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Abstract

This thesis contains four papers aiming at bridging the gap between algorithms
implemented in computer algebra systems and interactive proof assistants. This
is done by implementing and verifying efficient algorithms using the Coq proof
assistant together with the SSReflect extension.

First there is a methodology, based on refinements, for linking implementa-
tions of algorithms using rich dependent types to implementations on low-level
data types. The first implementation is suitable for deriving theoretical prop-
erties while the second one is suited for computation. This methodology is
illustrated on four key applications: matrix rank computation, Winograd’s fast
matrix product, Karatsuba’s polynomial multiplication and the computation of
the greatest common divisor of multivariate polynomials.

The method has also been applied for verifying an implementation of the
Sasaki-Murao algorithm for computing the determinant of a square matrix over
a commutative ring in polynomial time. This algorithm can be written as a short
and simple functional program, but its correctness involves nontrivial mathe-
matics. The correctness proof, which is new, has been formalized in Coq.

Next the formalization of the notion of (strongly discrete) coherent rings is
described. This is a fundamental structure in constructive algebra which repre-
sents rings in which it is possible to solve (in)homogeneous systems of equations.
Instances of this structure are Bézout domains (for instance Z and k[x] where
k is a field) and Prüfer domains (a generalization of Dedekind domains). We
obtain formally verified algorithms for solving systems of equations that are
applicable on these structures.

Finally the approach of the first paper is applied to develop algorithms for
computing homology groups of simplicial complexes obtained from digital im-
ages. This give a formally verified program for counting the number of connected
components and holes in digital images. We apply this to count the number of
neurons in pictures obtained from synaptical structures.
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Chapter 1

Preliminaries

1.1 Introduction

Computers play an increasingly important role in modern mathematics. Com-
puter algebra systems like Matlab and Mathematica are fundamental tools in
scientific computation and also to a greater extent in pure mathematics. Hence
it is important that these systems are reliable. A possible approach for increas-
ing the reliability is to use a tool for random testing like QuickCheck [6]. This
kind of tool could be used to prevent bugs like the one that was found in 2009
when Matlab gave an incorrect solution to a simple system of equations [29].

In any case, it is necessary to give mathematically precise specifications of
the algorithms represented in computer algebra systems. To have completely
formal specifications in an interactive proof assistant seems to be an interesting
approach since the specification has to be given in full detail. In formalisms
integrating computations and reasoning, like Type Theory [22], there is a clear
connection between the specification of the algorithm and what is actually imple-
mented, which can be used to further increase the reliability in the implemented
algorithms.

Computers have been useful to prove theorems where standard pen and
paper approaches were intractable. Two examples of this are the Four Color
Theorem and the Kepler Conjecture that were both proven with the aid of
computer programs. In order to increase the reliability of these proofs there have
been substantial efforts to formalize the programs and mathematics involved so
that all of the logical inference steps in the proofs can be checked by a computer.
The first of these was finished by George Gonthier et al. in 2004 [12] and the
second is, as of August 2012, still being verified by the FlySpeck Project [26]
led by Thomas Hales.

There is also a reliability issue of very large and complicated mathematical
results that might be understood by only a few experts. One example of such a
proof is the proof of Fermat’s Last Theorem where the first version was believed
to be correct in 1993 but an error was corrected in 1995. Another example is the
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classification of finite simple groups whose proof consists of tens of thousands
of pages written by many authors over a long period of time. This problem is
discussed further by Jean-Pierre Serre in an interview from when he was awarded
the Abel prize in 2003 [24]. Formal proofs of these results would increase the
reliability and the formalization would, hopefully, also give rise to new methods
and results.

Another motivation behind formalizing mathematical results is that it in-
volves carefully representing mathematical concepts and proofs in order to make
them suited for implementation on a computer. This way simpler, clearer and
more elegant proofs can be obtained. This works the other way around as
well: When formalizing a mathematical result the proof assistant might need
to be improved in order to be able to represent mathematics more conveniently
yielding better tools and techniques. Furthermore, formally verified efficient
algorithms are useful for implementing decision procedures that can be used in
proof assistants for doing proofs by reflection.

Although the formalization of big theorems like the Four Color Theorem and
the Kepler Conjecture provide evidence that proof assistants are mature enough
to handle modern mathematics. However, there is still a large gap between the
mathematical algorithms formalized in proof assistants and the algorithms in
computer algebra systems used by mathematicians and scientists. We believe in
the approach of the Mathematical Components Project [20] which says that this
gap can be bridged by implementing general purpose libraries of mathematical
theories using ideas and design principles from software engineering to obtain
scalability and reusability of both code and proofs.

The system used in the formalizations1 presented in this thesis is the interac-
tive proof assistant Coq [7]. This system is based on the calculus of inductive
constructions which by the Curry-Howard isomorphism is not only a system for
making formal proofs but also a functional programming language. This means
that both the programs and their proofs of correctness can be implemented using
the same language and logic. Another consequence is that the algorithms have
to be written using functional programming, which differs from standard pre-
sentations of mathematical algorithms that are usually imperative. We believe
that functional programming is more natural than imperative programming for
implementing mathematical algorithms.

The formalizations have been performed using the small scale reflection
(SSReflect) [13] extension to Coq. This extension was initially developed
during the formalization of the Four Color Theorem by George Gonthier et
al. It has since then been used in the Mathematical Components Project [20]
during the ongoing formalization of the Feit-Thompson Theorem which is part
of the classification of finite simple groups. The idea of small scale reflection is
to use computation to automate small proof steps resulting in a concise proof
style that is closer to pen and paper proofs.

The SSReflect extension contains a large and well designed library of al-

1The formalizations can be found at: http://www.cse.chalmers.se/~mortberg/
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ready formalized mathematical theories containing, among other things: poly-
nomials, matrices and an algebraic hierarchy. By using this library we avoid
reimplementing these fundamental notions and may start building on what is
already implemented.

However, although SSReflect has a well designed library, it imposes some
limitations on the user. In order to prevent definitions from being expanded dur-
ing type checking some definitions are locked [13] which means that computation
on them are blocked. This implies that many definitions lack direct effective
computation, which is strange from the point of view of Type Theory [22].

Another limitation is that the algebraic hierarchy only captures discrete
structures (i.e. with decidable equality) in order to enable equational reasoning.
This limitation to discrete structures is not very natural from the point of view
of constructive mathematics. In constructive mathematics the law of excluded
middle and proof by contradiction are not valid methods for doing proofs in gen-
eral. By avoiding these principles the mathematical theories become inherently
computational (see e.g. [5]) which makes them suitable for implementation on
computers, but it is usually not necessary to restrict to discrete structures [21].

The work in this thesis has been carried out as part of the European project For-
Math – Formalization of Mathematics [27]. The goal of the project is to develop
formally verified libraries of mathematics concerning algebra, linear algebra,
real number computations and algebraic topology. These libraries should be
designed as software libraries using ideas from software engineering to increase
reusability and scalability.

This thesis presents an approach for bridging the gap between computer
algebra systems and proof assistants. This approach is applied to implement
formally verified libraries and algorithms based on mathematical theories from
linear algebra and commutative algebra using Coq and SSReflect. The main
sources of constructive algebra used during the formalizations are the book by
Mines, Richman and Ruitenburg [21] and the more recent book by Lombardi
and Quitté [18]. The libraries and algorithms have been successfully applied
to represent formally verified algorithms from computational algebraic topology
with applications in biomedical engineering.

1.2 Contributions

This section contains summaries of the four papers in this thesis. The papers
contains a methodology for implementing and formally verifying mathematical
algorithms together with examples of this methodology being applied to obtain
implementations of algorithms suitable for computation.
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1.2.1 A Refinement-Based Approach to Computational
Algebra in Coq

The first paper [11] presents a methodology for implementing efficient algebraic
algorithms and proving them correct. This is done by implementing a simple
and often inefficient version of the algorithm on rich datatypes which is refined
to a more efficient version on simple types. The two versions of the algorithms
are then linked to each other and the correctness of the translation is proved
correct in Coq using a library that we have implemented using the SSReflect
library and tactics.

The idea of program refinements used in the paper is summarized in Fig. 1.1:

Abstract definitions

Algorithmic refinement

Implementation

Correctness proof

Morphism lemma

Figure 1.1: The three steps of refinements

The methodology in Fig. 1.1 can be more concretely summarized in our
setting as:

1. Implement an abstract version of the algorithm using SSReflect’s struc-
tures and use the libraries to prove properties about them. Here we may
use the full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect’s structures
and prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the
low-level data types, ensuring that they will perform the same operations
as their high-level counterparts.

By separating the implementation of the algorithm used for deriving proper-
ties and the one used for computation we overcome the limitation of SSReflect
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not having direct effective computation. In the rest of the thesis we will refer
to the noneffective implementation as abstract and the other one as effective or
computational.

Using this methodology we have implemented a library of computational
structures with four main examples of algorithms from linear and commutative
algebra:

• Efficient polynomial multiplication using Karatsuba’s algorithm.

• Multivariate greatest common divisor (gcd) of polynomials.

• Rank computation of matrices with coefficients in a field.

• Efficient multiplication of matrices based on the Winograd algorithm.

The second of these, multivariate gcd of polynomials, is interesting from the
point of view of constructive algebra as the correctness proof neither rely on the
field of fractions nor unique factorization. It is instead based on Gauss’ Lemma
as in [17] and the notion of gcd domains [21].

My contribution to this paper is the implementation and correctness proof of
the algorithms on polynomials together with the implementation of the algebraic
hierarchy of computational structures used in the library. I have written the
sections on polynomials and I also participated in writing the other sections of
the paper.

This paper has been accepted for publication in the LNCS post-proceedings
of the 2012 edition of the conference on Interactive Theorem Proving.

1.2.2 A Formal Proof of Sasaki-Murao Algorithm

The second paper [8] explains the formalization of a simple polynomial time
algorithm for computing the determinant of square matrices over any commu-
tative ring. The algorithm is based on Bareiss’ algorithm [4], which can be
compactly presented using functional programming notations as:

data Matrix R = Empty | Cons R [R] [R] (Matrix R)

dvd_step :: R -> Matrix R -> Matrix R

dvd_step g M = mapM (\x -> g | x) M

bareiss_rec :: R -> Matrix R -> R

bareiss_rec g M = case M of

Empty -> g

Cons a l c M -> bareiss_rec a (dvd_step g (a * M - c * l))

bareiss :: Matrix R -> R

bareiss M = bareiss_rec 1 M
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Here R is assumed to be a ring with a division operation |. The datatype
Matrix is a convenient datastructure for this algorithm where the first element
is the top-left element and the two lists are the first row and column without
the top-left element. This algorithm is both simple and computes the determi-
nant over any commutative ring in polynomial time. But, the standard proof
of correctness involves complicated identities for determinants called Sylvester
identities [1]. In order to formalize the correctness of this algorithm an al-
ternative correctness proof, more suitable for formalization, was found. This
proof is (arguably) simpler and some of the Sylvester identities can be proved
as corollaries of it.

The Sasaki-Murao algorithm [25] uses an elegant trick to avoid zeroes on
the main diagonal which is to apply the algorithm to the matrix used when
computing the characteristic polynomial of a matrix, that is, we negate the
matrix and add x to every element on the diagonal. This way Bareiss’ algorithm
can be applied without any swapping of rows, which makes it possible to obtain
not only the determinant but also the characteristic polynomial of the matrix in
polynomial time. Another benefit of doing the computations on the polynomial
ring is that polynomial pseudo-division [17] may be used, which means that
there is no need to assume that the ring has a division operation.

The effective version of the algorithm has been implemented using the ap-
proach presented in the first paper. This implementation required us to combine
many of the different parts of the library as the computations are done on ma-
trices of polynomials. The effective version is a simple and verified algorithm
for computing the determinant of a matrix using operations like matrix multi-
plication, polynomial pseudo-division and Horner evaluation of polynomials.

My contribution to this paper is mainly in working on the formalization
of the correctness proof and the implementation of the efficient version of the
algorithm. I also implemented a Haskell version used for benchmarks and
comparison in the section with conclusions in the paper.

This paper has been accepted for publication in the Journal of Formalized
Reasoning in 2012.

1.2.3 Coherent and Strongly Discrete Rings in Type Theory

The third paper [9] presents the formalization of algebraic structures that were
not present in the SSReflect libraries: coherent and strongly discrete rings.
These notions abstract over the ability to solve systems of homogeneous and
inhomogeneous equations. Examples are Bézout domains (for example Z and
k[x] where k is a field) and Prüfer domains (a generalization of Dedekind do-
mains). We obtain formally verified algorithms for solving systems of equations
over these structures.

The methodology of the first paper has been applied in order to develop
computational versions of the structures and effective versions of the algorithms.
This was complicated as some of the algorithms, especially for Prüfer domains,
are quite involved. The main difficulty seems to appear when the library has to
be extended to support new operations and the reason for this is the ingenuity
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of the representation of many algorithms in the SSReflect library. However
we managed to implement effective versions of the algorithms which indicates
that the methodology is applicable on more complicated examples as well.

In order to benefit as much as possible from the SSReflect libraries and
tactics some specializations had to be made that are not natural from the point
of view of constructive mathematics. For instance, we only consider coherent
rings that are strongly discrete (i.e. with decidable ideal membership) in order to
be able to develop ideal theory in a convenient way. However when restricting
to these decidable structures the SSReflect approach yields quite compact
and simple formal proofs.

Integral domains

Strongly discrete

Coherent Prüfer domains

Bézout domains

Figure 1.2: The extension to the SSReflect hierarchy

In Fig. 1.2 the extension to the SSReflect hierarchy is presented. Integral
domains are already present in the hierarchy and the extension consists of the
other structures. The arrows mean that the target is an instance of the source.

