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Introduction

Goal: represent and reason about languages with binders using category
theory in type theory

Start with a simple notion of signature representing a language with
binders and from this construct a monad for this language
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Why monads?

-- A monad is a type family M with return and bind:
return : a → M a
(>>=) : M a → (a → M b) → M b

-- We can define Kleisli composition for any monad:
(>=>) : (a → M b) → (b → M c) → (a → M c)

-- The monad laws can be written as:
return a >>= t = t a
t >>= return = t
(t >>= σ1) >>= σ2 = t >>= (σ1 >=> σ2)
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Why monads?

-- Substitution is a monad:
var : a → Tm a
_[_] : Tm a → (a → Tm b) → Tm b

-- Kleisli composition is composition of substitutions:
_;_ : (a → Tm b) → (b → Tm c) → (a → Tm c)

-- Monad laws are rules for substitution:
(var a) [σ] = σ a
t [λx → var x] = t
(t [σ1]) [σ2] = t [σ1 ; σ2]
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Overall structure

Binding signature
Set of lists of nat

Signature with strength
H : [C, C]→ [C, C] with strength θ

Heterogeneous substitution system
(Id +H)-algebra with structure

Monad on C

Formalized in UniMath: https://github.com/UniMath/UniMath
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UniMath: Univalent Mathematics

It is a core language of dependent type theory
I rich enough to formalize mathematics
I simple enough to allow for proof of consistency
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What UniMath has

Type former Notation (special case)
Inhabitant a : A
Dependent type x : A ` B(x)
Sigma type

∑
(x:A)B(x) A×B

Product type
∏

(x:A)B(x) A→ B

Coproduct type A+B
Identity type Id A a b, a = b
Universe U
nat, bool, 1, 0

I Univalence axiom
I Consistent: simplicial and cubical set models
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Voevodsky’s univalence axiom

Univalence axiom: equality of types is equivalent to equivalence of types

univalence : Equiv (A = B) (Equiv A B)

Univalence adds extensionality principles to intensional type theory:
I Function extensionality
I Propositional extensionality
I Set quotients
I Invariance under equivalence of types
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UniMath implementation

In practice, the UniMath language is a fragment of the Calculus of
Inductive Constructions implemented in the Coq proof assistant with:

I Function extensionality and univalence added as axioms

I Type : Type (as a way to implement resizing)
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UniMath implementation

General purpose libraries:
I Foundations
I Number systems
I Algebra
I Category theory
I Homological algebra
I ...
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What UniMath doesn’t have

I General inductive types
I Record types
I Higher inductive types

In this talk I will describe a general framework for constructing various
datatypes as initial algebras in UniMath

This means that inductive types do not have to be added to the core of
UniMath, but can instead be justified in terms of the other notions
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Overall structure

Binding signature
Set of lists of nat

Signature with strength
H : [C, C]→ [C, C] with strength θ

Heterogeneous substitution system
(Id +H)-algebra with structure

Monad on C
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A simple notion of signature for variable binding

Binding signature:
I A type I with decidable equality (“constructors”) and
I a function arity : I → [nat]

Example: untyped lambda calculus
Inductive LC (X : Type) :=
| var : X -> LC X
| app : LC X * LC X -> LC X
| abs : LC (option X) -> LC X

I :={app, abs}
arity(app) = [0, 0]

arity(abs) = [1]
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A categorical notion of signature for variable binding

Signature with strength (Matthes & Uustalu)

I a functor H : [C, C]→ [C, C]
I a natural transformation between bifunctors

θ : (H−) · U(∼) −→ H(− · U(∼))

satisfying some axioms

Given (X, (Z, e)) with X : [C, C] and (Z, e) : Ptd(C) we get:

θX,(Z,e) : HX · Z → H(X · Z)
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Untyped lambda calculus

The untyped lambda calculus as a binding signature:

I :={app, abs}
arity(app) = [0, 0]

arity(abs) = [1]

