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1 Introduction

The main motivation in the ForMath project for the formalization of the Smith
normal form algorithm is to compute of homology groups of simplicial complezes.
The goal of this document is to explain what this means and show how it can
be represented in HASKELL. A small application of computing the number of
connected components and holes in digital images is shown in the end of the
document.

The general theory will be explained but the actual computations will be
restricted to the case when the underlying ring is a field which makes things
easier as the computations will be reduced to computations over vector spaces
and we can then use well known methods and theorems from linear algebra.

2 Simplicial complexes

Simplicial complexes are a combinatorial description of topological spaces suit-
able for computation. A vertex set is a nonempty ordered set.

Definition. A simplicial complex X over a vertex set V is a subset of the
powerset 2V such that A C B € X implies that A € X.

Note that there is no restriction on the size of X so simplicial complexes
can be infinite, but in the rest of this document they are assumed to be finite.
Hence they can easily be represented on a computer using lists.

-- The type of a simplex, it is assumed that there is an ordering on a type
type Simplex a = [a]

-— Type of simplicial complexes
type SC a = [Simplex al

Example. A simple example of a simplicial complex (with vertex set N) is

S ={0,{0}, {1}, {2}, {3},{0, 1}, {0, 2},{1,2}, {1,3},{2,3}, {0, 1,2}}



It can be visualized as

and represented in HASKELL as

ex :: SC Z
ex = [[1,[0], 1], (2], (3], [0,1]1,[0,2],(1,2]1,(1,3]1,([2,3]1,[0,1,2]1]

The above example should give the geometric intuition of simplicial com-
plexes and show that they can be viewed as higher dimensional graphs.

An element of X is called a face and a maximal element with respect to
inclusion is called a facet.

Example. The facets of S are {1, 3}, {2,3} and {0, 1,2}. This can be computed
in HASKELL by

> facets ex
[[1,3],[2,3]1,[0,1,2]]

The n-simplices of a simplicial complex is the faces of cardinality n + 1.

Example. The 1-simplices of X are {0,1}, {0,2}, {1,2}, {1, 3} and {2, 3}.

3 Homology of simplicial complexes

Let X be a simplicial complex and let C,, (X, R) be the free abelian group with
basis the set of n-simplices in X with coefficient in R. An element in Cy, (X, R)
is called a n-chain. The n-chains are formal sums ). n;A; where n; € R and
A; € X where A; is an i-simplex. The most common choices for R in algebraic
topology are Z, Q or Z,, for p prime.

Definition. A boundary map is a map 0, : Cp(X,R) — Cp—1(X, R) defined
by

n

On(An) = D (=1)" (4n \ {ai})

=0

where A,, is a n-simplex of X.

Example. An example of a boundary map is 03 : Co(S,Z) — C1(S,Z). For
this map we have

82({07 ]-7 2}) = {17 2} - {07 2} + {Oa 1}



One can prove that 9,_1 0 9, = 0 which give that im(9,) C ker(d,—1) as if
x € Cp(X, R) then 0, (z) € C,—1(X, R) which is mapped to 0 € C,_2(X, R) by
Op—1 but this simply means that 0, (z) € ker(9,—1). This has been implemented
in HASKELL and tested using QUICKCHECK:

propIncidenceMatrix :: Int — SC Z — Property
proplIncidenceMatrix n xs =
n > 0 = allZero (incidenceMatrix n xs ‘mult‘ incidenceMatrix (n-1) xs)

> quickCheck propIncidenceMatrix
+++ 0K, passed 100 tests.

This has also been implemented and proved correct using CoQ and SSREFLECT
by the La’Rioja node of the ForMath project [4].
Hence we get a chain complex of n-chains:

= Cu(X,R) 25 €1 (X, R) — ... — C1(X, R) 25 Co(X, R) -2 0
Which means that we can define
Definition. The n:th homology group H, (X, R) = ker(0y)/im(On+1)-

The intuition behind the homology groups is that they measure the difference
between the simplices in different dimension. One can prove that Ho(X,Z)
measure the number of connected components in X'. For higher dimensions
the homology groups can be seen as measuring the number of (topological)
holes in each dimension.

So how do we compute the homology groups? This is where the Smith
normal form algorithm comes into play. If R = Z (or any other principal ideal
domain) then the Smith normal algorithm give a diagonalization process which
can be used to compute the free part and torsion part of finitely generated
abelian groups as proved in the structure theorem. Using this one obtains an
algorithm for computing the homology groups, this is explained in greater detail
in [1].

But if we restrict our attention to the case when R is a field k the questions is
instead how to compute the kernel and image of linear transformations between
vector spaces, which we know how to do from linear algebra.