Our main motivation for studying these kind of structures is that strongly
discrete coherent rings is a fundamental structure in constructive algebra [21]
which can be used as a basis for developing formalized libraries of computational
homological algebra as in [2].

I have contributed to all parts of this paper, both formalizing the results and
writing the paper. I also implemented the executable versions and correctness
proof of the algorithms and structures.

The paper has been submitted to the 2012 edition of the conference on
Certified Programs and Proofs.

1.2.4 Towards a Certified Computation of Homology Groups
for Digital Images

In the fourth paper [14] we implement formally verified algorithms for counting
the number of connected components and holes in digital images by computing

7



homology groups. These groups are topological invariants that can be computed,
in our setting, using only basic linear algebra.

The algorithm that is used for this is summarized in Fig. 1.3:

Biomedical
Image

Digital
Image

Simplicial
Complex

Matrix Homology

reduction

interpretation

Figure 1.3: Computing homology from a digital image

The biomedical image is represented as a list of pixels that is converted to a
simplicial complex which is a combinatorial representation of the image suitable
for homology computation. From this boundary (or incidence) matrices are
computed as in [15] which are then simplified using an algorithm from discrete
Morse theory. Finally the homology groups of the simplicial complex is obtained
by computing the rank of the matrices [16]. As we work with two dimensional
digital images it suffices to perform the computations on Z/2Z which means, as
this is a field, that we can reuse the rank algorithm from the first paper.

The homology groups in dimension zero and one counts the number of con-
nected components and holes in the image. We explain in the paper an appli-
cation from biomedical engineering for counting the number of synapses in a
picture of a neuron using this technique.

My contribution to this paper is mainly on the computational side of the
formalization and the linking of the different effective algorithms. I also devel-
oped a Haskell prototype that was used to compare the results and for doing
benchmarks.

This paper has been published in the LNCS post-proceedings of the 4th
International Workshop on Computational Topology in Image Context 2012.

1.3 Future Work

This thesis presents a methodology and basis for developing formally verified
efficient mathematical algorithms in Coq that seems to be applicable on many
different mathematical theories and algorithms.

A possible future direction would be to use this approach to develop a
formally verified library of computational homological algebra inspired by the
HOMALG project [3]. Building on the results presented in the third paper,
the category of finitely presented modules over strongly discrete coherent rings
can be represented. The first step would be to prove that this forms an abelian
category, that is, that this is suitable for building homological algebra on top of.
The next step would then be to use this to implement algorithms for computing
homological functors like homology, Ext and Tor.
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The results could be used as a basis for extending the work presented in the
fourth paper to consider other homology theories, for example, homology with
coefficients in Z. Using this the computation of more interesting homological
properties of different topological spaces can be computed using formally verified
algorithms.

A very important example of coherent rings are multivariate polynomial
rings, k[x1, . . . , xn], over a field k. Proving that these are coherent would involve
the formalization of the theory of Gröbner bases and Buchberger’s algorithm.
This has been done previously in Coq [23, 28] and would be an interesting
problem to study as the simple Buchberger algorithm for computing Gröbner
bases is inefficient and has many possible optimizations [10]. The methodology
of the first paper should then be applicable for developing formally verified
versions of more efficient algorithms for computing Gröbner bases.

Another interesting problem is to extend the work on multivariate gcd com-
putations by considering more efficient algorithms based on subresultants [17].
This problem has also been studied previously in Coq [19] and it would be
interesting to compare this work with a formalization done using the approach
of the first paper.
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wards a Certified Computation of Homology Groups for Digital Images. In
Computational Topology in Image Context, volume 7309 of Lecture Notes
In Computer Science, pages 49–57, Bertinoro, Italie, 2012. Springer.

[15] J. Heras, M. Poza, M. Dénès, and L. Rideau. Incidence Simplicial Ma-
trices Formalized in Coq/SSReflect. In Proceedings 18th Symposium on
the Integration of Symbolic Computation and Mechanised Reasoning (Cal-
culemus’2011), volume 6824 of Lectures Notes in Computer Science, pages
30–44, 2011.

[16] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology,
volume 157 of Applied Mathematical Sciences. Springer, 2004.

[17] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumer-
ical Algorithms. Addison-Wesley, 1981.
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A Refinement-Based Approach to
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Abstract. We describe a step-by-step approach to the implementation
and formal verification of efficient algebraic algorithms. Formal specifi-
cations are expressed on rich data types which are suitable for deriving
essential theoretical properties. These specifications are then refined to
concrete implementations on more efficient data structures and linked
to their abstract counterparts. We illustrate this methodology on key
applications: matrix rank computation, Winograd’s fast matrix prod-
uct, Karatsuba’s polynomial multiplication, and the gcd of multivariate
polynomials.

Keywords: Formalization of mathematics, Computer algebra, Efficient
algebraic algorithms, Coq, SSReflect

1 Introduction

In the past decade, the range of application of proof assistants has extended its
traditional ground in theoretical computer science to mainstream mathematics.
Formalized proofs of important theorems like the Fundamental Theorem of Al-
gebra [2], the Four Color Theorem [6] and the Jordan Curve Theorem [10] have
advertised the use of proof assistants in mathematical activity, even in cases
when the pen and paper approach was no longer tractable.

But since these results established proofs of concept, more effort has been
put into designing an actually scalable library of formalized mathematics. The
Mathematical Components project (developing the SSReflect library [8] for
the Coq proof assistant) advocates the use of small scale reflection to achieve
a nearly comparable level of detail to usual mathematics on paper, even for ad-
vanced theories like the proof of the Feit-Thompson Theorem. In this approach,
the user expresses significant deductive steps while low-level details are taken
care of by small computational steps, at least when properties are decidable.
Such an approach makes the proof style closer to usual mathematics.

One of the main features of these libraries is that they heavily rely on rich
dependent types, which gives the opportunity to encode a lot of information

? The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).
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directly into the type of objects: for instance, the type of matrices embeds their
size, which makes operations like multiplication easy to implement. Also, algo-
rithms on these objects are simple enough so that their correctness can easily
be derived from the definition. However in practice, most efficient algorithms
in modern computer algebra systems do not rely on dependent types and do
not provide any proof of correctness. We show in this paper how to use this
rich mathematical framework to develop efficient computer algebra programs
with proofs of correctness. This is a step towards closing the gap between proof
assistants and computer algebra systems.

The methodology we suggest for achieving this is the following: we are able to
prove the correctness of some mathematical algorithms having all the high-level
theory at our disposal and we then refine them to an implementation on simpler
data structures that will be actually running on machines. In short, we aim at
formally linking convenient high-level properties to efficient low-level implemen-
tations, ensuring safety of the whole approach while enjoying better performance
thanks to the separation of proofs and computational content.

In the next section, we describe the methodology of refinements. Then, we
give two examples of such refinements for matrices in Section 3, and polynomials
in Section 4. In Section 5, we give a solution to unify both examples by describing
CoqEAL3, a library built using this methodology on top of the SSReflect
libraries.

2 Refinements

Refinements are commonly used to describe successive steps when verifying a
program. Typically, a specification is expressed in Hoare logic, then the program
is described in a high-level language and finally implemented in C. Each step
is proved correct with respect to the previous one. By using several formalisms,
one has to trust every translation step or prove them correct in yet another
formalism.

Our approach is similar: we refine the definition of a concept to an efficient
algorithm described on high-level data structures. Then, we implement it on data
structures that are closer to machine representations, once we no longer need
rich theory to prove the correctness. Thus the implementation is an immediate
translation of the algorithm, see Fig. 1.

However, in our approach, the three layers can be expressed in the same
formalism (the Calculus of Inductive Constructions), though they do not use
exactly the same features. On one hand, the high-level layers use rich dependent
types that are very useful when describing theories because they allow abuse of
notations and concise statements which quickly become necessary when working
with advanced mathematics. On the other hand, the efficient implementations
use simple types, which are closer to standard implementations in traditional

3 Documentation available at http://www-sop.inria.fr/members/Maxime.Denes/

coqeal/
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Abstract definitions

Algorithmic refinement

Implementation

Correctness proof

Morphism lemma

Fig. 1. The three steps of refinement

programming languages. The main advantage of this approach is that the cor-
rectness of translations can easily be expressed in the formalism itself, and we
do not rely on any additional external proofs.

In the next sections, we are going to use the following methodology to build
efficient algorithms from high-level descriptions:

1. Implement an abstract version of the algorithm using SSReflect’s struc-
tures and use the libraries to prove properties about them. Here we can use
the full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect’s structures and
prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the low-
level data types, ensuring that they will perform the same operations as their
high-level counterparts.

3 Matrices

Linear algebra is a natural first test-case to validate our approach, as a pervasive
and inherently computational area of mathematics, which is well covered by
the SSReflect library [7]. In this section, we will detail the (quite simple)
data structure we use to represent matrices and then review two fundamental
examples: rank computation and efficient matrix product.

3.1 Representation

Matrices are represented by finite functions over pairs of ordinals (the indices):

(* ’I_n *)

Inductive ordinal (n : nat) : predArgType := Ordinal m of m < n.

(* ’M[R]_(m,n) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.
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This encoding makes many properties easy to derive, but it is inefficient for
evaluation. Indeed, a finite function over ’I_m * ’I_n is internally represented
as a flat list of m× n values which has to be traversed whenever the function is
evaluated. Moreover, having the size of matrices encoded in their type allows
to state concise lemmas without explicit side conditions, but it is not always
flexible enough when getting closer to machine-level implementation details.

To be able to implement efficient matrix operations we introduce a low-level
data type seqmatrix representing matrices as lists of lists. A concrete matrix is
built from an abstract one by mapping canonical enumerations (enum) of ordinals
to the corresponding coefficients in the abstract matrix:

Definition seqmx_of_mx (M : ’M[R]_(m,n)) : seqmatrix :=

[seq [seq M i j | j <- enum ’I_n] | i <- enum ’I_m].

To ensure the correct behavior of concrete matrices it is sufficient to prove
that seqmx_of_mx is injective (== denotes boolean equality):

Lemma seqmx_eqP (M N : ’M[R]_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Operations like addition are straightforward to implement, and their cor-
rectness is expressed through a morphism lemma, stating that the concrete rep-
resentation of the sum of two matrices is the concrete sum of their concrete
representations:

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => add x y)) M N.

Lemma addseqmxE :

{morph (@seqmx_of_mx m n) : M N / M + N >-> addseqmx M N}.

Here morph is notation meaning that seqmx_of_mx is an additive morphism from
abstract to concrete matrices. It is worth noting that we could have stated all
our morphism lemmas with the converse operator (from concrete matrices to
abstract ones). But these lemmas would then have been quantified over lists of
lists, with poorer types, which would have required a well-formedness predicate
as well as premises expressing size constraints. The way we have chosen takes
full advantage of the information carried by richer types.

Like the addseqmx operation, we have developed concrete implementations of
most of the matrix operations provided by the SSReflect library and proved
the corresponding morphism lemmas. Among these operations we can cite: sub-
traction, scaling, transpose and block operations.

3.2 Computing the rank

Now that the basic data structure and operations have been defined, it is possible
to apply our approach to an algorithm based on Gaussian elimination which
computes the rank of a matrix A = (ai,j) over a field K. We first specify the
algorithm using abstract matrices and then refine it to the low-level structures.
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An elimination step consists of finding a nonzero pivot in the first column of
A. If there is none, it is possible to drop the first column without changing the
rank. Otherwise, there is an index i such that ai,1 6= 0. By linear combinations
of rows (preserving the rank) A can be transformed into the following matrix B:

B =




0 a1,2 − a1,1×ai,2

ai,1
· · · a1,n − a1,1×ai,n

ai,1

0
...

...
ai,1 ai,2 · · · ai,n

0
...

...

0 an,2 − an,1×ai,2

ai,1
· · · an,n − an,1×ai,n

ai,1




=




0
R1...

0
ai,1 · · · ai,n
0

R2...
0




Now pose R =

(
R1

R2

)
, since ai,1 6= 0, this means that rank A = rank B =

1 + rank R. Hence the current rank can be incremented and the algorithm can
be recursively applied on R.

In our development we defined a function elim_step returning the matrix R
above and a boolean b indicating if a pivot has been found. A wrapper function
rank_elim is in charge of maintaining the current rank and performing the
recursive call on R:

Fixpoint rank_elim (m n : nat) {struct n} : ’M[K]_(m,n) -> nat :=

match n return ’M[K]_(m,n) -> nat with

| q.+1 => fun M =>

let (R,b) := elim_step M in (rank_elim R + b)%N

| _ => fun _ => 0%N

end.

Note that booleans are coerced to natural numbers: b is interpreted as 1 if
true and 0 if false. The correctness of rank_elim is expressed by relating it to
the \rank function of the SSReflect library:

Lemma rank_elimP n m (M : ’M[K]_(m,n)) : rank_elim M = \rank M.

The proof of this specification relies on a key invariant of elim_step, relating
the ranks of the input and output matrices:

Lemma elim_step_rank m n (M : ’M[K]_(m, 1 + n)) :

let (R,b) := elim_step M in \rank M = (\rank R + b)%N.

Now the proof of rank_elimP follows by induction on n. The concrete version
of this algorithm is a direct translation of the algorithm using only concrete
matrices and executable operations on them. This executable version (called
rank_elim_seqmx) is then linked to the abstract implementation by the lemma:

Lemma rank_elim_seqmxE : forall m n (M : ’M[K]_(m, n)),

rank_elim_seqmx m n (seqmx_of_mx M) = rank_elim M.
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The proof of this is straightforward as all of the operations on concrete ma-
trices have morphism lemmas which means that the proof can be done simply
by expanding the definitions and applying the translation morphisms.