The untyped lambda calculus as a signature with strength:
I H(F ) := F × F + F · option
I θ := . . .
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From binding signatures to signatures with strength

Let (I, arity) be a binding signature and i : I. To the list
arity(i) = [n1, . . . , nk] we associate the functor:

[C, C]→ [C, C]

F 7→
∏

16j6k

F · optionnj

The functor associated to the signature (I, arity) is then obtained as the
coproduct of the functors associated to each arity
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From binding signatures to signatures with strength

H : [C, C]→ [C, C]

F 7→
∐
i:I

∏
16j6length(arity(i))

F · optionarity(i)j

For details on how to construct θ see the paper

We want to instantiate this with C = Set, for this I has to be a set
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Recall: overall structure

Binding signature
Set of lists of nat

Signature with strength
H : [C, C]→ [C, C] with strength θ

Heterogeneous substitution system
(Id +H)-algebra with structure

Monad on C
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Heterogeneous substitution system

Definition (Matthes & Uustalu)
Let (H, θ) be a signature with strength. A heterogeneous substitution
system (hss) is a (Id +H)-algebra (T, α) with some extra structure

This means
α : (Id +H)T → T

which gives two natural transformations η : Id→ T and τ : HT → T

ηC : C → TC is the injection of variables and τ represents all the other
constructors of the language
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Heterogeneous substitution systems and monads

Theorem (Matthes & Uustalu, formalized by Ahrens & Matthes)
If (T, α) is a hss for (H, θ) then T is a monad with η as unit and join
defined using the extra structure of (T, α)

Theorem (Ahrens, Matthes & M.)
If H is ω-cocontinuous then we can construct a hss (T, α) as the initial
algebra of (Id +H)

This is a variation of a previous result of Matthes & Uustalu which
required the existence of a particular right adjoint which made it not
applicable to Set
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Recall: overall structure

Binding signature
Set of lists of nat

Signature with strength
H : [C, C]→ [C, C] with strength θ

Heterogeneous substitution system
(Id +H)-algebra with structure

Monad on C

?
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Datatypes as initial algebras

Need to construct initial algebra for (Id +H) : [C, C]→ [C, C]

We do this for general endofunctors F : D → D satisfying some
conditions

From this we can construct many inductive types in UniMath, not only
those representing language with binders (e.g. lists, trees...)
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Formal definition of inductive types

What are inductive types?
Two characterizations:

external via inference rules
internal via universal property – as initial algebra

Our goal
We are interested in internally characterized inductive types, and their
construction in the UniMath language
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Why the need for a systematic construction?

Some inductive types are easily constructed, e.g., lists over a given base
type:

I Vect(A,n) := An

I [A] :=
∑

(n:nat) Vect(A,n)

But it is not always that easy

Exercise
Define an equivalent type to LC from above using just the UniMath
language
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Datatypes categorically: lists of sets

In order to construct lists of over a set A we start with the list functor:

LA(X) = 1 +A×X

Assuming that we can construct initial algebras we get

µLA : Set α : 1 +A× µLA → µLA

From α we get the constructors:

nil : µLA cons : A→ µLA → µLA
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Datatypes categorically: lists of sets

As (µLA, α) is initial we get for any set X, element x : X and
f : A×X → X a unique function foldr : µLA → X satisfying:

1 +A× µLA α //

LA(foldr)
��

µLA

foldr
��

1 +A×X
[λ .x,f ] // X

That is,

foldr nil = x

foldr (cons y ys) = f (y, foldr ys)

SSTT 2017: From binding signatures to monads in UniMath February 1, 2017 - 26 / 45



Construction of initial algebras in UniMath

Initial algebra of F : C → C (Adámek)
If F is ω-cocontinuous, then the colimit of

0→ F0→ F 20→ . . .

is an initial F -algebra

We hence need:
I Initial object, 0 : C
I Colimits of chains in C
I Proof that F is ω-cocontinuous
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Construction of initial algebras in UniMath

If C = Set we can easily prove that the empty set is initial, but what
about colimits?

