
Cubical Type Theory: a constructive interpretation of
the univalence axiom

Anders Mörtberg
(jww C. Cohen, T. Coquand, and S. Huber)

Institute for Advanced Study, Princeton

May 19, 2016

Anders Mörtberg Cubical Type Theory May 19, 2016 1 / 39

Introduction

Goal: provide a computational justification for notions from Homotopy
Type Theory and Univalent Foundations, in particular the univalence
axiom and higher inductive types1

Specifically, design a type theory with good properties (normalization,
decidability of type checking, etc.) where the univalence axiom computes
and which has support for higher inductive types

1Slogan: “Making equality great again!”
Anders Mörtberg Introduction May 19, 2016 2 / 39

Cubical Type Theory

An extension of dependent type theory which allows the user to directly
argue about n-dimensional cubes (points, lines, squares, cubes etc.)
representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory

Each type has a “cubical” structure – presheaf extension of type theory

Anders Mörtberg Introduction May 19, 2016 3 / 39

Cubical Type Theory

Extends dependent type theory with:

1 Path types

2 Kan composition operations

3 Glue types

4 Higher inductive types

Anders Mörtberg Introduction May 19, 2016 4 / 39

Path types

Path types provides a convenient syntax for reasoning about higher
equality proofs

Contexts can contain variables in the interval:

Γ `
Γ, i : I `

Formal representation of the interval, I:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

i, j, k... formal symbols/names representing directions/dimensions

Anders Mörtberg Path types May 19, 2016 5 / 39

Path types

i : I ` A corresponds to a line:

A(i0) A(i1)A
i

i : I, j : I ` A corresponds to a square:

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A

A(j0)

A(i0) A(i1)

and so on...

Anders Mörtberg Path types May 19, 2016 6 / 39

Path types

Γ ` A Γ, i : I ` t : A

Γ ` 〈i〉 t : Path A t(i0) t(i1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A

Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

Γ ` A Γ, i : I ` t : A

Γ ` (〈i〉 t) r = t(i/r) : A

Anders Mörtberg Path types May 19, 2016 7 / 39

Path types

Path abstraction, 〈i〉 t, binds the name i in t

t(i0) t(i1)t
i

t(i0) t(i1)
〈i〉 t

Path application, t r, applies a term t to an element r : I

a bt
i

b a
t (1−i)

i

Anders Mörtberg Path types May 19, 2016 8 / 39

Path types are great!

Function extensionality for path types can be proved as:

Γ ` f, g : (x : A)→ B Γ ` p : (x : A)→ Path B (f x) (g x)

Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

We can also prove contractibility of singletons2:

Γ ` p : Path A a b

Γ ` 〈i〉 (p i, 〈j〉 p (i ∧ j)) : Path ((x : A)× (Path A a x)) (a, 1a) (b, p)

But we cannot yet compose paths...

2or “Vacuum Cleaner Power Cord Principle”
Anders Mörtberg Path types May 19, 2016 9 / 39

Kan composition operations

We want to be able to compose paths:

a b
p

b c
q

We do this by computing the dashed line in:

a c

a bp

a q

In general this corresponds to computing the missing sides of
n-dimensional cubes

Anders Mörtberg Compositions May 19, 2016 10 / 39

Kan composition operations

Box principle: any open box has a lid

Cubical version of the Kan condition for simplicial sets:

“Any horn can be filled”

First formulated by Daniel Kan in “Abstract Homotopy I” (1955) for
cubical complexes

Anders Mörtberg Compositions May 19, 2016 11 / 39

Partial elements

To formulate this we need syntax for representing partially specified
n-dimensional cubes

We add context restrictions Γ, ϕ where ϕ is a “face” formula

If Γ ` A and Γ, ϕ ` a : A then a is a partial element of A of extent ϕ

If Γ, ϕ ` A then A is a partial type of extent ϕ

Anders Mörtberg Compositions May 19, 2016 12 / 39

Examples of partial types

i : I, (i = 0) ∨ (i = 1) ` A A(i0) • • A(i1)

i j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)
A(j0)

A(i0) A(i1)

The face lattice F is a bounded distributive lattice on formal generators
(i = 0) and (i = 1) with relation (i = 0) ∧ (i = 1) = 0F