3.3 Fast matrix product

In the context we presented, the näıve matrix product (i.e. with cubic complex-
ity) of two matrices M and N can be implemented by transposing the list of
lists representing N and then for each i and j compute

∑
k Mi,kN

T
j,k:

Definition mulseqmx (M N : seqmatrix) : seqmatrix :=

let N’ := trseqmx N in

map (fun r => map (foldl2 (fun z x y => x * y + z) 0 r) N’) M.

Lemma mulseqmxE (M : ’M[R]_(m,p)) (N : ’M[R]_(p,n)) :

mulseqmx (seqmx_of_mx M) (seqmx_of_mx N) = seqmx_of_mx (M *m N).

*m is SSReflect’s notation for the matrix product. Once again, the rich
type information in the quantification of the morphism lemma ensures that it
can be applied only if the two matrices have compatible sizes.

In 1969, Strassen [19] showed that 2 × 2 matrices can be multiplied using
only 7 multiplications without requiring commutativity. This yields an imme-
diate recursive scheme for the product of two n × n matrices with O(nlog2 7)
complexity.4 This is an important theoretical result, since matrix multiplication
was commonly thought to be intrinsically of cubic complexity, it opened the way
to many further improvements and gave birth to a fertile branch of algebraic
complexity theory.

However, Strassen’s result is also still of practical interest since the asymp-
totically best algorithms known today [4] are slower in practice because of huge
hidden constants. Thus, we implemented a variant of this algorithm suggested by
Winograd in 1971 [20], decreasing the required number of additions and subtrac-
tions to 15 (instead of 18 in Strassen’s original proposal). This choice reflects the
implementation of matrix product in most of modern computer algebra systems.
A previous formal description of this algorithm has been developed in ACL2
[17], but it is restricted to matrices whose sizes are powers of 2. The extension
to arbitrary matrices represents a significant part of our development, which is
to the best of our knowledge the first complete formally verified description of
Winograd’s algorithm.

We define a function expressing a recursion step in Winograd’s algorithm.
Given two matrices A and B and an operator f representing matrix product, it
reformulates the algebraic identities involved in the description of the algorithm:

Definition winograd_step {p : positive} (A B : ’M[R]_(p + p)) f :=

let A11 := ulsubmx A in let A12 := ursubmx A in

let A21 := dlsubmx A in let A22 := drsubmx A in

4 log2 7 is approximately 2.807
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let B11 := ulsubmx B in let B12 := ursubmx B in

let B21 := dlsubmx B in let B22 := drsubmx B in

let X := A11 - A21 in let Y := B22 - B12 in

let C21 := f X Y in

let X := A21 + A22 in let Y := B12 - B11 in

let C22 := f X Y in

let X := X - A11 in let Y := B22 - Y in

let C12 := f X Y in

let X := A12 - X in

let C11 := f X B22 in

let X := f A11 B11 in

let C12 := X + C12 in let C21 := C12 + C21 in

let C12 := C12 + C22 in let C22 := C21 + C22 in

let C12 := C12 + C11 in

let Y := Y - B21 in

let C11 := f A22 Y in let C21 := C21 - C11 in

let C11 := f A12 B21 in let C11 := X + C11 in

block_mx C11 C12 C21 C22.

This is an implementation of matrix multiplication that is clearly not suited
for proving algebraic properties, like associativity. The correctness of this func-
tion is expressed by the fact that if f is instantiated by the multiplication of
matrices, winograd_step A B should be the product of A and B (=2 denotes
extensional equality):

Lemma winograd_stepP (p : positive) (A B : ’M[R]_(p + p)) f :

f =2 mulmx -> winograd_step A B f = A *m B.

This proof is made easy by the use of the ring tactic (the script is two lines
long). Since version 8.4 of Coq, ring is applicable to non-commutative rings,
which has allowed its use in our context.

Note that the above implementation only works for even-sized matrices. This
means that the general procedure has to implement a strategy for handling odd-
sized matrices. Several standard techniques have been proposed, which fall into
two categories. Some are static, in the sense that they preprocess the matrices
to obtain sizes that are powers of 2. Others are dynamic, meaning that parity
is tested at each recursive step. Two standard treatments can be implemented
either statically or dynamically: padding and peeling. The first consists of adding
rows and/or columns of zeros as required to get even dimensions (or a power
of 2), these lines are then simply removed from the result. Peeling on the other
hand removes rows or columns when needed, and corrects the result accordingly.

We chose to implement dynamic peeling because it seemed to be the most
challenging technique from the formalization point of view, since the size of
matrices involved depend on dynamic information and the post processing of
the result is more sophisticated than using padding. Another motivation is that
dynamic peeling has shown to give good results in practice.
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The function that implements Winograd multiplication with dynamic peeling
is called winograd and it is proved correct with respect to the usual matrix
product:

Lemma winogradP : forall (n : positive) (M N : ’M[R]_n),

winograd M N = M *m N.

The concrete version is called winograd_seqmx and it is also just a direct trans-
lation of winograd using only concrete operations on seq based matrices. In the
next section, Fig. 2 shows some benchmarks of how well this implementation
performs compared to the näıve matrix product, but we will first discuss how to
implement concrete algorithms based on dependently typed polynomials.

4 Polynomials

Polynomials in the SSReflect library are represented as records with a list
representing the coefficients and a proof that the last of these is nonzero. The
library also contains basic operations on this representation like addition and
multiplication and proofs that the polynomials form a commutative ring using
these operations. The implementation of these operations use big operators [3]
which means that it is not possible to compute with them.

To remedy this we have implemented polynomials as lists without any proofs
together with executable implementations of the basic operations. It is very easy
to build a concrete polynomial from an abstract polynomial, simply apply the
record projection (called polyseq) to extract the list from the record. The sound-
ness of concrete polynomials is proved by showing that the pointwise boolean
equality on the projected lists reflects the equality on abstract polynomials:

Lemma polyseqP p q : reflect (p = q) (polyseq p == polyseq q).

Basic operations like addition and multiplication are slightly more compli-
cated to implement for concrete polynomials than for concrete matrices as it is
necessary to ensure that these operations preserve the invariant that the last
element is nonzero. For instance multiplication is implemented as:

Fixpoint mul_seq p q := match p,q with

| [::], _ => [::]

| _, [::] => [::]

| x :: xs,_ => add_seq (scale_seq x q) (mul_seq xs (0%R :: q))

end.

Lemma mul_seqE : {morph polyseq : p q / p * q >-> mul_seq p q}.

Here add_seq is addition of concrete polynomials and scale_seq x q means
that every coefficient of q is multiplied by x (both of these are implemented in
such a way that the invariant that the last element is nonzero is satisfied).
Using this approach we have implemented a substantial part of the SSReflect
polynomial library, including pseudo-division, using executable polynomials.
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4.1 Fast polynomial multiplication

The näıve polynomial multiplication algorithm presented in the previous sec-
tion requires O(n2) operations. A more efficient algorithm is Karatsuba’s al-
gorithm [1, 11] which is a divide and conquer algorithm based on reducing the
number of recursive calls in the multiplication. More precisely, in order to mul-
tiply two polynomials written as aXk + b and cXk + d the ordinary method

(aXk + b)(cXk + d) = acX2k + (ad + bc)Xk + cd

requires four multiplications (as the multiplications by Xn can be implemented
efficiently by padding the list of coefficients by n zeroes). The key observation is
that this can be rewritten as

(aXk + b)(cXk + d) = acX2k + ((a + b)(c + d)− ac− bd)Xk + bd

which only requires three multiplication: ac, (a+b)(c+d) and bd. Now if the two
polynomials have 2n coefficients and the splitting is performed in the middle at
every point then the algorithm will only require O(nlog2 3) which is better than
the näıve algorithm.5 If the polynomials do not have 2n coefficients it is possible
to split the polynomials at for example bn/2c as the formula above holds for any
k ∈ N and still obtain a faster algorithm. This algorithm has been implemented
in Coq previously for binary natural numbers [15] and for numbers represented
by a tree-like structure [9]. But as far as we know, it has never been implemented
for polynomials before. When implementing this algorithm we first implemented
it using dependently typed polynomials as:

Fixpoint karatsuba_rec (n : nat) p q := match n with

| 0%N => p * q

| n’.+1 => if (size p <= 2) || (size q <= 2) then p * q else

let m := minn (size p)./2 (size q)./2 in

let (p1,p2) := splitp m p in

let (q1,q2) := splitp m q in

let p1q1 := karatsuba_rec n’ p1 q1 in

let p2q2 := karatsuba_rec n’ p2 q2 in

let p12 := p1 + p2 in

let q12 := q1 + q2 in

let p12q12 := karatsuba_rec n’ p12 q12 in

p1q1 * ’X^(2 * m) + (p12q12 - p1q1 - p2q2) * ’X^m + p2q2

end.

Here splitp is a function that splits the polynomial at the correct point
using take and drop. There is also a wrapper function named karatsuba that
calls karatsuba_seq with the greatest degree of p and q. The correctness of this
algorithm is expressed by:

Lemma karatsubaE : forall p q, karatsuba p q = p * q.

5 log2 3 is approximately 1.585.
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As p and q are SSReflect polynomials this lemma can be proved using
all of the theory in the library. The next step is to implement the executable
version (karatsuba_seq) of this algorithm which is done by changing all the op-
erations in the above version to executable operations on concrete polynomials.
The correctness of the concrete algorithm is then proved by:

Lemma karatsuba_seqE :

{morph polyseq : p q / karatsuba p q >-> karatsuba_seq p q}.

The proof of this is straightforward as all of the operations have morphism
lemmas for translating back and forth between the concrete representation and
the high-level ones.

In Fig. 2 the running time of the different multiplication algorithms that we
have implemented is compared:
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Fig. 2. Benchmarks of Winograd and Karatsuba multiplication

The benchmarks have been done by computing the square of integer matrices
and polynomials using the Coq virtual machine (i.e. by running vm_compute).
It is clear that both the implementation of Winograd matrix multiplication and
Karatsuba polynomial multiplication is faster than their näıve counterparts, as
expected.

4.2 gcd of multivariate polynomials

An important feature of modern computer algebra systems is to compute the
greatest common divisor (gcd) of multivariate polynomials. The main idea of
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our implementation is based on the observation that in order to compute the
gcd of elements in R[X1, . . . , Xn] it suffices to show how to compute the gcd
in R[X] given that it is possible to compute the gcd of elements in R. So, for
example, to compute the gcd of elements in Z[X,Y ] we model it as (Z[X])[Y ],
i.e. as univariate polynomials in Y with coefficients in Z[X], and then use that
there is a gcd algorithm in Z.

The algorithm that we implemented is based on the presentation of Knuth in
[12] which uses that in order to compute the gcd of two multivariate polynomials
it is possible to instead consider the task of computing the gcd of primitive
polynomials, i.e. polynomials where all coefficients are coprime. Using that any
polynomial can be split in a primitive part and a non-primitive part by dividing
by the gcd of its coefficients (this is called the content of the polynomial) we
get an algorithm for computing the gcd of any two polynomials. Below is our
implementation of this algorithm together with explanations of the operations:

Fixpoint gcdp_rec (n : nat) (p q : {poly R}) :=

let r := modp p q in

if r == 0 then q

else if n is m.+1 then gcdp_rec m q (pp r) else pp r.

Definition gcdp p q :=

let (p1,q1) := if size p < size q then (q,p) else (p,q) in

let d := (gcdr (gcdsr p1) (gcdsr q1))%:P in

d * gcdp_rec (size (pp p1)) (pp p1) (pp q1).

– modp p q computes the remainder after pseudo-dividing p by q.
– pp p computes the primitive part of p by dividing it by its content.
– gcdsr p computes the content of p.
– gcdr (gcdsr p1)(gcdsr q1) computes the gcd (using the operation in the

underlying ring) of the content of p1 and the content of q1.

The correctness of this algorithm is now expressed by:

Lemma gcdpP : forall p q g, g %| gcdp p q = (g %| p) && (g %| q).

Here p %| q computes whether p divides q or not. As divisibility is reflexive
this equality is a compact way of expressing that the function actually computes
the gcd of p and q.

Our result is stated in constructive algebra [14] as: If R is a gcd domain then
so is R[X]. Our algorithmic proof is different (and arguably simpler) than the
one in [14]; for instance, we do not go via the field of fractions of the ring.

As noted in [12], this algorithm may be inefficient when applied on the poly-
nomials over integers. The reference [12] provides a solution in this case, based
on subresultants. This would be a further refinement of the algorithm, which
would be interesting to explore since subresultants have been already analyzed
in Coq [13].

The executable version (gcdp_seq) of the algorithm has also been imple-
mented and is linked to the abstract version above by:
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Lemma gcdp_seqE :

{morph polyseq : p q / gcdp p q >-> gcdp_seq p q}.

But when running the concrete implementation there is a quite subtle prob-
lem: the polyseq projection links the abstract polynomials with the concrete
polynomials of type seq R where R is a ring with a gcd operation. Let us con-
sider multivariate polynomials, for example R[x, y]. In this case the concrete type
will be seq (seq R), but seq R is not a ring so our algorithm is not applicable!
The next section explains how to resolve this issue so that it is possible to imple-
ment computable algorithms of the above kind that rely on the computability
of the underlying ring.

