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(jww C. Cohen, T. Coquand, and S. Huber)

Institute for Advanced Study, Princeton

May 19, 2016
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Introduction

Goal: provide a computational justification for notions from Homotopy
Type Theory and Univalent Foundations, in particular the univalence
axiom and higher inductive types1

Specifically, design a type theory with good properties (normalization,
decidability of type checking, etc.) where the univalence axiom computes
and which has support for higher inductive types

1Slogan: “Making equality great again!”
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Cubical Type Theory

An extension of dependent type theory which allows the user to directly
argue about n-dimensional cubes (points, lines, squares, cubes etc.)
representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory

Each type has a “cubical” structure – presheaf extension of type theory
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Cubical Type Theory

Extends dependent type theory with:

1 Path types

2 Kan composition operations

3 Glue types

4 Higher inductive types
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Path types

Path types provides a convenient syntax for reasoning about higher
equality proofs

Contexts can contain variables in the interval:

Γ `
Γ, i : I `

Formal representation of the interval, I:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

i, j, k... formal symbols/names representing directions/dimensions
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Path types

i : I ` A corresponds to a line:

A(i0) A(i1)A
i

i : I, j : I ` A corresponds to a square:

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A

A(j0)

A(i0) A(i1)

and so on...
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Path types

Γ ` A Γ, i : I ` t : A

Γ ` 〈i〉 t : Path A t(i0) t(i1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A

Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

Γ ` A Γ, i : I ` t : A

Γ ` (〈i〉 t) r = t(i/r) : A
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Path types

Path abstraction, 〈i〉 t, binds the name i in t

t(i0) t(i1)t
i

t(i0) t(i1)
〈i〉 t

Path application, t r, applies a term t to an element r : I

a bt
i

b a
t (1−i)

i
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Path types are great!

Function extensionality for path types can be proved as:

Γ ` f, g : (x : A)→ B Γ ` p : (x : A)→ Path B (f x) (g x)

Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

We can also prove contractibility of singletons2:

Γ ` p : Path A a b

Γ ` 〈i〉 (p i, 〈j〉 p (i ∧ j)) : Path ((x : A)× (Path A a x)) (a, 1a) (b, p)

But we cannot yet compose paths...

2or “Vacuum Cleaner Power Cord Principle”
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Kan composition operations

We want to be able to compose paths:

a b
p

b c
q

We do this by computing the dashed line in:

a c

a bp

a q

In general this corresponds to computing the missing sides of
n-dimensional cubes
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Kan composition operations

Box principle: any open box has a lid

Cubical version of the Kan condition for simplicial sets:

“Any horn can be filled”

First formulated by Daniel Kan in “Abstract Homotopy I” (1955) for
cubical complexes
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Partial elements

To formulate this we need syntax for representing partially specified
n-dimensional cubes

We add context restrictions Γ, ϕ where ϕ is a “face” formula

If Γ ` A and Γ, ϕ ` a : A then a is a partial element of A of extent ϕ

If Γ, ϕ ` A then A is a partial type of extent ϕ
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Examples of partial types

i : I, (i = 0) ∨ (i = 1) ` A A(i0) • • A(i1)

i j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)
A(j0)

A(i0) A(i1)

The face lattice F is a bounded distributive lattice on formal generators
(i = 0) and (i = 1) with relation (i = 0) ∧ (i = 1) = 0F
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Partial elements

Any judgment valid in a context Γ is also valid in a restriction Γ, ϕ

Γ ` A
Γ, ϕ ` A

Contexts Γ are modeled by cubical sets

Restriction operation correspond to a cofibration:

Γ, ϕ→ Γ
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Face lattice

An element Γ, ϕ ` a : A is connected if we have Γ ` b : A such that
Γ, ϕ ` a = b : A

We write Γ ` b : A[ϕ 7→ a] and say that b witnesses that a is connected

This generalizes the notion of being path connected. Let ϕ be
(i = 0) ∨ (i = 1), an element b : A[ϕ 7→ a] is a line:

a(i0) a(i1)b
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Box principle

We can now formulate the box principle in type theory:

Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)[ϕ 7→ u(i0)]

Γ ` compi A [ϕ 7→ u] a0 : A(i1)[ϕ 7→ u(i1)]

u is a partial path connected at i = 0 specifying the sides of the box
a0 is the bottom of the box
compi witnesses that u is connected at i = 1

The equality judgments for the composition operation are defined by
induction on A – this is the main part of the system
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Kan composition: example

With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

a c

a b
p i

a q j
j

i
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Kan composition: transport

Composition for ϕ = 0F corresponds to transport:

Γ, i : I ` A Γ ` a : A(i0)

Γ ` transporti A a = compi A [] a : A(i1)

Together with contractibility of singletons we can prove path induction
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Glue types

We extend the system with Glue types, these allow us to:

Define composition for the universe

Prove univalence

Composition for these types is the most complicated part of the system
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Univalence?

