
Cubical Type Theory

Anders Mörtberg
(jww C. Cohen, T. Coquand, and S. Huber)

Institute for Advanced Study, Princeton

July 13, 2016

Anders Mörtberg Cubical Type Theory July 13, 2016 1 / 20



Introduction

Goal: provide a computational justification for notions from Homotopy
Type Theory and Univalent Foundations, in particular the univalence
axiom and higher inductive types

Specifically, design a type theory with good properties (normalization,
decidability of type checking, etc.) where the univalence axiom computes
and which has support for higher inductive types

Anders Mörtberg Introduction July 13, 2016 2 / 20



Cubical Type Theory

An extension of dependent type theory which allows the user to directly
argue about n-dimensional cubes (points, lines, squares, cubes etc.)
representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory

Each type has a “cubical” structure – presheaf extension of type theory

The univalence axiom is provable in the system and we have an
implementation in Haskell

Anders Mörtberg Introduction July 13, 2016 3 / 20



Demo!

Anders Mörtberg Introduction July 13, 2016 4 / 20



Univalence

We have formalized a proof of univalence in the system:

thmUniv (t : (A X : U) → Path U X A → equiv X A) (A : U) :
(X : U) → isEquiv (Path U X A) (equiv X A) (t A X) =
equivFunFib U (λ(X : U) → Path U X A) (λ(X : U) → equiv X A)

(t A) (lemSinglContr’ U A) (univalenceAlt A)

univalence (A B : U) : equiv (Path U A B) (equiv A B) =
(transEquiv B A,thmUniv transEquiv B A)

Anders Mörtberg cubicaltt July 13, 2016 5 / 20



Normal form of univalence

We can compute and typecheck the normal form of thmUniv:

module nthmUniv where

import univalence

nthmUniv : (t : (A X : U) → Path U X A → equiv X A) (A : U)
(X : U) → isEquiv (Path U X A) (equiv X A) (t A X) = \(t : (A X : U)
→ (PathP (<!0> U) X A) → (Sigma (X → A) (λ(f : X → A) → (y : A)
→ Sigma (Sigma X (λ(x : X) → PathP (<!0> A) y (f x))) (λ(x : Sigma X
(λ(x : X) → PathP (<!0> A) y (f x))) → (y0 : Sigma X (λ(x0 : X) →
PathP (<!0> A) y (f x0))) → ...

It takes 8min to compute the normal form, it is about 12MB and it takes
50 hours to typecheck it!

Anders Mörtberg cubicaltt July 13, 2016 6 / 20



Normal form of univalence

We can compute and typecheck the normal form of thmUniv:

module nthmUniv where

import univalence

nthmUniv : (t : (A X : U) → Path U X A → equiv X A) (A : U)
(X : U) → isEquiv (Path U X A) (equiv X A) (t A X) = \(t : (A X : U)
→ (PathP (<!0> U) X A) → (Sigma (X → A) (λ(f : X → A) → (y : A)
→ Sigma (Sigma X (λ(x : X) → PathP (<!0> A) y (f x))) (λ(x : Sigma X
(λ(x : X) → PathP (<!0> A) y (f x))) → (y0 : Sigma X (λ(x0 : X) →
PathP (<!0> A) y (f x0))) → ...

It takes 8min to compute the normal form, it is about 12MB and it takes
50 hours to typecheck it!

Anders Mörtberg cubicaltt July 13, 2016 6 / 20



Computing with univalence

Can we do something even though the normal form is so huge?

Yes!

We have done multiple experiments:

Equivalence between unary and binary numbers

Set quotients

...

Anders Mörtberg cubicaltt July 13, 2016 7 / 20



Computing with univalence

Can we do something even though the normal form is so huge?

Yes!

We have done multiple experiments:

Equivalence between unary and binary numbers

Set quotients

...

Anders Mörtberg cubicaltt July 13, 2016 7 / 20



Computing with univalence

Can we do something even though the normal form is so huge?

Yes!

We have done multiple experiments:

Equivalence between unary and binary numbers

Set quotients

...

Anders Mörtberg cubicaltt July 13, 2016 7 / 20



Computing with univalence: unary and binary numbers

Natural numbers can be represented either in unary (zero and successor)
or binary (lists of zeroes and ones)

The unary representation is good for proofs, but not for computations

The binary representation is good for computations, but not for proofs

Anders Mörtberg cubicaltt July 13, 2016 8 / 20



Computing with univalence: unary and binary numbers

data pos = pos1
| x0 (p : pos)
| x1 (p : pos)

data binN = binN0
| binNpos (p : pos)

NtoBinN : nat → binN = ...
BinNtoN : binN → nat = ...

NtoBinNK : (n:nat) → Path nat (BinNtoN (NtoBinN n)) n = ...
BinNtoNK : (b:binN) → Path binN (NtoBinN (BinNtoN b)) b = ...

equivBinNN : equiv binN nat =
(BinNtoN,gradLemma binN nat BinNtoN NtoBinN NtoBinNK BinNtoNK)

PathbinNN : Path U binN nat = <i> Glue nat [ (i = 0) → (binN,equivBinNN)
, (i = 1) → (nat,idEquiv nat) ]

Anders Mörtberg cubicaltt July 13, 2016 9 / 20



Computing with univalence: unary and binary numbers

Can transport properties and structures between the types, but we would
also like to prove properties of nat by computing with binN