5 Algebraic hierarchy of computable structures

As noted in the previous section there is a problem when implementing multi-
variate polynomials by iterating the polynomial construction, i.e. by representing
R[X,Y ] as (R[X])[Y ]. The same problem occurs when considering other struc-
tures where the computation relies on the computability of the underlying ring
as is the case when computing the characteristic polynomial of a square ma-
trix for instance. For this, one needs to compute with matrices of polynomials
which will require a concrete implementation of matrices with coefficients being
a concrete implementation of polynomials.

However, both the list based matrices and polynomials have something in
common: we can guarantee the correctness of the operations on a subset of
the low-level structure. This can be used to implement another hierarchy of
computable structures corresponding to the SSReflect algebraic hierarchy.

5.1 Design of the library

We have implemented computable counterparts to the basic structures in this
hierarchy, e.g. Z-modules, rings and fields. These are implemented in the same
manner as presented in [5] using canonical structures. Here are a few examples
of the mixins we use:

Record trans_struct (A B: Type) : Type := Trans {

trans : A -> B;

_ : injective trans

}.

(* Mixin for "Computable" Z-modules *)

Record mixin_of (V : zmodType) (T: Type) : Type := Mixin {

zero : T;

opp : T -> T;

add : T -> T -> T;

tstruct : trans_struct V T;

_ : (trans tstruct) 0 = zero;
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_ : {morph (trans tstruct) : x / - x >-> opp x};

_ : {morph (trans tstruct) : x y / x + y >-> add x y}

}.

(* Mixin for "Computable" Rings *)

Record mixin_of (R : ringType) (V : czmodType R) : Type := Mixin {

one : V;

mul : V -> V -> V;

_ : (trans V) 1 = one;

_ : {morph (trans V) : x y / x * y >-> mul x y}

}.

The type czmodType is the computable Z-module type parametrized by a Z-
module. The trans function is the translation function from SSReflect struc-
tures to the computable structures and the only property that is required of it
is that it is injective, so we are sure that different high-level objects are mapped
to different computable objects.

This way we can implement all the basic operations of the algebraic structures
the way we want (for example using fast matrix multiplication as an implemen-
tation of *m instead of a näıve one), and the only thing we have to prove is that
the implementations behave the same as SSReflect’s operations on the subset
of “well-formed terms” (e.g. for polynomials, lists that do not end with 0). This
is done by providing the corresponding morphism lemmas.

The operations presented in the previous sections can then be implemented
by having computable structures as the underlying structure instead of depen-
dently typed ones. This way one can prove that polynomials represented as lists
is a computable ring by assuming that the coefficients are computable and hence
get ring operations that can be applied on multivariate polynomials built by it-
erating the construction.

It is interesting to note that the equational behavior of an abstract structure
is carried as a parameter, but does not appear in its computable counterpart,
which depends only on the operations to be implemented. For instance, the same
computable ring structure can implement a commutative ring or an arbitrary
one, only its parameter varies.

5.2 Example: computable ring of polynomials

Let us explain how the list based polynomials can be made a computable ring.
First, we define:

Variable R : comRingType.

Variable CR : cringType R.

This says that CR is a computable ring parametrized by a commutative ring
which makes sense as any commutative ring is a ring. Next we need to implement
the translation function from {poly R} to seq CR and prove that this translation
is injective:
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Definition trans_poly (p : {poly R}) : seq CR :=

map (@trans R CR) (polyseq p).

Lemma inj_trans_poly : injective trans_poly.

Assuming that computable polynomials already are an instance of the com-
putable Z-module structure it is possible to prove that they are computable
rings by implementing multiplication (exactly like above) and then prove the
corresponding morphism lemmas:

Lemma trans_poly1 : trans_poly 1 = [:: (one CR)].

Lemma mul_seqE :

{morph trans_poly : p q / p * q >-> mul_seq p q}.

At this point, we could also have used the karatsuba_seq implementation of
polynomial multiplication instead of mul_seq since we can prove its correctness
using the karatsubaE and karatsuba_seqE lemmas. Finally this can be used to
build the CRing mixin and make it a canonical structure.

Definition seq_cringMixin := CRingMixin trans_poly1 mul_seqE.

Canonical Structure seq_cringType :=

Eval hnf in CRingType {poly R} seq_cringMixin.

5.3 Examples of computations

This computable ring structure has also been instantiated by the Coq imple-
mentation of Z and Q which means that they can be used as basis when building
multivariate polynomials. To multiply 2 + xy and 1 + x + xy + x2y2 in Z[x, y]
one can write:

Definition p := [:: [:: 2]; [:: 0; 1]].

Definition q := [:: [:: 1; 1]; [:: 0; 1]; [:: 0; 0; 1]].

> Eval compute in mul p q.

= [:: [:: 2; 2]; [:: 0; 3; 1]; [:: 0; 0; 3]; [:: 0; 0; 0; 1]]

The result should be interpreted as (2+2x)+(3x+x2)y+3x2y2 +x3y3. The
gcd of 1 + x + (x + x2)y and 1 + (1 + x)y + xy2 in Z[x, y] can be computed by:

Definition p := [:: [:: 1; 1] ; [:: 0; 1; 1] ].

Definition q := [:: [:: 1]; [:: 1; 1]; [:: 0; 1]].

> Eval compute in gcdp_seq p q.

= [:: [:: 1]; [:: 0; 1]]

The result is 1 + xy as expected. The following is an example over Q[x, y]:
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Definition p := [:: [:: 2 # 3; 2 # 3]; [:: 0; 1 # 2; 1 # 2]].

Definition q := [:: [:: 2 # 3]; [:: 2 # 3; 1 # 2]; [:: 0; 1 # 2]].

> Eval compute in gcdp_seq p q.

= [:: [:: 1 # 3]; [:: 0; 1 # 4]]

The two polynomials are 2
3 + 2

3x + 1
2xy + 1

2x
2y and 2

3 + 2
3y + 1

2xy + 1
2xy

2.
The resulting gcd should be interpreted as 1

3 + 1
4xy.

6 Conclusions and Further Work

In this paper, we showed how to use high-level libraries to prove properties
of algorithms, while retaining good execution capabilities by providing efficient
low-level implementations. The need of modularity of the executable structure
appears naturally and the methodology explained in [5] works quite well. The
only thing a user has to provide is a proof of an injectivity lemma stating that
the translation behaves correctly.

The methodology we suggest has already been used in other contexts, like the
CoRN library, where properties of real numbers described in [16] are obtained
by proving that these real numbers are isomorphic to an abstract, pre-existing
but less efficient version. We tried to show that this approach can be applied in
a systematic and modular way.

The library we designed also helps to solve a restriction of SSReflect:
due to a lot of computations during deduction steps, some of the structures are
locked to allow type-checking to be performed in a reasonable amount of time.
This locking prevents full-scale reflection on some of the most complex types
like big operators, polynomials or matrices. Our implementation restores the
ability to perform full-scale reflection on abstract structures, and more generally
to compute. For instance, addition of two fully instantiated polynomials cannot
be evaluated to its actual numerical result but we can refine it to a computable
object that will reduce. This is a first step towards having in the same system
definitions of objects on which properties can be proved and some of the usual
features of a computer algebra system.

However, in its current state, the inner structure of our library is slightly
more rigid than necessary: we create a type for computable Z-modules, but in
practice, all the operations it contains could be packaged independently. Indeed,
on each of these operations we prove only a morphism lemma linking it to its ab-
stract counterpart, whereas in usual algebraic structures, expressing properties
like distributivity require access to several operations at once. This specificity
would make it possible to reorganise the library and create independent struc-
tures for each operation, instead of creating one of them for each type. Also,
we could use other packaging methods, like type classes [18], to simplify the
layout of the library. However, modifying the library to use type classes on top
of SSReflect’s canonical structures is still on-going work, since we faced some
incompatibilities between the different instance resolution mechanisms.
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Abstract. The Sasaki-Murao algorithm computes the determinant of
any square matrix over a commutative ring in polynomial time. The
algorithm itself can be written as a short and simple functional program,
but its correctness involves nontrivial mathematics. We here represent
this algorithm in Type Theory with a new correctness proof, using the
Coq proof assistant and the SSReflect extension.

1 Introduction

The goal of this note is to present a formal proof of the Sasaki-Murao algo-
rithm [8]. This is an elegant algorithm for computing the determinant of a
square matrix over an arbitrary commutative ring in polynomial time. Usual
presentations of this algorithm are quite complex, and rely on some Sylvester
identities [1]. We believe that the proof we shall present, which was obtained by
formalizing this algorithm in Type Theory (more precisely in the SSReflect [5]
extension to Coq [9]) is simpler. It does not rely on Sylvester identities and in-
deed gives a proof of some of them as corollaries. It provides also a good example
of how one can use a library of formalized mathematical results to prove formally
a computer algebra program. The whole formalization can be found at [7].

2 Sasaki-Murao algorithm

2.1 Matrices

For any n ∈ N, we define In = {i ∈ N | i < n} (with I0 = ∅). If R is a set, a
m × n matrix of elements of the set R is a function Im × In → R. We can also
view any such matrix as a family of elements (mij) for i ∈ Im and j ∈ In.

If M is a m × n matrix, f a function of type Ip → Im and g a function of
type Iq → In, we define the p× q sub-matrix1 M(f, g) by

M(f, g)(i, j) = M(f i, g j)

? The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).

1 In the usual definition of sub-matrix, only some lines and columns are removed,
which would be enough for the following proofs. But our more general definition
make the Coq formalization easier to achieve.
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We often use the following operation on finite maps: if f : Ip → Im, we defined
f+ : I1+p → I1+m such that

f+0 = 0
f+(1 + x) = 1 + (f x)

If R is a ring, let 1n be the n×n identity matrix. We can also define addition
and multiplication of matrices as usual. We can decompose a non-empty m× n
matrix M in four components:

– the top-left element m00, which is an element of R
– the top-right line vector L = m01,m02, . . . ,m0(n−1)
– the bottom-left column vector C = m10,m20, . . . ,m(m−1)0
– the bottom-right (m− 1)× (n− 1) matrix Nij = m(1+i,1+j)



m00 L

C N




With this decomposition, we define the central operation of our algorithm,
which defines a (m− 1)× (n− 1) matrix:

M ′ = m00N − CL

This operation M 7−→M ′ transforms a m×n matrix into a (m−1)× (n−1)
matrix is crucial in the Sasaki-Murao algorithm. In the special case where m =
n = 2 the matrix M ′ (of size 1×1) can be identified with the determinant of M .

Lemma 1. For any m×n matrix M , for any map f : Ip → Im−1 and any map
g : Iq → In−1, we have the following identity:

M ′(f, g) = M(f+, g+)′

Proof. This lemma is easy to prove once one has realized two facts:

1. Selecting a sub-matrix commutes with most of the basic operations about
matrices. In particular, (M − N)(f, g) = M(f, g) − N(f, g), (aM)(f, g) =
aM(f, g). For multiplication, we have (MN)(f, g) = M(f, id)N(id, g) where
id is the identity function.

2. For any matrix M described as a block (r L C N), we have that M(f+, g+)
is the block (r L(id, g) C(f, id) N(f, g))

From this two observations, we then have:

M ′(f, g) = (rN − Cl)(f, g)
= rN(f, g)− C(f, id)L(id, g)

M(f+, g+)′ = rN(f, g)− C(f, id)L(id, g)

So, we can conclude that M ′(f, g) = M(f+, g+)′.
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The block decomposition suggests the following possible representation of
matrices in a functional language using the data type (where [R] is the type of
lists over the type R, using Haskell notation):

Mat R ::= Empty | Mat R [R] [R] (Mat R)

So a matrix M is either the empty matrix Empty or a compound matrix
Mat m L C N . It is direct, using this representation, to define the operations
of addition, multiplication on matrices, and the operation M ′ on non-empty
matrices. From this representation, we can also compute other standard views
of a m×n matrix, such as a list of lines l1, . . . , lm or as a list of columns c1, . . . , cn.

If M is a square n×n matrix over a ring R we write |M | the determinant of
M . A k-minor of M is a determinant |M(f, g)| for any strictly increasing maps
f : Ik → In and g : Ik → In. A leading principal minor of M is a determinant
|M(f, f)| where f is the inclusion of Ik into In.

2.2 The algorithm

We present Sasaki-Murao algorithm using functional programming notations.
This algorithm computes in polynomial time, not only the determinant of a
matrix, but also its characteristic polynomial. We assume that we have a rep-
resentation of polynomials over the ring R and that we are given an opera-
tion p/q on R[X] which should be the quotient of p by q when q is a monic
polynomial. This operation is directly extended to an operation M/q of type
Mat R[X] → R[X] → Mat R[X]. We define then an auxiliary function φ a M
of type R[X]→Mat R[X]→ R[X]. The definition is:

φ a Empty = a
φ a (Mat m L C N) = φ m ((mN − CL)/a)

From now on, we assume R to be a commutative ring.

The proof relies on the notion of regular element of a ring: a regular element
of R is an element a such that ax = 0 implies x = 0. An alternative (and
equivalent) definition is to say that multiplication by a is injective or that a can
be cancelled from ax = ay giving x = y.

Theorem 1. Let P be a square matrix of elements of R[X]. If all leading prin-
cipal minors of P are monic, then φ 1 P is the determinant of P . In particular,
if P = X1n −M for some square matrix M of elements in R, φ 1 P is the
characteristic polynomial of M .

This gives a remarkably simple (and polynomial time [1]) algorithm for com-
puting the characteristic polynomial χM (X) of a matrix M . The determinant of
M is then χ−M (0).
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3 Correctness proof

We first start to prove some auxiliary lemmas:

Lemma 2. If M is a n× n matrix, n > 0 then we have

mn−1
00 |M | = m00|M ′|.

