Abstrac-
tion. In POPL, pages 307–313. ACM Press, 1987.
↪→ 1 citation on page: 47.

P. Wadler. Theorems for free! In Functional Programming Languages and Com-
puter Architecture, pages 347–359. ACM Press, 1989.
↪→ 1 citation on page: 43.

Walking Randomly. A serious bug in MATLAB 2009b? http://www.
walkingrandomly.com/?p=1964, November 2009. Accessed November 2014.
↪→ 1 citation on page: 1.

F. Wiedijk. The Seventeen Provers of the World. Lecture Notes in Computer
Science/Lecture Notes in Artificial Intelligence. Springer-Verlag, 2006.
↪→ 1 citation on page: 4.

S. Winograd. On multiplication of 2x2 matrices. Linear Algebra and its Ap-
plications, 4:381–388, 1971. URL http://www.sciencedirect.com/science/
article/pii/0024379571900097.
↪→ 1 citation on page: 24.

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and Understanding Bugs
in C Compilers. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, pages 283–294.
ACM, 2011. URL http://doi.acm.org/10.1145/1993498.1993532.
↪→ 1 citation on page: 5.

J. Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula.
Linear Algebra and its Applications, 184(0):79–82, 1993.
↪→ 1 citation on page: 113.

142

https://github.com/UniMath/UniMath
http://homotopytypetheory.org/book
http://www.walkingrandomly.com/?p=1964
http://www.walkingrandomly.com/?p=1964
http://www.sciencedirect.com/science/article/pii/0024379571900097
http://www.sciencedirect.com/science/article/pii/0024379571900097
http://doi.acm.org/10.1145/1993498.1993532

	Introduction
	Software verification
	Formalization of mathematics
	This thesis
	Method
	Formal developments
	Structure and organization of the thesis

	Program and data refinements
	A refinement-based approach to computational algebra in Coq
	Refinements for free!
	A formal proof of the Sasaki-Murao algorithm

	Constructive algebra in type theory
	Coherent and strongly discrete rings in type theory
	A Coq formalization of finitely presented modules
	Formalized linear algebra over elementary divisor rings in Coq

	I Program and Data Refinements
	A Refinement-Based Approach to Computational Algebra in Coq
	Introduction
	Refinements
	Matrices
	Representation
	Computing the rank
	Strassen's fast matrix product

	Polynomials
	Karatsuba's fast polynomial multiplication
	Computing the gcd of multivariate polynomials

	Hierarchy of computable structures
	Design of the library
	Example: computable ring of polynomials
	Examples of computations

	Conclusions and future work

	Refinements for free!
	Introduction
	Data refinements
	Refinement relations
	Comparison with the previous approach
	Indexing and using refinements

	Generic programming
	Parametricity
	Splitting refinement relations
	Parametricity for refinements
	Generating the parametricity lemma

	Example: Strassen's fast matrix product
	Related work
	Conclusions and future work

	A Formal Proof of the Sasaki-Murao Algorithm
	Introduction
	The Sasaki-Murao algorithm
	Matrices
	The algorithm

	Correctness proof
	Representation in type theory
	Conclusions and benchmarks

	II Constructive Algebra in Type Theory
	Coherent and Strongly Discrete Rings in Type Theory
	Introduction
	Coherent rings
	Ideal intersection and coherence

	Strongly discrete rings
	Ideal theory
	Coherent strongly discrete rings
	Bézout domains are coherent and strongly discrete

	Prüfer domains
	Principal localization matrices and strong discreteness
	Coherence
	Examples of Prüfer domains

	Computations
	Conclusions and future work

	A Coq Formalization of Finitely Presented Modules
	Introduction
	Finitely presented modules
	Morphisms
	Coherent and strongly discrete rings
	Finitely presented modules over coherent strongly discrete rings

	Monos, epis and operations on morphisms
	Testing if finitely presented modules are zero
	Kernels
	Cokernels
	Homology

	Abelian categories
	Smith normal form
	Conclusions and future work

	Formalized Linear Algebra over Elementary Divisor Rings in Coq
	Introduction
	Rings with explicit divisibility
	Rings with explicit divisibility
	Formalization of algebraic structures

	A verified algorithm for the Smith normal form
	Smith normal form over Euclidean domains
	Extension to principal ideal domains

	Elementary divisor rings
	Linear algebra over elementary divisor rings
	Finitely presented modules and elementary divisor rings
	Uniqueness of the Smith normal form

	Extensions to Bézout domains that are elementary divisor rings
	The Kaplansky condition
	The three extensions to Bézout domains

	Related work
	Conclusions and future work

	Conclusions and future directions
	Conclusions
	Future directions
	Refinements and constructive algebra
	Improving the refinement methodology
	Constructive algebra in Homotopy Type Theory
	Computing in Homotopy Type Theory

	Bibliography

