
Formalizing Refinements and Constructive Algebra
in Type Theory

Anders Mörtberg

December 12, 2014

Anders Mörtberg PhD Defense December 12, 2014 1 / 24



This thesis

Formally verify the correctness of the implementation of algorithms from
computer algebra using intuitionistic type theory

Decrease the gap between algorithms in computer algebra and proof
assistants, increase the reliability of algorithms in computer algebra and
the computational capabilities of proof assistants

Anders Mörtberg PhD Defense December 12, 2014 2 / 24



This thesis

Formalization in Coq/SSReflect of:

Program refinements

Data refinements

Constructive algebra

Anders Mörtberg PhD Defense December 12, 2014 3 / 24



Refinements

Anders Mörtberg PhD Defense December 12, 2014 4 / 24



Refinements

Program refinements: Transform a program into a more efficient one
computing the same thing using a different algorithm, while
preserving the types.

Data refinements: Change the data representation on which the
program operates into a more efficient one, while preserving the
involved algorithms.

Anders Mörtberg PhD Defense December 12, 2014 5 / 24



Program refinement: Sasaki-Murao algorithm

Simple polynomial time algorithm that generalizes Bareiss’ algorithm
for computing the determinant over any commutative ring (not
necessarily with division)

Standard presentations have quite complicated correctness proofs,
relying on Sylvester determinant identities

We wrote a short and simple program using functional programming
notations that we proved correct

Anders Mörtberg PhD Defense December 12, 2014 6 / 24



Program refinement: Bareiss’ algorithm

data Matrix a = Empty | Cons a [a] [a] (Matrix a)

dvd_step :: DvdRing a => a -> Matrix a -> Matrix a

dvd_step g M = mapM (\x -> g | x) M

bareiss_rec :: DvdRing a => a -> Matrix a -> a

bareiss_rec g M = case M of

Empty -> g

Cons a l c M ->

let M’ = a * M - c * l in

bareiss_rec a (dvd_step g M’)

bareiss :: DvdRing a => Matrix a -> a

bareiss M = bareiss_rec 1 M

Anders Mörtberg PhD Defense December 12, 2014 7 / 24



Program refinement: Sasaki-Murao algorithm

Problem with Bareiss: Division by 0

Solution: Sasaki-Murao algorithm:

I Apply the algorithm to M − xI
I Compute on R[x ] with pseudo-division instead of division on R
I Put x = 0 in the result

Benefits:

I More general
I No problem of division by 0 (we have x along the diagonal)
I Get characteristic polynomial for free
I Algorithm is the same as Bareiss’

Correctness proved with respect to standard definition:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

aσ(i),i

Anders Mörtberg PhD Defense December 12, 2014 8 / 24



Data refinement: unary and binary integers

Proof-oriented (unary) integers: int

Computation-oriented (binary) integers: Z

These two types are isomorphic, in general we consider any related types

“Types, abstraction, and parametric polymorphism” – Reynolds 1983

Anders Mörtberg PhD Defense December 12, 2014 9 / 24



Data refinement: Polynomials

Proof oriented definition:

Record poly R := Poly {

polyseq : seq R;

_ : last 1 polyseq != 0

}.

Definition mul_poly (p q : poly R) : poly R :=

\poly_(i < (size p + size q).-1)

(\sum_(j < i.+1) p‘_j * q‘_(i - j)).

Anders Mörtberg PhD Defense December 12, 2014 10 / 24



Data refinement: Sparse polynomials

Want to refine to computation-oriented implementation, for instance
sparse Horner normal form:

Inductive sparse R :=

Pc : R -> sparse R

| PX : R -> pos -> sparse R -> sparse R.

where
PX a n p = a + Xnp

which can be used to define a relation:

Definition Rsparse : poly R -> sparse R -> Prop := ...

Anders Mörtberg PhD Defense December 12, 2014 11 / 24



Data refinement: Sparse polynomials

We can define multiplication of sparse polynomials and express its
correctness by:

Definition mul_sparse (p q : sparse R) : sparse R := ...

Lemma Rsparse_mul (x y : poly R) (x’ y’ : sparse R) :

Rsparse x x’ -> Rsparse y y’ ->

Rsparse (mul_poly x y) (mul_sparse x’ y’).

Anders Mörtberg PhD Defense December 12, 2014 12 / 24



Data refinement: Polynomials over integers

This means that we have proved a refinement:

mul poly int mul sparse int
Rsparse mul

But, to compute efficiently we really want:

mul poly int mul sparse Z

To get this we compose the first refinement with:

mul sparse int mul sparse Z

Anders Mörtberg PhD Defense December 12, 2014 13 / 24



Data refinement: Polynomials over integers

This means that we have proved a refinement:

mul poly int mul sparse int
Rsparse mul

But, to compute efficiently we really want:

mul poly int mul sparse Z

To get this we compose the first refinement with:

mul sparse int mul sparse Z

Anders Mörtberg PhD Defense December 12, 2014 13 / 24



Data refinement: Polynomials over integers

This means that we have proved a refinement:

mul poly int mul sparse int
Rsparse mul

But, to compute efficiently we really want:

mul poly int mul sparse Z

To get this we compose the first refinement with:

mul sparse int mul sparse Z

Anders Mörtberg PhD Defense December 12, 2014 13 / 24



Data refinements

The last step of the data refinement proof is found automatically by proof
search (implemented using type classes) with parametricity theorems
(provided by the library) and refinements of the parameters (provided by
the user) as basic building blocks