What is needed in order to prove univalence?

For all types A and B we need to define a term:

ua : Equiv (Path U A B) (Equiv A B)

showing that the canonical map

pathToEquiv : Path U A B → Equiv A B

is an equivalence
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Univalence?

The following is an alternative characterization of univalence:

Univalence axiom

For any type A : U the type (T : U)× Equiv T A is contractible

This is a version of contractibility of singletons for equivalences. So if we
can also transport along equivalences we get an induction principle for
equivalences.
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Univalence?

We can prove:

Lemma

The type isContr A is inhabited iff we have an operation:

Γ, ϕ ` u : A

Γ ` ext [ϕ 7→ u] : A[ϕ 7→ u]

So to prove univalence it suffices to show that any partial element

Γ, ϕ ` (T, e) : (T : U)× Equiv T A

extends to a total element
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Example: unary and binary numbers

Let nat be unary natural numbers (0 and successor) and binnat be binary
natural numbers (lists of 0 and 1). We have an equivalence

e : binnat→ nat

and we want to construct a path P with P (i0) = nat and
P (i1) = binnat:

nat binnat
P
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Example: unary and binary numbers

P should also store information about e,3 we achieve this by “glueing”:

nat binnat

nat nat

P

id ∼ e∼

nat

We write

i : I ` P = Glue [(i = 0) 7→ (nat, id), (i = 1) 7→ (binnat, e)] nat

3“Evidence matters!” - Bob Harper on Monday
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Glue: more generally

In the case when ϕ is (i = 0) ∨ (i = 1) the glueing operation can be
illustrated as the dashed line in:

T0 T1

A(i0) A(i1)

e(i0) ∼ e(i1)∼

A
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Glue: even more generally

We assume that we are given

Γ ` A
A partial type Γ, ϕ ` T
An equivalence Γ, ϕ ` e : T → A

From this we define

A total type Γ ` Glue [ϕ 7→ (T, e)] A

A map Γ ` unglue : Glue [ϕ 7→ (T, e)] A→ A

such that Glue [ϕ 7→ (T, e)] A and unglue are extensions of T and e:

Γ, ϕ ` T = Glue [ϕ 7→ (T, e)] A Γ, ϕ ` e = unglue : T → A
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Glue: diagrammatically

T

A A

Γ, ϕ Γ

e

∼
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Glue: diagrammatically

T Glue

A A

Γ, ϕ Γ

e

∼
unglue
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Rules for Glue

Γ ` A Γ, ϕ ` T Γ, ϕ ` e : Equiv T A

Γ ` Glue [ϕ 7→ (T, e)] A

Γ, ϕ ` e : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ e t]

Γ ` glue [ϕ 7→ t] a : Glue [ϕ 7→ (T, e)] A

Γ ` b : Glue [ϕ 7→ (T, e)] A

Γ ` unglue b : A

together with equality judgments
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Composition for Glue

Let Γ, i : I ` B = Glue [ϕ 7→ (T, e)] A. Given

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]

The algorithm computes

b1 = compi B [ψ 7→ b] b0

such that:

Γ ` b1 : B(i1)[ψ 7→ b(i1)] Γ, δ ` b1 : T (i1)

where δ is the part of ϕ that doesn’t mention i

Composition for Glue is the most complicated part of the system
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Composition for Glue in Nuprl