In particular, if m00 is regular and n > 1, then we have

mn−2
00 |M | = |M ′|.

Proof. Let us view the matrix M as a list of lines l0, . . . , ln−1 and let N1 be
the matrix l0, m00l1, . . . , m00ln−1. The matrix N1 is computed from M by
multiplying all of its lines (except the first one) by m00. By the properties of the
determinant, we can assert that |N1| = mn−1

00 |M |.
Let N2 be the matrix l0, m00l1 − m10l0, . . . , m00ln−1 − m(n−1)0l0. The

matrix N2 is computed from N1 by subtracting a multiple of l0 from every line
except l0:

m00l1+i ← m00l1+i −m(1+i)0l0.

By the properties of the determinant, we can assert that |N2| = |N1|.

Using the definition of the previous section, we can also view the matrix M
as the block matrix (m00 L C N), and then the matrix N2 is the block matrix
(m00 L 0 M ′). Hence we have |N2| = m00|M ′|. From this equality, we can now
prove that

mn−1
00 |M | = |N1| = |N2| = m00|M ′|.

If m00 is regular and n > 2, this equality simplifies to mn−2
00 |M | = |M ′|

Corollary 1. Let M be a n × n matrix with n > 0. If f and g are two strictly
increasing maps from Ik to In−1, then |M ′(f, g)| = mk−1

00 |M(f+, g+)| if m00 is
regular.

Proof. Using Lemma 1, we know that M ′(f, g) = M(f+, g+)′, so this corollary
follows from Lemma 2.

Let a be an element of R and M a n× n matrix. We say that a and M are
related if and only if

1. a is regular
2. ak divides each k + 1 minor of M
3. each principal minor of M is regular

Lemma 3. Let a be a regular element of R and M a n× n matrix, with n > 0.
If a and M are related, then a divides every element of M ′. Furthermore if
aN = M ′ then m00 and N are related and if n > 1

mn−2
00 |M | = an−1|N |
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Proof. Let us start by stating two trivial facts: m00 is a 1 × 1 principal minor
of M and for all i, j, M ′ij is a 2× 2 minor of M . These two identities are easily
verified by checking the related definitions. Therefore, since a and M are related,
m00 is regular and a divides all the M ′ij (by having k = 1), so a divides M ′.

Let us write M ′ = aN , we now need to show that m00 and N are related,
and if n > 1,

mn−2
00 |M | = an−1|N |

Let us consider two strictly increasing maps f : Ik → In−1, g : Il → In−1,
we have |M ′(f, g)| = uk−1|M(f+, g+)| by Corollary 1. From the definition of
related, we also know that ak divides |M(f+, g+)|. Since M ′ = aN we have
|M ′(f, g)| = ak|N(f, g)|. If we write bak = |M(f+, g+)|, we have that bakuk−1 =
ak|N(f, g)|. Since a is regular, this equality implies buk−1 = |N(f, g)|, and we see
that uk−1 divides each k minor of N . This also shows that |N(f, g)| is regular
whenever |M(f+, g+)| is regular. In particular, each principal minor of N is
regular. Finally, since |M ′| = an−1|N | we have mn−2

00 |M | = an−1|N | by Lemma
2.

Since any monic polynomial is also a regular element of the ring of polynomi-
als, Theorem 1 follows directly from Lemma 3 by performing a straightforward
induction over the size n. In the case where P is X1n − M for some square
matrix M over R, we can use the fact that any principal minor of X1n −M is
the characteristic polynomial of a smaller matrix, and thus is always monic.
In the end, the second part of the conclusion follows directly for the first:
φ 1 (X1n −M) = χM (X).

Now, we explain how to derive some Sylvester equalities from Lemma 3. If
we look at the computation of φ 1 P we get a chain of equalities

φ 1 P = φ u1 P1 = φ u2 P2 = · · · = φ un−1 Pn−1

and we have that uk is the k : th leading principal minor of P , while Pk is the
(n− k)× (n− k) matrix

Pk(i, j) = |P (fi,k, fj,k)|

where fi,k(l) = l if l < k and fi,k(k) = i+k. (We have P0 = P .) Lemma 3 shows
that we have for k < l

|Pk|un−l−1l = |Pl|un−k−1k

This is a Sylvester equality for the matrix P = X1n −M . If we evaluate this
identity at X = 0, we get the corresponding Sylvester equality for the M matrix
over an arbitrary commutative ring.

4 Representation in Type Theory

The original functional program is easily described in Type Theory, since it is
an extension of simply typed λ-calculus:
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Variable R : ringType.

Variable CR : cringType R.

Definition cpoly := seq CR. (* polynomials are lists *)

Inductive Matrix : Type :=

| eM (* the empty matrix *)

| cM of CR & seq CR & seq CR & Matrix.

Definition ex_dvd_step d (M : Matrix cpoly) :=

mapM (fun x => divp_seq x d) M.

(* main "\phi" function of the algorithm *)

Fixpoint exBareiss_rec (n : nat) (g : cpoly) (M : Matrix cpoly)

{struct n} : cpoly := match n,M with

| _,eM => g

| O,_ => g

| S p, cM a l c M =>

let M’ := subM (multEM a M) (mults c l) in

let M’’ := ex_dvd_step g M’ in

exBareiss_rec p a M’’

end.

(* This function computes det M for a matrix of polynomials *)

Definition exBareiss (n : nat) (M : Matrix cpoly) : cpoly :=

exBareiss_rec n 1 M.

(* Applied to xI - M, this gives another definition of the

characteristic polynomial *)

Definition ex_char_poly_alt (n : nat) (M : Matrix CR) :=

exBareiss n (ex_char_poly_mx n M).

(* The determinant is the constant part of the char poly *)

Definition ex_bdet (n : nat) (M : Matrix CR) :=

nth (zero CR) (ex_char_poly_alt n (oppM M)) 0.

The Matrix type allows to define “ill-shaped” matrices since there are no
links between the size of the blocks. When proving correctness of the algorithm,
we have to be careful and only consider valid inputs.

As we previously said, this is a simple functional program, but its correctness
involves nontrivial mathematics. We choose to use the SSReflect library to
formalize the proof because it already contains many results that we need. The
main scheme is to translate this program using SSReflect data types, prove its
correctness and then prove that both implementations output the same results
on valid inputs following the methodology presented in [3].
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First, here is a description of the SSReflect data types we need:

(* ’I_n *)

Inductive ordinal (n: nat) : predArgType := Ordinal m of m < n.

Variable R : ringType.

(* ’M[R]_(m,n) a.k.a. ’M_(m,n) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

(* {poly R} *)

Record polynomial := Polynomial {

polyseq :> seq R;

_ : last 1 polyseq != 0

}.

Here dependent types are used to express well-formedness. For example, poly-
nomials are encoded as lists (of their coefficients) with a proof that the last one
is not zero. With this restriction, we are sure that one list exactly represent a
unique polynomial. Matrices are described as finite functions over the finite sets
of indexes.

With this definition, it is easy to define the sub-matrix M(f, g) along with
minors:

(* M(f,g) *)

Definition submatrix m n p q (f : ’I_p -> ’I_m) (g : ’I_q -> ’I_n)

(A : ’M[R]_(m,n)) : ’M[R]_(p,q) :=

\matrix_(i < p, j < q) A (f i) (g j).

Definition minor m n p (f : ’I_p -> ’I_m) (g : ’I_p -> ’I_n)

(A : ’M[R]_(m,n)) : R := \det (submatrix f g A).

Using SSReflect notations and types, we can now write the steps of the
functional program (where rdivp is the pseudo-division operation [6] of R[X]):

Definition dvd_step (m n : nat) (d : {poly R})

(M: ’M[{poly R}]_(m,n)) : ’M[{poly R}]_(m,n) :=

map_mx (fun x => rdivp x d) M.

(* main "\phi" function of the algorithm *)

Fixpoint Bareiss_rec m a : ’M[{poly R}]_(1 + m) -> {poly R} :=

match m return ’M[_]_(1 + m) -> {poly R} with

| S p => fun (M : ’M[_]_(1 + _)) =>

let d := M 0 0 in (* up left *)

let l := ursubmx M in (* up right *)

let c := dlsubmx M in (* down left *)

let N := drsubmx M in (* down right *)

let M’ := d *: N - c *m l in
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let M’’ := dvd_step a M’ in

Bareiss_rec d M’’

| _ => fun M => M 0 0

end.

Definition Bareiss (n : nat) (M : ’M[{poly R}]_(1 + n)) :=

Bareiss_rec 1 M.

Definition char_poly_alt n (M : ’M[R]_(1 + n)) :=

Bareiss (char_poly_mx M).

Definition bdet n (M : ’M[R]_(1 + n)) :=

(char_poly_alt (-M))‘_0.

The main achievement of this paper is the formalized proof of correctness
(detailed in the previous section) of this program:

Lemma BareissE : forall n (M : ’M[{poly R}]_(1 + n)),

(forall p (h h’ : p.+1 <= 1 + n), monic (pminor h h’ M)) ->

Bareiss M = \det M.

Lemma char_poly_altE : forall n (M : ’M[R]_(1 + n)),

char_poly_alt M = char_poly M.

Lemma bdetE n (M : ’M[R]_(1 + n)) : bdet M = \det M.

Now we want to prove that the original functional program is correct. Both
implementations are very close to each other, so to prove the correctness of
the ex_bdet program, we just have to show that it computes the same result
than bdet on similar (valid) inputs. This is one of the advantages of formalizing
correctness of program in Type Theory: one can express the program and its
correctness in the same language!

Lemma exBareiss_recE :

forall n (g : {poly R}) (M : ’M[{poly R}]_(1 + n)),

trans (Bareiss_rec g M) =

exBareiss_rec (1+n) (trans g) (trans M).

Lemma exBareissE : forall n (M : ’M[{poly R}]_(1 + n)),

trans (Bareiss M) = exBareiss (1 + n) (trans M).

Lemma ex_char_poly_mxE : forall n (M : ’M[R]_n),

trans (char_poly_mx M) = ex_char_poly_mx n (trans M).

Lemma ex_detE : forall n (M : ’M[R]_(1 + n)),

trans (bdet M) = ex_bdet (1 + n) (trans M).

To link the two implementations, we rely on CoqEAL [2], a library built on
top of SSReflect libraries that we are currently developing. It allows to mirror
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the main algebraic hierarchy of SSReflect with more concrete data types (e.g.
here we mirror the matrix type ’M[R]_(m,n) by the concrete type Matrix CR,
assuming CR mirrors R) in order to prove the correctness of functional programs
using the whole power of SSReflect libraries.

This process is done in the same manner as in [4] using the canonical structure
mechanism of Coq to overload the trans function, which can then be uniformly
called on elements of the ring, polynomials or matrices. This function links the
SSReflect structures to the one we use for the functional program description,
ensuring that the correctness properties are translated the program that we ac-
tually run in practice.

We can easily prove that translating a SSReflect matrix into a Matrix al-
ways lead to a “valid” Matrix, and there is a bijection between SSReflect ma-
trices and “valid” matrices, so we are sure that our program computes the correct
determinant for all valid inputs.

In the end, the correctness of ex_bdet is proved using the lemmas bdetE and
ex_bdetE, stating that for any valid input, ex_bdet outputs the determinant of
the matrix:

Lemma ex_bdet_correct (n : nat) (M : ’M[R]_(1 + n)) :

trans (\det M) = ex_bdet (1 + n) (trans M).

5 Conclusions and Benchmarks

In this paper the formalization of a polynomial time algorithm for computing
the determinant over any commutative ring has been presented. In order to be
able to do the formalization in a convenient way a new correctness proof more
suitable for formalization has been found. The formalized algorithm has also been
refined to a more efficient version on simple types, following the methodology
of [3]. This work can be seen as an indication that this methodology works well
on more complicated examples involving many different computable structures,
in this case matrices of polynomials.

We have tested the implementation on randomly generated matrices with Z
coefficients:

(* Random 3x3 matrix *)

Definition M3 :=

cM 10%Z [:: (-42%Z); 13%Z] [:: (-34)%Z; 77%Z]

(cM 15%Z [:: 76%Z] [:: 98%Z]

(cM 49%Z [::] [::] (@eM _ _))).

Time Eval vm_compute in ex_bdet 3 M3.

= (-441217)%Z

Finished transaction in 0. secs (0.006667u,0.s)

Definition M10 := (* Random 10x10 matrix *).
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Time Eval vm_compute in ex_bdet 10 M10.

= (-406683286186860)%Z

Finished transaction in 1. secs (1.316581u,0.s)

Definition M20 := (* Random 20x20 matrix *).

Time Eval vm_compute in ex_bdet 20 M20.

= 75728050107481969127694371861%Z

Finished transaction in 63. secs (62.825904u,0.016666s)

This indicates that the implementation is indeed quite efficient, we believe
that the slow-down of the last computation is due to the fact that the size of the
determinant is so large and that the intermediate arithmetic operations has to
be done on very big numbers. We have verified this by extracting the function
to Haskell and the determinant of the 20 × 20 matrix can then be computed
in 0.273 seconds. The main reasons for this is that the Haskell program has
been compiled and have an efficient implementation of arithmetic operations for
large numbers.
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Abstract. We present a formalization of coherent and strongly discrete
rings in type theory. This is a fundamental structure in constructive al-
gebra that represents rings in which it is possible to solve linear systems
of equations. These structures have been instantiated with Bézout do-
mains (for instance Z and k[x]) and Prüfer domains (generalization of
Dedekind domains) so that we get certified algorithms solving systems
of equations that are applicable on these general structures. This work
can be seen as basis for developing a formalized library of linear algebra
over rings.