Colimits can be constructed from coproducts and coequalizers:
I in plain type theory we have coproducts
I in univalent type theory, additionally have set quotients

a.k.a. coequalizers in Set

Restriction
This approach only allows construction of inductive sets
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Set quotients in UniMath

Voevodsky has defined set quotients X/R for an equivalence relation
R : X → X → hProp

This construction uses function extensionality and univalence for
propositions

It also uses an impredicative encoding of propositional truncation:

||A|| := Π(P :hProp)(A→ P )→ P

which requires propositional resizing
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ω-cocontinuous functors

For the example of lists we need to prove that LA(X) = 1 +A×X is
ω-cocontinuous

We can write this “point-free” as: LA = 1 +A×

So we need to prove that the following functors are ω-cocontinuous:
I Constant functor
I Sum of functors (F +G : Set→ Set)
I Product with a fixed element (A× : Set→ Set)

All of these are straightforward (using that left adjoints preserve colimits)
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ω-cocontinuous functors

Recall that we want to construct initial algebras for the functor:

H : [C, C]→ [C, C]

F 7→
∐
i:I

∏
16j6length(arity(i))

F · optionarity(i)j

For this we also need that the following functors are ω-cocontinuous:
I Coproducts of a family of functors
I Product of functors
I Precomposition with option

These are a lot more difficult!
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ω-cocontinuous functors: product of functors

Key lemma: The functor × : C2 → C is ω-cocontinuous for C cartesian
closed

Proof idea: Given a diagram

(A0, B0)
(f0,g0) // (A1, B1)

(f1,g1) // (A2, B2)
(f2,g2) // . . .

with colimit (L,R), we need to show that L×R is the colimit of

A0 ×B0
f0×g0 // A1 ×B1

f1×g1 // A2 ×B2
f2×g2 // . . .
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ω-cocontinuous functors: product of functors

To this end, we consider the grid

(A0, B0)
(f0,1) //

(1,g0)
��

(A1, B0)
(f1,1) //

(1,g0)
��

(A2, B0)
(f2,1) //

��

. . .

(A0, B1)
(f0,1) //

(1,g1) ��

(A1, B1)
(f1,1) //

��

(A2, B1)
(f2,1) //

��

. . .

...
...

...
...
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ω-cocontinuous functors: product of functors
Proof idea is simple, but formalization hard because the type of the
arrows involves a lot of index manipulations:
Definition fun_lt (cAB : chain (C * C)) :

Π i j, i < j → C[ob1 (dob cAB i) × ob2 (dob cAB j),
ob1 (dob cAB j) × ob2 (dob cAB j)].

Proof.
intros i j hij.
apply (BinProductOfArrows (chain_mor cAB hij) (identity _)).
Defined.

Definition map_to_K (cAB : chain (C * C)) (K : C)
(ccK : cocone (mapchain (×) cAB) K) i j :
C[ob1 (dob cAB i) × ob2 (dob cAB j),K].

Proof.
destruct (natlthorgeh i j) as [Hlt|Hge].
- apply (fun_lt cAB _ _ Hlt ;; coconeIn ccK j).
- destruct (natgehchoice _ _ Hge) as [Hlt|Heq].
+ apply (fun_gt cAB _ _ Hlt ;; coconeIn ccK i).
+ destruct Heq; apply (coconeIn ccK i).

Defined.
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Recall: overall structure

Binding signature
Set of lists of nat

Signature with strength
H : [C, C]→ [C, C] with strength θ

Heterogeneous substitution system
(Id +H)-algebra with structure

Monad on C
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From signatures to monads in UniMath

We have defined the following function in UniMath:
Definition BindingSigToMonad :
Π (C : Precategory) (BPC : BinProducts C),

BinCoproducts C → Terminal C → Initial C
→ Colims_of_shape nat_graph C
→ (Π F, is_omega_cocont (constprod_functor1 F))
→ Π sig : BindingSig, Products (BindingSigIndex sig) C
→ Coproducts (BindingSigIndex sig) C
→ Monad C.