Anders Mörtberg Compositions May 19, 2016 13 / 39

Partial elements

Any judgment valid in a context Γ is also valid in a restriction Γ, ϕ

Γ ` A
Γ, ϕ ` A

Contexts Γ are modeled by cubical sets

Restriction operation correspond to a cofibration:

Γ, ϕ→ Γ

Anders Mörtberg Compositions May 19, 2016 14 / 39

Face lattice

An element Γ, ϕ ` a : A is connected if we have Γ ` b : A such that
Γ, ϕ ` a = b : A

We write Γ ` b : A[ϕ 7→ a] and say that b witnesses that a is connected

This generalizes the notion of being path connected. Let ϕ be
(i = 0) ∨ (i = 1), an element b : A[ϕ 7→ a] is a line:

a(i0) a(i1)b

Anders Mörtberg Compositions May 19, 2016 15 / 39

Box principle

We can now formulate the box principle in type theory:

Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)[ϕ 7→ u(i0)]

Γ ` compi A [ϕ 7→ u] a0 : A(i1)[ϕ 7→ u(i1)]

u is a partial path connected at i = 0 specifying the sides of the box
a0 is the bottom of the box
compi witnesses that u is connected at i = 1

The equality judgments for the composition operation are defined by
induction on A – this is the main part of the system

Anders Mörtberg Compositions May 19, 2016 16 / 39

Kan composition: example

With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

a c

a b
p i

a q j
j

i

Anders Mörtberg Compositions May 19, 2016 17 / 39

Kan composition: transport

Composition for ϕ = 0F corresponds to transport:

Γ, i : I ` A Γ ` a : A(i0)

Γ ` transporti A a = compi A [] a : A(i1)

Together with contractibility of singletons we can prove path induction

Anders Mörtberg Compositions May 19, 2016 18 / 39

Glue types

We extend the system with Glue types, these allow us to:

Define composition for the universe

Prove univalence

Composition for these types is the most complicated part of the system

Anders Mörtberg Glue and univalence May 19, 2016 19 / 39

Univalence?

What is needed in order to prove univalence?

For all types A and B we need to define a term:

ua : Equiv (Path U A B) (Equiv A B)

showing that the canonical map

pathToEquiv : Path U A B → Equiv A B

is an equivalence

Anders Mörtberg Glue and univalence May 19, 2016 20 / 39

Univalence?

What is needed in order to prove univalence?

For all types A and B we need to define a term:

ua : Equiv (Path U A B) (Equiv A B)

showing that the canonical map

pathToEquiv : Path U A B → Equiv A B

is an equivalence

Anders Mörtberg Glue and univalence May 19, 2016 20 / 39

Univalence?

The following is an alternative characterization of univalence:

Univalence axiom

For any type A : U the type (T : U)× Equiv T A is contractible

This is a version of contractibility of singletons for equivalences. So if we
can also transport along equivalences we get an induction principle for
equivalences.

Anders Mörtberg Glue and univalence May 19, 2016 21 / 39

Univalence?

We can prove:

Lemma

The type isContr A is inhabited iff we have an operation:

Γ, ϕ ` u : A

Γ ` ext [ϕ 7→ u] : A[ϕ 7→ u]

So to prove univalence it suffices to show that any partial element

Γ, ϕ ` (T, e) : (T : U)× Equiv T A

extends to a total element

Anders Mörtberg Glue and univalence May 19, 2016 22 / 39

Univalence?

We can prove:

Lemma

The type isContr A is inhabited iff we have an operation:

Γ, ϕ ` u : A

Γ ` ext [ϕ 7→ u] : A[ϕ 7→ u]

So to prove univalence it suffices to show that any partial element

Γ, ϕ ` (T, e) : (T : U)× Equiv T A

extends to a total element

Anders Mörtberg Glue and univalence May 19, 2016 22 / 39

Example: unary and binary numbers

Let nat be unary natural numbers (0 and successor) and binnat be binary
natural numbers (lists of 0 and 1). We have an equivalence

e : binnat→ nat

and we want to construct a path P with P (i0) = nat and
P (i1) = binnat:

nat binnat
P

Anders Mörtberg Glue and univalence May 19, 2016 23 / 39

Example: unary and binary numbers

P should also store information about e,3 we achieve this by “glueing”:

nat binnat

nat nat

P

id ∼ e∼

nat

We write

i : I ` P = Glue [(i = 0) 7→ (nat, id), (i = 1) 7→ (binnat, e)] nat

3“Evidence matters!” - Bob Harper on Monday
Anders Mörtberg Glue and univalence May 19, 2016 24 / 39