Keywords: Formalization of mathematics, Constructive algebra, Coq,
SSReflect

1 Introduction

One of the fundamental operations in linear algebra is the ability to solve linear
systems of equations. The concept of (strongly discrete) coherent rings abstracts
over this ability which makes them an important notion in constructive algebra
[13]. This makes these rings suitable as a basis for developing computational
homological algebra, that is, linear algebra over rings instead of fields [3].

Another reason that these rings are important in constructive algebra is that
they generalize the notion of Noetherian rings1. Classically any Noetherian ring is
coherent (and strongly discrete) but the situation in constructive mathematics
is more complex and, in fact there is no standard constructive definition of
Noetheriannity [15]. Logically, Noetheriannity is expressed by a higher-order
condition (it involves quantification over every ideal of the ring) while both
coherent and strongly discrete are first-order notions which makes them much
more suitable for formalization.

One important example (aside from fields) of coherent strongly discrete rings
are Bézout domains which are a non-Noetherian generalization of principal ideal

? The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).

1 Rings where all ideals are finitely generated.
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domains (rings where all ideals are generated by one element). The two standard
examples of Bézout domains are Z and k[x] where k is a field. Another example
of coherent strongly discrete rings are Prüfer domains with decidable divisibility
which are a non-Noetherian generalization of Dedekind domains. The condition
of being a Prüfer domain captures what Dedekind thought was the most impor-
tant property of Dedekind domains [1], namely the ability to invert ideals (which
is usually hidden in standard classical treatments of Dedekind domains). This
property also has applications in control theory [17].

All of these notions have been formalized2 using the SSReflect extension
[10] to the Coq proof assistant [4]. This work can be seen as a generalization
of the previous formalization of linear algebra in the SSReflect library [9].

The main motivation behind this work is that it can be seen as a basis for
a formalization of computational homological algebra. This approach is inspired
by the one of homalg [3] where homological algorithms (without formalized
correctness proofs) are implemented based on a notion that they call computable
rings [2] which in fact are the same as coherent strongly discrete rings. Another
source of inspiration is the work of Lombardi and Quitté [12].

This paper is organized as follows: first the formalization of coherent rings is
presented followed by strongly discrete rings. Next Prüfer domains are explained
together with the proofs that they are both coherent and strongly discrete. This
is followed by a section on how to implement a computational version of the
SSReflect development. We end by a section on conclusions and further work.

2 Coherent rings

Given a ring R (in our setting commutative but it is possible to consider non-
commutative rings as well [2]) one important problem to study is how to solve
linear systems over R. Given a rectangular matrix M over R we want to find
a finite number of solutions X1, . . . , Xn of the system MX = 0 such that any
solution is of the form a1X1+· · ·+anXn where a1, . . . , an ∈ R. If this is possible,
we say that the module of solutions of the system MX = 0 is finitely generated.
This can be reformulated with matrices: we want to find a matrix L such that

MX = 0 ↔ ∃Y.X = LY

A ring is coherent if for any matrix M it is possible to compute a matrix L
such that this holds. If this is the case it follows that ML = 0.

For this it is enough to consider the case where M has only one line. Indeed,
assume that for any 1 × n matrix M we can find a n ×m matrix L such that
MX = 0 iff X = LY for some Y . To solve the system

M1X = · · · = MkX = 0

2 Documentation and formalization can be found at:
http://www.cse.chalmers.se/~mortberg/coherent/
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where each Mi is a 1 × n matrix first compute L1 such that M1X = 0 iff
X = LY1 for some Y1. Next compute L2 such that M2L1Y1 = 0 iff Y1 = L2Y2.
At the end we obtain L1, . . . , Lk such that M1X = · · · = MkX = 0 iff X is of
the form L1 · · ·LkY and so does L1 · · ·Lk provide a system of generators for the
solution of the system.

Hence it is sufficient to formulate the condition for coherent rings as: For any
row matrix M it is possible to find a matrix L such that

MX = 0 ↔ ∃Y.X = LY

In the development, coherent rings have been implemented as in [8] using
the Canonical Structure mechanism of Coq. In the SSReflect libraries
matrices are represented by finite functions over pairs of ordinals (the indices):

(* ’I_n *)

Inductive ordinal (n : nat) := Ordinal m of m < n.

(* ’M[R]_(m,n) = ’M_(m,n) *)

(* ’rV[R]_m = ’M[R]_(1,m) *)

(* ’cV[R]_m = ’M[R]_(m,1) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

Hence the size of the matrices need to be known when implementing coherent
rings. But in general the size of L cannot be predicted so we need an extra
function that computes this:

Record mixin_of (R : ringType) : Type := Mixin {

size_solve : forall m, ’rV[R]_m -> nat;

solve_row : forall m (V : ’rV[R]_m), ’M[R]_(m,size_solve V);

_ : forall m (V : ’rV[R]_m) (X : ’cV[R]_m),

reflect (exists Y : ’cV[R]_(size_solve V), X = solve_row V *m Y)

(V *m X == 0)

}.

Here V *m X == 0 is the boolean equality of matrices and the specification
says that this is reflected by the existence statement. An alternative to having
a function computing the size would be to output a dependent pair but this has
the undesired behavior that the pair has to be destructed when stating lemmas
about it which in turn would mean that these lemmas would be cumbersome to
use as it would not be possible to rewrite with them directly.

Using this we have implemented the algorithm for computing the generators
of a system of equations:

Fixpoint solveMxN (m n : nat) :

forall (M : ’M_(m,n)), ’M_(n,size_solveMxN M) :=

match m return forall M : ’M_(m,n), ’M_(n,size_solveMxN M) with

| S p => fun (M : ’M_(1 + _,n)) =>

let L1 := solve_row (usubmx M)

in L1 *m solveMxN (dsubmx M *m L1)
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| _ => fun _ => 1%:M

end.

Lemma solveMxNP : forall m n (M : ’M[R]_(m,n)) (X : ’cV[R]_n),

reflect (exists Y : ’cV_(size_solveMxN M), X = solveMxN M *m Y)

(M *m X == 0).

In order to instantiate this structure one can of course directly give an al-
gorithm that computes the solution of a single row system. However there is
another approach that will be used in the rest of the paper that is based on the
intersection of finitely generated ideals.

2.1 Ideal intersection and coherence

In the case when R is an integral domain one way to prove that R is coherent is
to show that the intersection of two finitely generated ideals is again finitely gen-
erated. This amounts to given two ideals I = (a1, . . . , an) and J = (b1, . . . , bm)
compute generators (c1, . . . , ck) of I ∩ J . For I ∩ J to be the intersection of I
and J it should satisfy I ∩ J ⊆ I, I ∩ J ⊆ J and ∀x. x ∈ I ∧ x ∈ J → x ∈ I ∩ I.

A convenient way to express this in Coq/SSReflect is to use strongly
discrete rings that is discussed in section 3. For now we just assume that we
can find V and W such that I *m V = I ∩ J and J *m W = I ∩ J. Using this
there is an algorithm to compute generators of the solutions of a system:

m1x1 + · · ·+ mnxn = 0

The main idea is to compute generators, M0, of the solution for m2x2 +
· · · + mnxn = 0 by recursion and also compute generators t1, . . . , tp of (m1) ∩
(−m2, . . . ,−mn) together with V and W such that

(m1)V = (t1, . . . , tp)

(−m2, . . . ,−mn)W = (t1, . . . , tp)

The generators of the module of solutions are then given by:

[
V 0
W M0

]

This has been implemented by:

Fixpoint solve_int m : forall (M : ’rV_m),’M_(m,size_int M) :=

match m return forall (M : ’rV_m), ’M_(m,size_int M) with

| S p => fun (M’ : ’rV_(1 + p)) =>

let m1 := lsubmx M’ in

let ms := rsubmx M’ in

let M0 := solve_int ms in

let V := cap_wl m1 (-ms) in

let W := cap_wr m1 (-ms) in
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block_mx (if m1 == 0 then delta_mx 0 0 else V) 0

(if m1 == 0 then 0 else W) M0

| 0 => fun _ => 0

end.

Lemma solve_intP : forall m (M : ’rV_m) (X : ’cV_m),

reflect (exists Y : ’cV[R]_(size_int M), X = solve_int M *m Y)

(M *m X == 0).

Here cap_wl computes V and cap_wr computes W , their implementation
will be discussed in section 3.1. Note that some special care has to be taken if
m1 is zero, if this is the case we output a matrix:

[
1 0 · · · 0 0
0 0 · · · 0 M0

]

However it would be desirable to output just

[
1 0
0 M0

]

But this would not have the correct size. This could be solved by having a
more complicated function that output a sum type with matrices of two different
sizes. This would give slightly more complicated proofs so we decided to pad with
zeroes instead. In section 5 we will discuss how to implement a more efficient
algorithm without any padding that is more suitable for computation.

3 Strongly discrete rings

An important notion in constructive mathematics is the notion of discrete ring,
that is, rings with decidable equality. Another important notion is strongly dis-
crete rings, these are rings where membership in finitely generated ideals is
decidable. This means that if x ∈ (a1, . . . , an) there is an algorithm computing
w1, . . . , wn such that x =

∑
aiwi.

Examples of such rings are multivariate polynomial rings over discrete fields
(via Gröbner bases [5, 11]) and Bézout domains with explicit divisibility, that
is, whenever a | b one can compute x such that b = xa. We have represented
strongly discrete rings in Coq as:

CoInductive member_spec (R : ringType) n (x : R) (I : ’rV[R]_n)

: option ’cV[R]_n -> Type :=

| Member J of x%:M = I *m J : member_spec x I (Some J)

| NMember of (forall J, x%:M != I *m J) : member_spec x I None.

Record mixin_of (R : ringType) : Type := Mixin {

member : forall n, R -> ’rV_n -> option ’cV_n;

_ : forall n (x : R) (I : ’rV_n), member_spec x I (member x I)

}.



6

The structure of strongly discrete rings contains a function taking an element
and a row vector (with the generators of the ideal) and return an option type
with a column vector. This is Some J if x can be written as IJ and if it is None
then there should also be a proof that there cannot be any J satisfying x = IJ .
The use of CoInductive has nothing to do with coinduction but it should be seen
as a datatype without any recursion schemes on which one can do case-analysis,
for more information see [10].

3.1 Ideal theory

In the development we have chosen to represent finitely generated ideals as row
vectors, so an ideal in R with n generators is represented as a row matrix of type
’rV[R]_n. This way operations on ideals can be implemented using functions on
matrices and properties can be proved using the matrix library.

A nice property of strongly discrete rings is that the inclusion relation of
finitely generated ideals is decidable. This means that we can decide if I ⊆ J
and if this is the case express every generator of I as a linear combination of the
generators of J . This is represented in Coq by:

Fixpoint subid m n : ’rV[R]_m -> ’rV[R]_n -> bool :=

match m return ’rV[R]_m -> ’rV[R]_n -> bool with

| S p => fun (I : ’rV[R]_(1 + _)) J =>

member (I 0 0) J && subid (rsubmx I) J

| _ => fun _ _ => true

end.

Notation "A <= B" := (subid A B).

Notation "A == B" := ((A <= B) && (B <= A)).

Lemma subidP : forall m n (I : ’rV[R]_m) (J : ’rV[R]_n),

reflect (exists D, I = J *m D) (I <= J)%IS.

Note that this is expressed using matrix multiplication, so subidP says that
if I <= J then every generator of I can be written as a linear combination of
generators of J.

Ideal multiplication is an example where it is convenient to represent ideals
as row vectors. As the product of two finitely generated ideals is generated by
all products of generators of the ideals this can be expressed compactly using
matrix operations:

Definition mulid m n (I : ’rV_m) (J : ’rV_n) : ’rV_(m * n) :=

mxvec (I^T *m J).

Notation "I *i J" := (mulid I J).

Here mxvec flattens ’M[R]_(m,n) to a row vector ’rV[R]_(m * n) and I^T

is the transpose of I. By representing ideals as row vectors we get compact defi-
nitions and quite simple proofs as the theory already developed about matrices
can be used when proving properties of ideal operations.
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It is also convenient to specify what the intersection of I and J is: it is an ideal
K such that K <= I, K <= J and forall (x : R), member x I -> member x

J -> member x K. So in order to prove that an integral domain is coherent it
suffices to give an algorithm that computes K and prove that it satisfies these
three properties. The cap_wr and cap_wl functions used in solve_with_int can
then be implemented easily by explicitly computing D in subidP.

3.2 Coherent strongly discrete rings

If a ring R is both coherent and strongly discrete it is not only possible to solve
homogeneous systems MX = 0 but also any system MX = A. The algorithm
for computing this is expressed by induction on the number of equations where
the case of one equation follow directly from the fact that the ring is strongly
discrete. In the other case the matrix looks like:

[
R1

M

]
X =

[
a1
A

]

Now compute generators G1 for the module of system of solutions of R1X = 0
and test if a1 ∈ R1, if this is not the case the system is not solvable otherwise
get W1 such that R1W1 = a1. Now compute by recursion the solution S of
MG1X = A−MW1 such that MG1S = A−MW1. The solution to the system
is then W1 + G1S as

[
R1

M

]
(W1 + G1S) =

[
R1W1 + R1G1S
MW1 + MG1S

]
=

[
a1
A

]

This has been implemented in Coq by:

Fixpoint solveGeneral m n : ’M_(m,n) -> ’cV_m -> option ’cV_n :=

match m return ’M[R]_(m,n) -> ’cV[R]_m -> option ’cV[R]_n with

| S p => fun (M: ’M[R]_(1 + _,n)) (A : ’cV[R]_(1 + _)) =>

let G1 := solve_row (usubmx M) in

let W1 := member (A 0 0) (usubmx M) in

obind (fun w1 : ’cV_n =>

obind (fun S => Some (w1 + G1 *m S))

(solveGeneral (dsubmx M *m G1) (dsubmx A - dsubmx M *m w1))

) W1

| _ => fun _ _ => Some 0

end.