All of the hypotheses are fulfilled by Set:

Definition BindingSigToMonadHSET : BindingSig → Monad HSET.
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Example: untyped lambda calculus

The untyped lambda calculus is represented by the binding signature:

I :={app, abs}
arity(app) = [0, 0]

arity(abs) = [1]

This is easily implemented in UniMath:
Definition LamSig : BindingSig :=
mkBindingSig isdeceqbool (λ b, if b then [0,0] else [1]).

Definition LamMonad : Monad HSET := BindingSigToMonadHSET LamSig.
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MLTT79

Types Concrete syntax Binding arities

Pi types (Πx:A)B, (λ x)b, (c)a [0,1], [1], [0,0]
Sigma types (Σx:A)B, (a,b), (Ex,y)(c,d) [0,1], [0,0], [0,2]
Sum types A + B, i(a), j(b), (Dx,y)(c,d,e) [0,0], [0], [0], [0,1,1]
Id types I(A,a,b), r, J(c,d) [0,0,0], [], [0,0]
Fin types Ni, 0i · · · (i− 1)i, Ri(c,c0,...,ci−1) [], [] · · · [], [0,0,...,0]
Natural numbers N, 0, a’, (Rx,y)(c,d,e) [], [], [0], [0,0,2]
W-types (Wx∈A)B, sup(a,b), (Tx,y,z)(c,d) [0,1], [0,0], [0,3]
Universes U0, U1, ... [], [], ...

This is an example of a language with infinitely many constructors
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MLTT79 in UniMath

Definition PiSig : BindingSig :=
mkBindingSig (isdeceqstn 3) (three_rec [0,1] [1] [0,0]).

Definition SigmaSig : BindingSig :=
mkBindingSig (isdeceqstn 3) (three_rec [0,1] [0,0] [0,2]).

...

Definition USig : BindingSig := mkBindingSig isdeceqnat (λ _, []).

Definition MLTT79Sig := PiSig ++ SigmaSig ++ SumSig ++ IdSig ++
FinSig ++ NatSig ++ WSig ++ USig.

Definition MLTT79Monad : Monad HSET :=
BindingSigToMonadHSET MLTT79Sig.
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Summary

We have formalized:
I Translation from binding signatures to monads
I Examples: untyped lambda calculus and MLTT79
I General framework for constructing datatypes as initial algebras in

UniMath

We have used function extensionality and univalence for propositions
which both had to be added as axioms to Coq... Computation?
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Example: lists in UniMath

Definition length : List A → nat :=
foldr natHSET 0 (λ _ (n : nat), 1 + n).

Eval lazy in length (5 :: 2 :: []).
> 2 : nat

Eval compute in length (5 :: 2 :: []).
> ...

Eval lazy in [].
> ...
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Example: lists in UniMath

Lemma foldr_nil (X : hSet) (x : X) (f : A → X → X) :
foldr X x f nil = x.

Lemma foldr_cons (X : hSet) (x : X) (f : A → X → X) (a : A) (l : List A) :
foldr X x f (cons a l) = f a (foldr X x f l).

Lemma listIndhProp (P : List A → hProp) :
P nil → (Π a l, P l → P (cons a l)) → Π l, P l.

Lemma length_map (f : A → A) : Π xs, length (map f xs) = length xs.
Proof.
apply listIndProp; simpl.
- apply idpath.
- unfold length, map; intros a l IH.
now rewrite !foldr_cons, <- IH.

Qed.
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Future goals

I Multisorted signatures (STLC, System F...)
I Show that the datatype together with the constructed substitution

operation is initial in a category of “algebras with substitution“
I Connect to Voevodsky’s work on C-systems and models of type

theory
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Thank you for your attention!

https://arxiv.org/abs/1612.00693
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