
An overview of the SSReflect extension
to the Coq system

Anders Mörtberg

May 4, 2011



Background/History

I Extension to Coq

I George Gonthier: formalisation of the four color theorem

I Cayley-Hamilton theorem, decidability of ACF...

I Feit-Thompson theorem (part of the classification of finite
simple groups)



ForMath project1

I ForMath - Formalisation of Mathematics:

I Linear algebra
I Algebraic topology and homological algebra
I Real number computation and numerical analysis

1http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/


Overview

I Library of mathematical theories

I “New” tactics and tacticals

I Small-scale reflection



Libraries

I ∼ 10000 proofs and 3000 definitions

I Boolean reflection, natural numbers (arithmetic, divisibility,
gcd, prime decomposition), big operators, algebraic hierarchy,
polynomials, linear algebra, group theory, etc...



“New” tactics/tacticals

I SSReflect scripts appear to divide evenly between:
I Bookkeeping
I Deduction
I Rewriting

I The features are added not by adding new tactics but by
extending the functionality of existing ones



Bookkeeping

I => tactical moves “up”

I : tactical moves “down”

I Subsumes: intros, generalize, rename, clear, pattern



Deduction

I Bottom-up/Backward reasoning: apply

I Top-down/Forward reasoning: have, suff, wlog



Rewriting

I Extended rewrite tactic:

I Rewrite both in any subset of the goal and context
I Rewrites, simplifies, folding/unfolding, closing of subgoals
I Chained rewriting
I Pattern selection

I Subsumes: rewrite, fold, unfold



Example: rewrite

rewrite /my_def {2}[f _]/= my_eq //=.

I unfold my def

I simplify second occurrence of pattern f

I rewrite using my eq

I simplify/close all generated subgoals



Small Scale Reflection

I Proof methodology

I Relate abstract representations to computable functions

I In ordinary reflection (e.g. the ring or omega tactics) the
symbolic representation form is hidden



Example: ≤

Inductive leq n : nat -> Prop :=

| leq_n : leq n n

| leq_S : forall m, leq n m -> leq n (suc m).

Lemma leq_n_S :

forall n m, leq n m -> leq (suc n) (suc m).

Proof.

intros n m n_leq_m.

elim n_leq_m.

apply leq_n.

intros.

apply leq_S.

assumption.

Qed.



Example: ≤

Fixpoint sub n m := match n, m with

| suc n’, suc m’ => sub n’ m’

| _, _ => n

end.

Fixpoint eq n m := match n, m with

| zero, zero => true

| suc n’, suc m’ => eq n’ m’

| _, _ => false

end.

Definition leq n m := eq (sub n m) zero.



Example: ≤

Lemma leq_n_S :

forall n m, leq n m -> leq (suc n) (suc m).

Proof. by []. Qed.

Lemma leqn0 : forall n, (leq n zero) = (eq n zero).

Proof. by case. Qed.



Boolean reflection

“Prop and bool are truly complementary: the former supports
robust natural deduction, the latter allows brute-force evaluation.
SSReflect supplies a generic mechanism to have the best of the
two worlds and move freely from a propositional version of a
decidable predicate to its boolean version”



Example: Boolean reflection

Coercion is_true (b : bool) := b = true : Prop.

Inductive reflect (P : Prop) : bool -> Type :=

| Reflect_true : P -> reflect P true

| Reflect_false : ~ P -> reflect P false.

Lemma andP : reflect (b1 /\ b2) (b1 && b2).

Proof. by case b1; case b2; constructor=> //; case.

Qed.



Example: Boolean reflection

Variables T1 T2 : eqType.

Definition pair_eq (p q : T1 * T2) :=

(p.1 == q.1) && (p.2 == q.2).

Lemma pair_eq1 :

forall p q : T1 * T2, pair_eq p q -> p.1 == q.1.

Proof. by move=> [a b] [c d]; case/andP. Qed.



Questions?

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th
Framework program of the European Commission