In order to do this first we need to represent the boundary maps as matrices,
these matrices are called incidence matrices in [4]. The main idea is that we
let the columns represent n-simplices and the rows (n-1)-simplices and let the
ai; entry be either 0 or =1 depending on the value of the coefficient of the i:th
(n-1)-simplex in the boundary map of the j:th n-simplex.

Example. The first incidence matrix, M, of S is given by:
-1 -1 0 0 0
1 0 -1 -1 0
0o 1 1 0 -1
0O o0 0 1 1

ISee the proof of proposition 2.7 in [3].



as for example 9({0,1}) = {1} — {0}. This give a chain complex

0— Co(S,R) X5 01(S,R) 2 (X, R) X2 0

where My, My and M, are the incidence matrices of 0, 01 and 0y respec-
tively. The higher n-chains are all zero as there are no simplices in higher
dimensions.

This can be computed in HASKELL by

> incidenceMatrix 1 ex
(f-1,-1,0,0,01,1,0,-1,-1,0]1,[0,1,1,0,-1],[0,0,0,1,1]]

Now lets focus on the homology groups of a general chain complex obtained
from the n-chains and incidence matrices of a simplicial complex. These are
defined by H, (X, k) = ker(M,,)/im(M,+1) where M; are the incidence matrix
associated to the boundary map 0;. From linear algebra? we know that the
quotient space is isomorphic to k? where d = dim(ker(M,)) — dim(im(M,1)).
First note that the dimension of the image of M,,; is the rank of M,, 1. The
rank-nullity theorem® now give that dim(ker(M,)) = ¢ — dim(im(M,)) = ¢ —
rank(M,) where ¢ is the number of columns of M, that is, the number of
n-simplices of X. Hence we get

Hn(X, k?) ~ k,c—rank(Mn)—rank(Mw,_H)

which means that the only thing we need is an algorithm for computing the
rank of a matrix for computing the homology groups when the coefficient lie
in a field. To do this we can use the Smith normal form algorithm as it is a
generalization of Gaussian elimination.

Example. If we fix k = Z5 we can apply the Smith normal form algorithm to
M; of § and get that the rank is 3. Similarly we can compute that the rank of
My is 1. Hence we get that

Ho(S,Zo) = (Z)*°7° = 73

as we have four O-simplices. This should be interpreted as S only have
component. The next homology group is

Hi(S,Zs) = (Z2) 7' = Z}

As there are five 1-simplices. The interpretation of this is that there are one
hole in §. For higher dimensions the homology groups are all zero. This can be
computed in HASKELL using a specialized implementation of the Smith normal
form algorithm for sparse matrices over Zs:

?http://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)
Shttp://en.wikipedia.org/wiki/Rank-nullity_theorem



> homology 0 ex
1
> homology 1 ex
1
> homology 2 ex
0

Here some details has been swept under the carpet. The homology groups
are computed over Zs and not Z which leads to the question why we can draw
any conclusion about the number of components and holes at all? The answer
to this come from the universal coefficient theorem* for homology. As the above
example is torsion-free we get that the homology groups computed with coeffi-
cient in Zs are isomorphic to the homology groups computed with coefficients in
Z. The same will hold for the examples of simplicial complexes obtained from
digital images in the next section.

4 Application — Digital images

There is a natural way of associating 2D black and white images with simplicial
complexes explained in detail in [2]. This has been implemented in HASKELL
together with a small implementation of terminal based “images” of characters:

> drawImage b

#it#
# #
#it#
# #
#it#

*Talk> length $ imageToSC b
110

So the simplicial complex related to the image showing a “B” has 110 faces. We
can now compute the homology groups of the simplicial complex related to the
letter “B”:

> homology O $ imageToSC b
1
> homology 1 $ imageToSC b
2
> homology 2 $ imageToSC b
0

So there is one component (the letter) and two holes which is what is ex-
pected for “B”. There is also a small program in which one can write a string
and get the number of connected components and holes:

4http://en.wikipedia.org/wiki/Universal_coefficient_theorem



Please type some text:

homology

You wrote:

# # ## # # ## # ## ### # #
# O# # # ## HH # # # # # # # #
##d#4 # # # # # # # # # # # ## #

# # # # # # # # # # # # # #

#t # ## # # ## H#it## ## #H## #

Zero homology group: Z~°8
Number of connected components: 8

First homology group: Z~°3
Number of holes: 3

This is just a small quite trivial example but it is of course possible to use
the algorithms for analyzing more interesting pictures. The methods also scale
to higher dimensions naturally [2].

I will end with an overview of the program:

1. Representation of digital images

2. Compute simplicial complexes from the images
3. Compute incidence matrices

4. Triangulate using Smith normal form

5. Compute homology
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