CoInductive SG_spec m n (M : ’M[R]_(m,n)) (A : ’cV[R]_m)

: option ’cV[R]_n -> Type :=

| HasSol X0 of

(forall (X : ’cV[R]_n),

reflect (exists Y, X = solveMxN M *m Y + X0)

(M *m X == A)) : SG_spec M A (Some X0)

| NoSol of (forall X, M *m X != A) : SG_spec M A None.
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Lemma solveGeneralP: forall m n (M : ’M[R]_(m,n)) (A : ’cV[R]_m),

SG_spec M A (solveGeneral M A).

Here obind is the bind operation for the option type which applies the func-
tion if the output is Some and returns None otherwise.

3.3 Bézout domains are strongly discrete and coherent

The first example of coherent strongly discrete rings that we studied were Bézout
domains with explicit divisibility. These are integral domains where every finitely
generated ideal is principal (generated by a single element). The two main ex-
amples of Bézout domains are Z and k[x] where k is a discrete field.

Bézout domains can also be characterized as rings with a GCD operation in
which there is a function computing the elements of the Bézout identity:

CoInductive bezout_spec R (a b : R) : R * R -> Type :=

BezoutSpec x y of

gcdr a b %= x * a + y * b : bezout_spec a b (x,y).

Record mixin_of R : Type := Mixin {

bezout : R -> R -> (R * R);

_ : forall a b, bezout_spec a b (bezout a b)

}.

This means that given a and b one can compute x and y such that xa + by
is associate3 to gcd(a, b). Based on this it is straightforward to implement a
function that given a finitely generated ideal (a1, . . . , an) computes a (this a
is the greatest common divisor of all the ai) such that (a1, . . . , an) ⊆ (a) and
(a) ⊆ (a1, . . . , an).

To test if x ∈ (a1, . . . , an) in a Bézout domain first compute a principal ideal
(a) and then test if a | x and if this is the case we we can construct the witness
and otherwise we know that a /∈ (a1, . . . , an). This has been implemented in
Coq by:

Definition bmember n (x : R) (I : ’rV[R]_n) :=

match x %/? principal_gen I with

| Some a => Some (principal_w1 I *m a%:M)

| None => None

end.

Lemma bmember_correct : forall n (x : R) (I : ’rV[R]_n),

member_spec x I (bmember x I).

3 a and b are associates if a | b and b | a or equivalently that there exists a unit u ∈ R
such that a = bu.
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Here %/? is the explicit divisibility function of R, principal_gen is the gen-
erator of the principal ideal generating I and principal_w1 I is the witness
that (a) ⊆ I.

For showing that Bézout domains are coherent let I and J be two finitely
generated ideals and compute principal ideals such that I = (a) and J = (b).
Now it easy to prove that I ∩ J = (lcm(a, b)), where lcm(a, b) is the lowest
common multiple of a and b which is computable in our setting as any Bézout
ring is a GCD domain with explicit divisibility. Hence we have now proved that
both Z and k[x] are both coherent and strongly discrete which means that we
can solve arbitrary systems of equations over them.

4 Prüfer domains

Another class of rings that are coherent are Prüfer domains. These can be seen
as non-Noetherian analogues of Dedekind domains and have many different char-
acterizations. The one we choose here is the one in [12] that says that a Prüfer
domain is an integral domains where given any x and y there exists u, v and w
such that

ux = vy

and

(1− u)y = wx

This is implemented in Coq by:

Record mixin_of (R : ringType) : Type := Mixin {

prufer: R -> R -> (R * R * R)%type;

_ : forall x y, let: (u,v,w) := prufer x y in

u * x = v * y /\ (1 - u) * y = w * x

}.

As we require that Prüfer domains have explicit divisibility, see beginning of
section 3, it is possible for us to prove that they are strongly discrete which in
turn means that we can use the library of ideal theory developed for strongly
discrete rings when proving that they are coherent. However it would be possible
to prove that Prüfer domains are coherent without assuming explicit divisibility.

The most basic examples of Prüfer domains are Bézout domains (in particular
Z and k[x]). However there are many other examples, for instance if R is a Bézout
domain then the ring of elements integral over R is a Prüfer domain, this give
examples from algebraic geometry like k[x, y]/(y2+x4−1) and algebraic number
theory like Z[

√
−5].

4.1 Principal localization matrices and strong discreteness

The key algorithm in the proof that Prüfer domains with explicit divisibility
are both strongly discrete and coherent is an algorithm computing a principal
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localization matrix of an ideal [6]. This means that given a finitely generated
ideal (x1, . . . , xn) compute a n× n matrix M = (aij) such that:

∑

i

aii = 1

and
∀ijl. aljxi = alixj

In SSReflect the first of these is a bit problematic as there is no constraint
saying that a matrix has to be nonempty and if a matrix is empty the sum will
be 0. Hence we express the property like this:

Definition P1 m (M : ’M[R]_m) :=

\big[+%R/0]_(i: ’I_m) (M i i) = (0 < m)%:R.

Definition P2 m (X : ’rV[R]_m) (M : ’M[R]_m) :=

forall (i j l: ’I_m), (M l j) * (X 0 i) = (M l i) * (X 0 j).

Definition isPLM m (X : ’rV[R]_m) (M: ’M[R]_m) := P1 M /\ P2 X M.

The first statement uses an implicit coercion from booleans to rings where
false is coerced to 0 and true to 1. The algorithm computing a principal
localization matrix, plm, is quite involved so we have omitted it from this pre-
sentation, the interested reader should have a look in the development and at
the proofs in [6] and [12]. We have proved that this algorithm satisfies the above
specification:

Lemma plmP : forall m (I : ’rV[R]_m), isPLM I (plm I).

The reason that principal localization matrices are interesting is that they
give a way to compute the inverse of a finitely generated ideal I, this is a finitely
generated ideal J such that IJ is principal. In fact if I = (x1, . . . , xn) and
M = (aij) is its principal localization matrix then the following property holds:

(x1, . . . , xn)(a1i, . . . , ani) = (xi)

That is, every column of M is an inverse to I. In Coq:

Lemma col_plm_mulr n (I : ’rV[R]_n.+1) i :

I *m col i (plm I) = (I 0 i)%:M.

This means that we can define an algorithm for computing the inverse of
ideals in Prüfer domains:

Definition inv_id n : ’I_n -> ’rV[R]_n -> ’rV[R]_n :=

match n return ’I_n -> ’rV[R]_n -> ’rV[R]_n with

| S p => fun (i : ’I_(1 + p)%N) (I : ’rV[R]_(1 + p)%N) =>

(col i (plm I))^T

| _ => fun _ _ => 0

end.
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Lemma inv_idP n (I: ’rV[R]_n) i :

(inv_id i I *i I == (I 0 i)%:M)%IS.

Here *i is ideal multiplication. Using this it is possible to prove that Prüfer
domains with explicit divisibility are strongly discrete. To compute if x ∈ I first
compute J such that IJ = (a). Now x ∈ I iff (x) ⊆ I iff xJ ⊆ (a). This can be
decided if we can decide when an element is divisible by a. The implementation
of this is:

Definition pmember n (x : R) : ’rV[R]_n -> option ’cV[R]_n :=

match n return ’rV[R]_n -> option ’cV[R]_n with

| S p => fun I : ’rV[R]_p.+1 =>

let: loc := plm I in

if forallb i, I 0 i %| loc i i * x then

Some (\col_i odflt 0 (loc i i * x %/? I 0 i))

else None

| _ => fun _ => if x == 0 then Some 0 else None

end.

Lemma pmember_correct : forall n (x : R) (I : ’rV[R]_n),

member_spec x I (pmember x I).

Here forallb is a finite forall testing that all of the elements of I divides
aiix. Hence our implementation of Prüfer domains is strongly discrete which
means that the theory about ideals developed for strongly discrete rings can be
used when proving that Prüfer domains are coherent.

4.2 Coherence

The key property of ideals in Prüfer domains for computing the intersection is
that given two finitely generated ideals I and J they satisfy:

(I + J)(I ∩ J) = IJ

This means that we can devise an algorithm for computing generators for
the intersection by first computing (I + J)−1 such that (I + J)−1(I + J) = (a)
and then we get that

I ∩ J =
(I + J)−1IJ

a

Note the use of division here, in fact it is possible to compute the intersection
without assuming division but then the algorithm is more complicated. Using
this the function for computing generators of the intersection is:

Definition pcap (n m : nat) (I : ’rV[R]_n) (J : ’rV[R]_m) :

’rV[R]_(pcap_size I J).+1 := match find_nonzero (I +i J) with

| Some i => let sIJ := I +i J in

let a := sIJ 0 i in
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let acap := inv_id i sIJ *i I *i J in

(0 : ’M_1) +i (\row_i (odflt 0 (acap 0 i %/? a)))

| None => 0

end.

The reason to add 0 as a generator of the ideal is simply to have the correct
size as the formalized proof that R is coherent if I ∩ J is computable requires
that I∩J is nonempty. Now we have an algorithm for computing the intersection
but to prove that this is indeed the intersection we need to prove the property
that we used:

Lemma pcap_id (n m : nat) (I : ’rV[R]_n) (J : ’rV[R]_m) :

((I +i J) *i pcap I J == I *i J)%IS.

Using this it is possible to prove that pcap compute the intersection:

Lemma pcap_subidl m n (I: ’rV_m) (J: ’rV_n): (pcap I J <= I)%IS.

Lemma pcap_subidr m n (I: ’rV_m) (J: ’rV_n): (pcap I J <= J)%IS.

Lemma pcap_member m n x (I : ’rV[R]_m) (J : ’rV[R]_n) :

member x I -> member x J -> member x (pcap I J).

Hence we have now proved that Prüfer domains with explicit divisibility are
coherent strongly discrete rings so not only can we solve homogeneous systems
over them but also any linear system of equations.

4.3 Examples of Prüfer domains

As mentioned before is any Bézout domain a Prüfer domain. The proof of this
is easy:

Definition bezout_calc (x y: R) : (R * R * R)%type :=

let: (g,c,d,a,b) := egcdr x y in (d * b, a * d, b * c).

Lemma bezout_calcP (x y : R) :

let: (u,v,w) := bezout_calc x y in

u * x = v * y /\ (1 - u) * y = w * x.

Here egcdr is the extended Bézout algorithm where g is the gcd of x and y,
x = ag, y = bg and ca + db = 1.

We have not yet formalized the proof that Z[
√
−5] and k[x, y]/(y2 − 1 + x4)

are Prüfer domains but we have implemented these algorithms in Haskell [14].

5 Computations

In the paper algorithms are presented on structures using rich dependently typed
datatypes which is convenient when proving properties but for computation this
is not necessary. In fact it can be more efficient to implement the algorithms
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on simply typed datatypes instead, a good example is matrices: As explained in
section 2 they are represented using finite functions from the indices (represented
using ordinals) but this representation is not suitable for computation as finite
functions are represented by their graph which has to be traversed linearly each
time the function is evaluated. So instead we use a library we previously devel-
oped where matrices are represented using lists of lists and implement efficient
versions of the algorithms on this representations instead. These algorithms are
then linked to the inefficient versions using translation lemmas. The methodology
that we follow is summarized in [7] as:

1. Implement an abstract version of the algorithm using SSReflect’s struc-
tures and use the libraries to prove properties about them. Here we can use
the full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect’s structures and
prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the low-
level data types, ensuring that they will perform the same operations as their
high-level counterparts.

So far we have only presented step 1. The second step involves giving more
efficient algorithms, a good example of this is the algorithms on ideals. A simple
optimization that can be made is to ensure that there are no zeroes as generators
in the output of the ideal operations. The goal would then be to prove that the
more efficient operations generates the same ideal as the original operation.
Another example is solve_int that can be implemented without padding with
zeroes, this would then be proved to produce a set of solution of the system and
then be refined to a more efficient algorithm on list based matrices.

The final step corresponds to implementing “computable” counterparts of
the structures that we presented so far based on simple types. For example is
computable coherent rings implemented as:

Record mixin_of (R : coherentRingType)

(CR : cstronglyDiscreteType R) : Type := Mixin {

csize_solve : nat -> seqmatrix CR -> nat;

csolve_row : nat -> seqmatrix CR -> seqmatrix CR;

_ : forall n (V : ’rV[R]_n),

seqmx_of_mx CR (solve_row V) = csolve_row n (seqmx_of_mx _ V);

_ : forall n (V: ’rV[R]_n),

size_solve V = csize_solve n (seqmx_of_mx _ V)

}.

Here seqmatrix is the list based representation of matrices and seqmx_of_mx

is the translation function from SSReflect matrices to list based matrices.
Using this more efficient versions of the algorithms presented above can be imple-
mented simply by changing the functions on SSReflect matrices to functions
on seqmatrix:
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Fixpoint csolveMxN m n (M : seqmatrix CR) : seqmatrix CR :=

match m with

| S p =>

let u := usubseqmx 1 M in

let d := dsubseqmx 1 M in

let G := cget_matrix n u in

let k := cget_size n u in

let R := mulseqmx n k d G in

mulseqmx k (csize_solveMxN p k R) G (csolveMxN p k R)

| _ => seqmx1 CR n

end.