Glue: more generally

In the case when ϕ is (i = 0) ∨ (i = 1) the glueing operation can be
illustrated as the dashed line in:

T0 T1

A(i0) A(i1)

e(i0) ∼ e(i1)∼

A

Anders Mörtberg Glue and univalence May 19, 2016 25 / 39

Glue: even more generally

We assume that we are given

Γ ` A
A partial type Γ, ϕ ` T
An equivalence Γ, ϕ ` e : T → A

From this we define

A total type Γ ` Glue [ϕ 7→ (T, e)] A

A map Γ ` unglue : Glue [ϕ 7→ (T, e)] A→ A

such that Glue [ϕ 7→ (T, e)] A and unglue are extensions of T and e:

Γ, ϕ ` T = Glue [ϕ 7→ (T, e)] A Γ, ϕ ` e = unglue : T → A

Anders Mörtberg Glue and univalence May 19, 2016 26 / 39

Glue: even more generally

We assume that we are given

Γ ` A
A partial type Γ, ϕ ` T
An equivalence Γ, ϕ ` e : T → A

From this we define

A total type Γ ` Glue [ϕ 7→ (T, e)] A

A map Γ ` unglue : Glue [ϕ 7→ (T, e)] A→ A

such that Glue [ϕ 7→ (T, e)] A and unglue are extensions of T and e:

Γ, ϕ ` T = Glue [ϕ 7→ (T, e)] A Γ, ϕ ` e = unglue : T → A

Anders Mörtberg Glue and univalence May 19, 2016 26 / 39

Glue: even more generally

We assume that we are given

Γ ` A
A partial type Γ, ϕ ` T
An equivalence Γ, ϕ ` e : T → A

From this we define

A total type Γ ` Glue [ϕ 7→ (T, e)] A

A map Γ ` unglue : Glue [ϕ 7→ (T, e)] A→ A

such that Glue [ϕ 7→ (T, e)] A and unglue are extensions of T and e:

Γ, ϕ ` T = Glue [ϕ 7→ (T, e)] A Γ, ϕ ` e = unglue : T → A

Anders Mörtberg Glue and univalence May 19, 2016 26 / 39

Glue: diagrammatically

T

A A

Γ, ϕ Γ

e

∼

Anders Mörtberg Glue and univalence May 19, 2016 27 / 39

Glue: diagrammatically

T Glue

A A

Γ, ϕ Γ

e

∼
unglue

Anders Mörtberg Glue and univalence May 19, 2016 27 / 39

Rules for Glue

Γ ` A Γ, ϕ ` T Γ, ϕ ` e : Equiv T A

Γ ` Glue [ϕ 7→ (T, e)] A

Γ, ϕ ` e : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ e t]

Γ ` glue [ϕ 7→ t] a : Glue [ϕ 7→ (T, e)] A

Γ ` b : Glue [ϕ 7→ (T, e)] A

Γ ` unglue b : A

together with equality judgments

Anders Mörtberg Glue and univalence May 19, 2016 28 / 39

Composition for Glue

Let Γ, i : I ` B = Glue [ϕ 7→ (T, e)] A. Given

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]

The algorithm computes

b1 = compi B [ψ 7→ b] b0

such that:

Γ ` b1 : B(i1)[ψ 7→ b(i1)] Γ, δ ` b1 : T (i1)

where δ is the part of ϕ that doesn’t mention i

Composition for Glue is the most complicated part of the system

Anders Mörtberg Glue and univalence May 19, 2016 29 / 39

Composition for Glue

Let Γ, i : I ` B = Glue [ϕ 7→ (T, e)] A. Given

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]

The algorithm computes

b1 = compi B [ψ 7→ b] b0

such that:

Γ ` b1 : B(i1)[ψ 7→ b(i1)] Γ, δ ` b1 : T (i1)

where δ is the part of ϕ that doesn’t mention i

Composition for Glue is the most complicated part of the system

Anders Mörtberg Glue and univalence May 19, 2016 29 / 39

Composition for Glue

Let Γ, i : I ` B = Glue [ϕ 7→ (T, e)] A. Given

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]

The algorithm computes

b1 = compi B [ψ 7→ b] b0

such that:

Γ ` b1 : B(i1)[ψ 7→ b(i1)] Γ, δ ` b1 : T (i1)

where δ is the part of ϕ that doesn’t mention i

Composition for Glue is the most complicated part of the system

Anders Mörtberg Glue and univalence May 19, 2016 29 / 39

Composition for Glue in Nuprl

comp(Glue [phi 7→ T,f] A) =
\H,sigma,psi,b, b0.
let a = unglue(b) in
let a0 = unglue(b0) in
let a’1 = comp (cA)sigma [psi 7→ a] a0 in
let t’1 = comp (cT)sigma [psi 7→ b] b0 in
let g = (f.1)sigma in
let w = pres g [psi 7→ b] b0 in
let phi’ = forall (phi)sigma in
let phi1 = (phi)sigma[1] in
let st = if phi’ then t’1 else b[1] in
let sw = if phi’ then w else <> ((g b)[1])p in
let cF = fiber−comp (H, phi1) (cT)sigma[1] (cA)sigma[1] g[1] a’1 in
let z = equiv cF g[1] [phi’ ∨ psi 7→ (st,sw)] a’1 in
let t1 = z.1 in
let alpha = z.2 in
let x = if (phi1)p then (alpha)p @ q else a[1]p in
let a1 = comp (cA)sigma[1]p [phi1 ∨ psi 7→ x] a’1 in
glue [phi1 7→ t1] a1

Anders Mörtberg Glue and univalence May 19, 2016 30 / 39

Composition for the universe from Glue

Given Γ ` A, Γ ` B, and Γ, i : I ` E, such that

E(i0) = A E(i1) = B

Using transport we can construct4

equivi E : Equiv A B

Using this we can define the composition for the universe:

Γ ` compi U [ϕ 7→ E] A =

Glue [ϕ 7→ (E(i1), equivi E(i/1− i))] A : U[ϕ 7→ E(i1)]

4Note that equivi E binds i in E
Anders Mörtberg Glue and univalence May 19, 2016 31 / 39

Composition for the universe from Glue

Given Γ ` A, Γ ` B, and Γ, i : I ` E, such that

E(i0) = A E(i1) = B

Using transport we can construct4

equivi E : Equiv A B

Using this we can define the composition for the universe:

Γ ` compi U [ϕ 7→ E] A =

Glue [ϕ 7→ (E(i1), equivi E(i/1− i))] A : U[ϕ 7→ E(i1)]

4Note that equivi E binds i in E
Anders Mörtberg Glue and univalence May 19, 2016 31 / 39

Proof of univalence

Recall that in order to prove univalence it suffices to show that any partial
element

Γ, ϕ ` (T, e) : (T : U)× Equiv T A

extends to a total element

Γ ` (T ′, e′) : ((T ′ : U)× Equiv T ′ A)[ϕ 7→ (T, e)]

This is exactly what Glue gives us!

T ′ = Glue [ϕ 7→ (T, e)] A e′ = (unglue, ?)

For ? we need to prove that unglue is an equivalence

Anders Mörtberg Glue and univalence May 19, 2016 32 / 39

Proof of univalence

Recall that in order to prove univalence it suffices to show that any partial
element

Γ, ϕ ` (T, e) : (T : U)× Equiv T A

extends to a total element

Γ ` (T ′, e′) : ((T ′ : U)× Equiv T ′ A)[ϕ 7→ (T, e)]

This is exactly what Glue gives us!

T ′ = Glue [ϕ 7→ (T, e)] A e′ = (unglue, ?)