comp(Glue [phi 7→ T,f] A) =
\H,sigma,psi,b, b0.
let a = unglue(b) in
let a0 = unglue(b0) in
let a’1 = comp (cA)sigma [psi 7→ a ] a0 in
let t’1 = comp (cT)sigma [psi 7→ b] b0 in
let g = (f.1)sigma in
let w = pres g [psi 7→ b] b0 in
let phi’ = forall (phi)sigma in
let phi1 = (phi)sigma[1] in
let st = if phi’ then t’1 else b[1] in
let sw = if phi’ then w else <> ((g b)[1])p in
let cF = fiber−comp (H, phi1) (cT)sigma[1] (cA)sigma[1] g[1] a’1 in
let z = equiv cF g[1] [phi’ ∨ psi 7→ (st,sw)] a’1 in
let t1 = z.1 in
let alpha = z.2 in
let x = if (phi1)p then (alpha)p @ q else a[1]p in
let a1 = comp (cA)sigma[1]p [phi1 ∨ psi 7→ x] a’1 in
glue [phi1 7→ t1 ] a1
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Composition for the universe from Glue

Given Γ ` A, Γ ` B, and Γ, i : I ` E, such that

E(i0) = A E(i1) = B

Using transport we can construct4

equivi E : Equiv A B

Using this we can define the composition for the universe:

Γ ` compi U [ϕ 7→ E] A =

Glue [ϕ 7→ (E(i1), equivi E(i/1− i))] A : U[ϕ 7→ E(i1)]

4Note that equivi E binds i in E
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Proof of univalence

Recall that in order to prove univalence it suffices to show that any partial
element

Γ, ϕ ` (T, e) : (T : U)× Equiv T A

extends to a total element

Γ ` (T ′, e′) : ((T ′ : U)× Equiv T ′ A)[ϕ 7→ (T, e)]

This is exactly what Glue gives us!

T ′ = Glue [ϕ 7→ (T, e)] A e′ = (unglue, ?)

For ? we need to prove that unglue is an equivalence
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Proof of univalence

T Glue

A A

Γ, ϕ Γ

e

∼
unglue
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Proof of univalence

So we get:

Corollary

For any type A : U the type (T : U)× Equiv T A is contractible

From this we obtain this general statement of the univalence axiom:

Corollary

For any term

t : (A B : U)→ Path U A B → Equiv A B

the map t A B : Path U A B → Equiv A B is an equivalence
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cubicaltt

We have a prototype implementation of a proof assistant based on cubical
type theory written in Haskell

We have formalized the proof of univalence in the system:

thmUniv (t : (A X : U) → Id U X A → equiv X A) (A : U) :
(X : U) → isEquiv (Id U X A) (equiv X A) (t A X) =
equivFunFib U (λ(X : U) → Id U X A) (λ(X : U) → equiv X A)

(t A) (lemSinglContr’ U A) (lem1 A)

univalence (A X : U) : isEquiv (Id U X A) (equiv X A) (transEquiv A X) =
thmUniv transEquiv A X

corrUniv (A B : U) : equiv (Id U A B) (equiv A B) =
(transEquiv B A,univalence B A)
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Normal form of univalence

We can compute and typecheck the normal form of thmUniv:

module nthmUniv where

import univalence

nthmUniv : (t : (A X : U) → Id U X A → equiv X A) (A : U)
(X : U) → isEquiv (Id U X A) (equiv X A) (t A X) = \(t : (A X : U)
→ (IdP (<!0> U) X A) → (Sigma (X → A) (λ(f : X → A) → (y : A)
→ Sigma (Sigma X (λ(x : X) → IdP (<!0> A) y (f x))) (λ(x : Sigma X
(λ(x : X) → IdP (<!0> A) y (f x))) → (y0 : Sigma X (λ(x0 : X) →
IdP (<!0> A) y (f x0))) → IdP (<!0> Sigma X (λ(x0 : X) → IdP (<!0>
A) y (f x0))) x y0)))) → λ(A x : U) → ...

It takes 8min to compute the normal form, it is about 12MB and it takes
50 hours to typecheck it!
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Computing with univalence

In practice this doesn’t seem to be too much of a problem. We have
performed multiple experiments:

Voevodsky’s impredicative set quotients and definition of Z as a
quotient of nat * nat

Fundamental group of the circle (compute winding numbers)

Z as a HIT

T ' S1 × S1 (by Dan Licata, 60 lines of code)

...

Please contribute!

https://github.com/mortberg/cubicaltt/
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Current and future work

Normalization: Any term of type nat reduces to a numeral (S. Huber
is working on it now)

Formalize correctness of the model (wip with Mark Bickford in Nuprl)

General formulation and semantics of higher inductive types (we have
an experimental implementation)
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Thank you for your attention!

Figure: Cat filling operation
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