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Introduction

I SSRe�ect

I Rings with explicit divisibility

I GCD domains
I Bézout domains
I Euclidean rings

I Smith normal form

I Constructive PIDs



SSRe�ect

I Extension to Coq

I George Gonthier: formalization of the four color theorem

I Cayley-Hamilton theorem, decidability of ACF...

I Feit-Thompson theorem (part of the classi�cation of �nite

simple groups)



SSRe�ect

I Small Scale Re�ection

I New tactics and tacticals

I Library of mathematical theories



DvdRing

I A ring R has explicit divisibility if it has a divisibility test that

give witnesses:

a | b ↔ ∃x . b = xa

I Z and k[x ] where k is a �eld (e.g. Q)



DvdRing

I Demo!



GCD domains

I GCD domain: Every pair of elements have a greatest common

divisor

∀a b.∃g . g | a ∧ g | b ∧ ∀g ′. g ′ | a ∧ g ′ | b → g ′ | g



Properties of GCD domains

De�nition

The gcd of the coe�cients of p ∈ R[x ] is called the content of p,

written cont(p)

De�nition

p ∈ R[x ] is primitive if cont(p) = 1

Theorem

Gauss lemma: cont(pq) = cont(p)cont(q)

Theorem

Every polynomial p ∈ R[x ] can be written as p = cont(p)q with q

primitive



Properties of GCD domains

I Using this one can give an algorithm for computing the gcd of

p, q ∈ R[x ]

I Give a proof that if R is a GCD domain then R[x ] also is

I Don't use �eld of fractions!

I Can compute gcd in Z[x1, . . . , xn] and k[x1, . . . , xn]



Bézout domains

I Non-Noetherian analogue of principal ideal domains

I PID: Every ideal is principal

I Quanti�cation over all ideals

I Bézout domain: Every �nitely generated ideal is principal

I Equivalent de�nition:

∀a b.∃x y . ax + by = gcd(a, b)



Euclidean rings

I Euclidean norm, f : R → N
I Euclidean division: ∀a b.∃q r . a = bq + r and either

f (r) < f (b) or r = 0

I Examples: Z with absolute value and k[x ] with degree



Bézout domains and Euclidean rings

Theorem

Every Euclidean ring is a Bézout domain

Theorem

Every Bézout domain is a GCD domain

Theorem

Z is a Euclidean ring

Theorem

k[x ] is a Euclidean ring



Smith normal form

I Generalization of Gauss elimination algorithm

I Elements from a PID and not just a �eld

I Compute homology groups of simplicial complexes

I �Homology is a rigorous mathematical method for detecting

and categorizing holes in a shape.� - Wikipedia



Smith normal form

I Let A be a nonzero m × n matrix over a PID. There exists

invertible m ×m and n × n matrices S,T such that

SAT =



α1 0 0 · · · 0

0 α2 0 · · · 0

0 0
. . . 0

αr

...
... 0

. . .

0 · · · 0


and αi | αi+1 , 1 ≤ i < r



Smith normal form

I Open question for Bézout domains

I Need constructive approximation of PIDs



Constructive PIDs

I Mines, Richman, Ruitenburg: Bézout domains such that if we

have a sequence u(n) with u(n + 1) | u(n) then there exists k

such that u(k) | u(k + 1)

I In type theory this can be represented as that strict divisibility

is well founded



Summary

...

IntegralDomain

DvdRing

GcdRing

BezoutRing

Constructive PID

EuclideanRing



Conclusions and further work

I Have: Divisibility theory in SSRe�ect

I Formalized algorithms for Z and k[x ]

I Todo: R GCD domain implies R[x ] GCD domain

I Have: Smith normal form algorithm in Haskell

I Todo: Formalize Smith normal form algorithm
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