For ? we need to prove that unglue is an equivalence

Anders Mörtberg Glue and univalence May 19, 2016 32 / 39

Proof of univalence

T Glue

A A

Γ, ϕ Γ

e

∼
unglue

Anders Mörtberg Glue and univalence May 19, 2016 33 / 39

Proof of univalence

T Glue

A A

Γ, ϕ Γ

e

∼
unglue

∼

Anders Mörtberg Glue and univalence May 19, 2016 33 / 39

Proof of univalence

So we get:

Corollary

For any type A : U the type (T : U)× Equiv T A is contractible

From this we obtain this general statement of the univalence axiom:

Corollary

For any term

t : (A B : U)→ Path U A B → Equiv A B

the map t A B : Path U A B → Equiv A B is an equivalence

Anders Mörtberg Glue and univalence May 19, 2016 34 / 39

cubicaltt

We have a prototype implementation of a proof assistant based on cubical
type theory written in Haskell

We have formalized the proof of univalence in the system:

thmUniv (t : (A X : U) → Id U X A → equiv X A) (A : U) :
(X : U) → isEquiv (Id U X A) (equiv X A) (t A X) =
equivFunFib U (λ(X : U) → Id U X A) (λ(X : U) → equiv X A)

(t A) (lemSinglContr’ U A) (lem1 A)

univalence (A X : U) : isEquiv (Id U X A) (equiv X A) (transEquiv A X) =
thmUniv transEquiv A X

corrUniv (A B : U) : equiv (Id U A B) (equiv A B) =
(transEquiv B A,univalence B A)

Anders Mörtberg cubicaltt May 19, 2016 35 / 39

Normal form of univalence

We can compute and typecheck the normal form of thmUniv:

module nthmUniv where

import univalence

nthmUniv : (t : (A X : U) → Id U X A → equiv X A) (A : U)
(X : U) → isEquiv (Id U X A) (equiv X A) (t A X) = \(t : (A X : U)
→ (IdP (<!0> U) X A) → (Sigma (X → A) (λ(f : X → A) → (y : A)
→ Sigma (Sigma X (λ(x : X) → IdP (<!0> A) y (f x))) (λ(x : Sigma X
(λ(x : X) → IdP (<!0> A) y (f x))) → (y0 : Sigma X (λ(x0 : X) →
IdP (<!0> A) y (f x0))) → IdP (<!0> Sigma X (λ(x0 : X) → IdP (<!0>
A) y (f x0))) x y0)))) → λ(A x : U) → ...

It takes 8min to compute the normal form, it is about 12MB and it takes
50 hours to typecheck it!

Anders Mörtberg cubicaltt May 19, 2016 36 / 39

Normal form of univalence

We can compute and typecheck the normal form of thmUniv:

module nthmUniv where

import univalence

nthmUniv : (t : (A X : U) → Id U X A → equiv X A) (A : U)
(X : U) → isEquiv (Id U X A) (equiv X A) (t A X) = \(t : (A X : U)
→ (IdP (<!0> U) X A) → (Sigma (X → A) (λ(f : X → A) → (y : A)
→ Sigma (Sigma X (λ(x : X) → IdP (<!0> A) y (f x))) (λ(x : Sigma X
(λ(x : X) → IdP (<!0> A) y (f x))) → (y0 : Sigma X (λ(x0 : X) →
IdP (<!0> A) y (f x0))) → IdP (<!0> Sigma X (λ(x0 : X) → IdP (<!0>
A) y (f x0))) x y0)))) → λ(A x : U) → ...

It takes 8min to compute the normal form, it is about 12MB and it takes
50 hours to typecheck it!

Anders Mörtberg cubicaltt May 19, 2016 36 / 39

Computing with univalence

In practice this doesn’t seem to be too much of a problem. We have
performed multiple experiments:

Voevodsky’s impredicative set quotients and definition of Z as a
quotient of nat * nat

Fundamental group of the circle (compute winding numbers)

Z as a HIT

T ' S1 × S1 (by Dan Licata, 60 lines of code)

...

Please contribute!

https://github.com/mortberg/cubicaltt/

Anders Mörtberg cubicaltt May 19, 2016 37 / 39

https://github.com/mortberg/cubicaltt/

Current and future work

Normalization: Any term of type nat reduces to a numeral (S. Huber
is working on it now)

Formalize correctness of the model (wip with Mark Bickford in Nuprl)

General formulation and semantics of higher inductive types (we have
an experimental implementation)

Anders Mörtberg Conclusions May 19, 2016 38 / 39

Thank you for your attention!

Figure: Cat filling operation

Anders Mörtberg The end! May 19, 2016 39 / 39