Has been used in a recent formal proof that ζ(3) is irrational:

F. Chyzak, A. Mahboubi, T. Sibut-Pinote and E. Tassi. A Computer
Algebra Based Formal Proof of the Irrationality of ζ(3). Interactive
Theorem Proving 2014.

Anders Mörtberg PhD Defense December 12, 2014 14 / 24



Constructive algebra

Anders Mörtberg PhD Defense December 12, 2014 15 / 24



Constructive module theory

We take an approach similar to the one in the SSReflect library where
finite dimensional vector spaces are represented using matrices and all
subspace operations are defined from Gaussian elimination

Finite dimensional vector spaces =⇒ Finitely presented modules

Gaussian elimination =⇒ Coherent and strongly discrete rings

Anders Mörtberg PhD Defense December 12, 2014 16 / 24



Finitely presented modules

An R-module M is finitely presented if it is finitely generated and there
are a finite number of relations between the generators.

Rm1 Rm0 M 0M π

M is a matrix representing the m1 relations among the m0 generators of
the module M.

Anders Mörtberg PhD Defense December 12, 2014 17 / 24



Finitely presented modules: example

The Z-module Z⊕ Z/2Z is given by the presentation:

Z Z2 Z⊕ Z/2Z 0

(
0 2

)

as if Z⊕ Z/2Z is generated by (e1, e2) there is one relation, namely
0e1 + 2e2 = 0.

Anders Mörtberg PhD Defense December 12, 2014 18 / 24



Finitely presented modules: morphisms

A morphism between finitely presented R-modules is given by the following
commutative diagram:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

ϕR ϕG ϕ

N

This means that morphisms between finitely presented modules can be
represented by pairs of matrices. All operations can be defined by
manipulating these matrices.

Anders Mörtberg PhD Defense December 12, 2014 19 / 24



Coherent and strongly discrete rings

To convieniently represent morphisms and compute their kernel the
underlying ring needs to be:

Coherent: it is possible to compute generators of the kernel of any
matrix

Strongly discrete: membership in finitely generated ideals is decidable

Examples: fields (Gaussian elimination), Z (Smith normal form), Bézout
domains, Prüfer domains...

These rings provide the basis of the Homalg (M. Barakat et. al.)
computer algebra package for computational homological algebra

Anders Mörtberg PhD Defense December 12, 2014 20 / 24



Abelian categories

We have formalized that the category of finitely presented modules over
coherent and strongly discrete rings satisfies the axioms of abelian
categories:

(* Any monomorphism is a kernel of its cokernel *)

Lemma mono_ker (M N : fpmodule R) (phi : ’Mono(M,N)) :

is_kernel (coker phi) phi.

Proof.

split=> [|L X]; first by rewrite mulmorc.

apply: (iffP idP) => [|Y /eqmorMr /eqmor_ltrans <-]; last first.

by rewrite -mulmorA (eqmor_ltrans (eqmorMl _ (mulmorc _))) mulmor0.

rewrite /eqmor subr0 /= mulmx1 => /dvd_col_mxP [Y Ydef].

suff Ymor : pres M %| pres L *m Y.

by exists (Morphism Ymor); rewrite /= -dvdmxN opprB.

have := kernel_eq0 phi; rewrite /eqmor subr0 /= => /dvdmx_trans -> //.

rewrite dvd_ker -mulmxA -[Y *m phi](addrNK X%:m) mulmxDr dvdmxD.

by rewrite ?dvdmx_morphism // dvdmxMl // -dvdmxN opprB.

Qed.

This means that this provides a good setting for doing homological algebra.

Anders Mörtberg PhD Defense December 12, 2014 21 / 24



Conclusions

Anders Mörtberg PhD Defense December 12, 2014 22 / 24



CoqEAL – The Coq effective algebra library1

A refinement based library of computational algebra:

Program refinements: Karatsuba polynomial multiplication O(n1.58),
Strassen matrix multiplication O(n2.8), Sasaki-Murao algorithm O(n3)

Data refinements: Binary integers, non-normalized rationals, list
based polynomials and matrices, sparse polynomials...

Constructive algebra: Finitely presented modules over coherent
strongly discrete rings, elementary divisor rings, homological algebra...

1https://github.com/CoqEAL/CoqEAL/
Anders Mörtberg PhD Defense December 12, 2014 23 / 24

https://github.com/CoqEAL/CoqEAL/


Thank you for your attention!

Anders Mörtberg PhD Defense December 12, 2014 24 / 24