For example we might want to prove

220 ∗ x = 25 ∗ (215 ∗ x)

for x some large number, like 210

Anders Mörtberg cubicaltt July 13, 2016 10 / 20



Computing with univalence: unary and binary numbers

data Double = D (A : U) (double : A → A) (elt : A)

carrier : Double → U = split

D c _ _ → c
double : (D : Double) → (carrier D → carrier D) = split

D _ op _ → op
elt : (D : Double) → carrier D = split

D _ _ e → e

doubleN : nat → nat = split

zero → zero
suc n → suc (suc (doubleN n))

DoubleN : Double = D nat doubleN n1024

doubleBinN : binN → binN = split

binN0 → binN0
binNpos p → binNpos (x0 p)

DoubleBinN : Double = D binN doubleBinN bin1024

Anders Mörtberg cubicaltt July 13, 2016 11 / 20



Computing with univalence: unary and binary numbers

−− Compute: 2ˆn ∗ x
doubles (D : Double) (n : nat) (x : carrier D) : carrier D =
iter (carrier D) n (double D) x

−− The property: 2ˆ20 ∗ x = 2ˆ5 ∗ (2ˆ15 ∗ x)
propDouble (D : Double) : U =
Path (carrier D) (doubles D n20 (elt D))

(doubles D n5 (doubles D n15 (elt D)))

> :n propDouble DoubleBinN
NORMEVAL: PathP (<!0> binN) (binNpos (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0

(x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (
x0 (x0 pos1))))))))))))))))))))))))))))))) (binNpos (x0 (x0 (x0 (x0 (x0 (x0
(x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (
x0 (x0 (x0 (x0 (x0 (x0 pos1)))))))))))))))))))))))))))))))

Time : 0m0.001s

> :n propDouble DoubleN
Segmentation fault

Anders Mörtberg cubicaltt July 13, 2016 12 / 20



Computing with univalence: unary and binary numbers

−− Using univalence we can prove
eqDouble : Path Double DoubleN DoubleBinN = ...

propDoubleImpl : propDouble DoubleBinN → propDouble DoubleN =
substInv Double propDouble DoubleN DoubleBinN eqDouble

propBin : propDouble DoubleBinN = <i> doublesBinN n20 (elt DoubleBinN)

goal : propDouble DoubleN = propDoubleImpl propBin

Anders Mörtberg cubicaltt July 13, 2016 13 / 20



Computing with univalence: set quotients

Univalent foundations and homotopy type theory provides new ways for
doing quotients in type theory:

Voevodsky’s impredicative set quotients

Higher inductive types

Anders Mörtberg cubicaltt July 13, 2016 14 / 20



Computing with univalence: set quotients

hsubtypes (X : U) : U = X → hProp

hrel (X : U) : U = X → X → hProp

setquot (X : U) (R : hrel X) : U = (A : hsubtypes X) ∗ (iseqclass X R A)

setquotpr (X : U) (R : eqrel X) (x : X) : setquot X R = ...

−− Proof of this uses univalence for propositions:
setquotunivprop (X : U) (R : eqrel X) (P : setquot X R → hProp)
(ps : (x : X) → P (setquotpr X R x)) (c : setquot X R) : P c = ...

Anders Mörtberg cubicaltt July 13, 2016 15 / 20



Computing with univalence: set quotients

dec (A : U) : U = or A (neg A)

isdecprop (X : U) : U = and (prop X) (dec X)

discrete (A : U) : U = (a b : A) → dec (Path A a b)

discretesetquot (X : U) (R : eqrel X) (is : (x x’ : X) → isdecprop (R x x’)) :
discrete (setquot X R) = ...

Anders Mörtberg cubicaltt July 13, 2016 16 / 20



Computing with univalence: set quotients

−− Shorthand for nat ∗ nat
nat2 : U = and nat nat

rel : eqrel nat2 = (r,rem)
where

r : hrel nat2 = \(x y : nat2) →
(Path nat (add x.1 y.2) (add x.2 y.1),natSet (add x.1 y.2) (add x.2 y.1))

rem : iseqrel nat2 r = ...

hz : U = setquot nat2 rel
zeroz : hz = setquotpr nat2 rel (zero,zero)
onez : hz = setquotpr nat2 rel (one,zero)

Anders Mörtberg cubicaltt July 13, 2016 17 / 20



Computing with univalence: set quotients

discretehz : discrete hz = discretesetquot nat2 rel rem
where

rem (x y : nat2) : isdecprop (rel.1 x y).1 =
(natSet (add x.1 y.2) (add x.2 y.1),natDec (add x.1 y.2) (add x.2 y.1))

discretetobool (X : U) (h : discrete X) (x y : X) : bool = rem (h x y)
where

rem : dec (Path X x y) −> bool = split
inl _ → true
inr _ → false

> :n discretetobool hz discretehz zeroz onez
NORMEVAL: false
Time: 0m0.592s

> :n discretetobool hz discretehz onez onez
NORMEVAL: true
Time: 0m0.571s

Anders Mörtberg cubicaltt July 13, 2016 18 / 20



Computing with univalence

We have tried other examples as well:

Fundamental group of the circle (compute winding numbers)

Dan Grayson’s definition of the circle using Z-torsors and a proof that
it is equivalent to the HIT circle (by Rafaël Bocquet)

Structure identity principle for categories (by Rafaël Bocquet)

Representation of universe categories and C-systems, and a proof that
two equivalent universe categories give two equal C-systems (by
Rafaël Bocquet)

Z as a HIT

T ' S1 × S1 (by Dan Licata, 60 LOC)

...

Anders Mörtberg cubicaltt July 13, 2016 19 / 20



Thank you for your attention!

Anders Mörtberg The end! July 13, 2016 20 / 20