Lemma csolveMxNE : forall m n (M : ’M[R]_(m,n)),

seqmx_of_mx _ (solveMxN M) = csolveMxN m n (seqmx_of_mx _ M).

The lemma states that solving the system on SSReflect matrices and
then translating is the same as first translating and then compute the solution
using the list based algorithm. The proof of this is straight-forward as all of the
functions of the algorithm have translation lemmas, so it is done by expanding
definitions and translating using already implemented translation lemmas.

This way we have implemented all of the above algorithms and instances and
made some computations with Z using the algorithms for Bézout domains: First
we can compute the generators of (2) ∩ (3, 6):

Eval vm_compute in (cbcap 1 2 [::[::2]] [::[::3; 6]]).

= [:: [:: 6]]

Next we can test if 6 ∈ (2):

Eval vm_compute in (cmember 1%N 6 [::[:: 2]]).

= Some [:: [:: 3]]

It is also possible to solve the homogeneous system:

[
1 2
2 4

] [
x1

x2

]
=

[
0
0

]

Eval vm_compute in (csolveMxN 2 2 [::[:: 1;2];[::2;4]]).

= [:: [:: 2; 0];

[:: -1; 0]]

and the inhomogeneous system:

[
2 3
4 6

] [
x1

x2

]
=

[
4
8

]

Eval vm_compute in (csolveGeneral 2 2 [::[:: 2; 3]; [:: 4; 6]]

[::[:: 4];[:: 8]]).

= Some [:: [:: -4];

[:: 4]]
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We can also do some computations on the algorithms for Prüfer domains
using Z:

Eval vm_compute in (cplm 3 [::[:: 2; 3; 5]]).

= [:: [:: 8; 12; 20];

[:: 12; 18; 30];

[:: -10; -15; -25]]

Eval vm_compute in (cinv_id 2 0 [:: [:: 2; 3]]).

= [:: [:: -2; 2]]

The first computation compute the principal localization matrix of (2, 3, 5)
and the second compute the inverse of the ideal (2, 3).

6 Conclusions and Further Work

In this paper we have represented in type theory interesting and mathematically
nontrivial results in constructive algebra. The algorithms based on coherent and
strongly discrete rings have been refined to more efficient algorithms on simple
datatypes, this way we get certified mathematical algorithms that are suitable for
computation. Hence can this work be seen as an example that the methodology
presented in [7] is applicable on more complicated structures as well.

In the future it would be interesting to prove that multivariate polynomial
rings over discrete fields are coherent and strongly discrete. This would require a
formalization of Gröbner bases and the Buchberger algorithm which has already
been done in Coq [16, 18]. It would be interesting to reimplement this using
SSReflect and compare the complexity of the formalizations.

It would also be interesting to use this work as a basis for a library of formal-
ized computational homological algebra inspired by the homalg project. In fact
solveMxN and solveGeneral are the only operations used as a basis in homalg
[2]. This formalization would involve first proving that the category of finitely
presented modules over coherent strongly discrete rings form an abelian category
and then use this to implement further algorithms.

A consequence of the choice of using SSReflect for the formalization is
that it is difficult to formalize things in full generality, for instance all rings
are assumed to be discrete. Also in constructive algebra ideal theory is usually
developed without assuming decidable ideal membership, but in our experience
are both the SSReflect library and tactics best suited for theories with de-
cidable functions. This is the reason that we only consider Prüfer domains with
explicit divisibility as this means that they are strongly discrete which in turn
means that we can use the library of ideal theory when proving that they are
coherent. We actually started to formalize the coherence proof without assum-
ing explicit divisibility but this led to too complicated proofs so we decided to
assume divisibility as the examples that we are primarily interested in all have
explicit divisibility anyway. It would be more natural from the point of view
of constructive mathematics to represent more general structures without these
decidability conditions.
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However, while the use of SSReflect imposes some decidability conditions,
we found that in this framework of decidable structures the notations and tactics
provided by SSReflect are particularly elegant and well-suited.
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Abstract. In this paper we report on a project to obtain a verified
computation of homology groups of digital images. The methodology is
based on programming and executing inside the Coq proof assistant.
Though more research is needed to integrate and make efficient more
processing tools, we present some examples partially computed in Coq
from real biomedical images.

1 Introduction

The discipline of Algebraic Digital Topology, or more specifically, the compu-
tation of homology groups from digital images is mature enough (see, for in-
stance, [27], one among many good references) to go one step further and inves-
tigate the possibility of a certified computation (i.e., formally verified by proving
correctness using an interactive proof assistant) in digital topology, as it happens
in other areas of computer mathematics (see [8]).

In a very rough manner, the process to be verified is reflected in Figure 1.
Putting it into words, from the black pixels of a monochromatic image a sim-
plicial complex is obtained (by means of a triangulation procedure); subse-
quently, from the simplicial complex, its boundary (or incidence) matrices are
constructed, and finally, homology can be computed. If we work with coefficients
over a field (and it is well-known that it is enough to take as coefficients the field
Z/2Z, when we work with 2D and 3D digital images) and if only the dimensions
of the homology groups (as vector spaces) are looked for, then having a program
able to compute the rank of a matrix is sufficient to accomplish the whole task.

This architecture is particularized in this paper with a real problem that
appeared in an industrial application and with the Coq proof assistant as pro-
gramming and verifying tool.

? Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-
C02-01, and by the European Union’s 7th Framework Programme under grant agree-
ment nr. 243847 (ForMath).
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Fig. 1. Computing homology from a digital image

The rest of this paper is organized as follows. Section 2 is devoted to present
an example, coming from the biomedical context, as a test-case for our formal
development. The formalization process is explained in Section 3, focusing on the
link between boundary matrices and homology groups. Section 4 explains how
the certified programs can be used to effectively compute homology of images. A
way to deal with the management of the huge matrices produced by biomedical
images is presented in Section 5. The paper ends with a section of Conclusions
and Further work, and the bibliography.

2 Motivation

When developing formal proofs, a major issue is ensuring that concepts are
defined in a way that will be applicable to concrete use. In our case, we are
developing a general theory of effective simplicial homology as part of the For-
math project [1]. We decided to validate our design choices on biomedical digital
images obtained from synaptical structures.

Synapses are the points of connection between neurons. The relevance of
synapses comes from the fact that they are related to the computational capa-
bilities of the brain.

The possibility of changing the number of synapses may be an important as-
set in the treatment of neurological diseases, such as Alzheimer, see [26]. There-
fore, we can claim that an efficient, reliable and automatic method for counting
synapses is instrumental in the study of the evolution of synapses in scientific
experiments.

Up to now, the method to count synapses was manual, see [6]. This was
impractical since it implies a considerable time investment. In order to improve
this process, a plug-in called SynapCountJ [17] for the ImageJ environment [22]
has been developed.

The procedure implemented in this software to handle neuron images can
be split into two steps. First, taking as input three images of a neuron, namely
the neuron with two different antibody markers and the structure of the neuron,
SynapCountJ produces a bitmap where synapses are the connected components,
see Figure 2. Then the second step consists in counting the connected compo-
nents of the bitmap. A detailed explanation of the procedure was given in [13].

To test the suitability of this program, biologists consider, on the one hand,
control cultures and, on the other hand, cultures under the effect of some drugs;
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Fig. 2. Example of the results produced by SynapCountJ

in this way, the evolution of the density of the occurrence of synapses under
the effect of those drugs can be determined. For instance, using the chemical
inhibitor GSK3, the evolution percentage manually obtained is 36% and the one
obtained with SynapCountJ is 36.6%. Thus, the experimental results obtained
with SynapCountJ were considered (by the biologists) very satisfactory.

The former step of the procedure implemented in SynapCountJ, the extrac-
tion of a bitmap with the synapses from three images of the neurons, is carried
out based on solid previous experience of experimental scientists; therefore, they
consider it as a safe process. The latter step, the computation of connected com-
ponents, can be solved with many algorithms and is an interesting test case
for our framework where we can compute the homology in dimension 0 of such
images. This is a well known procedure to measure the amount of connected
components of an image, even if more elementary methods are also applicable.

3 Verification in Coq/SSReflect

In the introduction we have explained a method, based on simplicial homology, to
study the homology of a digital image which consists of: (1) building a simplicial
complex from the image, (2) generating the boundary matrices associated with
the simplicial complex, and (3) computing the homology from the boundary
matrices.

The correctness of the programs in charge of both the construction of a
simplicial complex from an image and the generation of the boundary matrices
associated with a simplicial complex have been formally proved using proof as-
sistant tools as can be seen in [21] and [14] respectively. Then, there only remains
the verification of the third point, the computation of homology groups from the
boundary matrices.

In our formalization, we have used the Coq proof assistant [5]. This sys-
tem provides a formal language to write mathematical definitions, executable
algorithms and theorems together with an environment for semi-interactive de-
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velopment of machine-checked proofs. In addition, we take advantage of the
features included in SSReflect [9], an extension for Coq whose development
was started by G. Gonthier during the formal proof of the Four Color The-
orem [8]. The SSReflect libraries include enough ingredients to undertake
the task of defining and computing homology from matrices. Some details of
the proofs will be omitted; the interested reader can consult the original and
complete source code at http://wiki.portal.chalmers.se/cse/pmwiki.php/
ForMath/ProofExamples.

First of all, we define the notion of homology in Coq. Let K be a field,
V 1, V 2, V 3 vector spaces on K, and f : V 1 → V 2, g : V 2 → V 3 linear applica-
tions; then, the Homology of f, g is the quotient between the kernel of g and the
image of f . This is translated into Coq in the following way.

Variable (K : fieldType) (V1 V2 V3 : vectType K)

(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg f)).

Nevertheless, we do not usually work with linear applications when trying to
compute homology but with the matrices representing those linear applications.
In particular, as we are working on a field K, given two matrices with coefficients
in this field, let us called them, mxf and mxg of sizes v1 × v2 and v2 × v3
respectively and such that their product is the null matrix, the dimension of the
corresponding homology vector space is given by the formula: v2−rank(mxg)−
rank(mxf). This definition is introduced in Coq as follows.

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=

v2 - \rank mxg - \rank mxf.

Now, the correctness of dim_homology can be shown by proving that given
two matrices mxf and mxg whose product is the null matrix (mxf *m mxg = 0),
then the result obtained using dim_homology is the dimension of the homol-
ogy group associated with the linear applications defined from mxf and mxg

((LinearApp mxf) and (LinearApp mxg)).

Lemma dimHomologyrankE: mxf *m mxg = 0 ->

\dim Homology (LinearApp mxf) (LinearApp mxg) =

dim_homology mxf mxg.

However the use of SSReflect libraries may trigger heavy computations
during deduction steps, that would not terminate within a reasonable amount
of time. To handle this issue, some definitions like matrices are locked in a way
that do not allow direct computations.

To overcome this pitfall, we use the matrix representation and the rank algo-
rithm developed in [4] to define ex_homology which takes as argument two such
matrices (represented by means of lists of lists) mxf and mxg which dimensions
are v1×v2 and v2×v3 respectively, and computes the homology.

Definition ex_homology (v1 v2 v3:nat) (mxf mxg : seqMatrix K) :=

v2 - (rank v2 v3 mxg) - (rank v1 v2 mxf).
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Finally, we prove the correctness of ex_homology by showing its equivalence
to dim_homology up to a change of representation (this domain transformation
is given by seqmx_of_mx).

Lemma ex_homology_rankE (mxf: ’M[K]_(w1,w2)) (mxg : ’M[K]_(w2,w3))

:

ex_homology (seqmx_of_mx mxf) (seqmx_of_mx mxg)

= dim_homology mxf mxg.

Then, we have an executable program to compute homology, for any dimen-
sion, whose correctness has been verified in Coq; therefore, we can claim that
its results will always be correct.

4 Computing homology with Coq

An example is presented in this section in order to clarify how we can compute
homology groups in Coq. Let us consider the simplicial complex of the left side
of Figure 3. If we impose a lexicographical order on the simplices of the same
dimension of this simplicial complex, its boundary matrix in dimension 1 is the
one presented in the right side of Figure 3; it is worth noting that the rest of
boundary matrices are empty, in particular we do not consider the empty set as
an element of dimension −1.

0

1

2

3

5

4




(0, 1) (0, 2) (1, 2) (1, 3) (4, 5)

(0) 1 1 0 0 0
(1) 1 0 1 1 0
(2) 0 1 1 0 0
(3) 0 0 0 1 0
(4) 0 0 0 0 1
(5) 0 0 0 0 1




Fig. 3. Simplicial complex and its boundary matrix

The procedure to compute the homology (note that it only makes sense to
compute homology in dimensions 0 and 1) of the simplicial complex of Figure 3
is as follows. Firstly, we define the boundary matrices.

Definition d0_ex1 := [::].

Definition d1_ex1 := [::[::1;1;0;0;0];

[::1;0;1;1;0];

[::0;1;1;0;0];

[::0;0;0;1;0];

[::0;0;0;0;1];

[::0;0;0;0;1]].

Definition d2_ex1 := [::].
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Eventually, we can compute the homology using the following instructions.

Eval vm_compute in (ex_homology 0 6 5 d0_ex1 d1_ex1).

Eval vm_compute in (ex_homology 6 5 0 d1_ex1 d2_ex1).

obtaining 2 and 1 respectively. In the same way, we could compute homology
from the boundary matrices associated with the simplicial complex generated
from a digital image. However, if we try to compute the homology from the
images produced by SynapCountJ (see Figure 2), Coq is not able to handle
those images yet, due to the size of data involved.

It is worth noting that Coq is a Proof Assistant and not a Computer Algebra
system. Efficient implementations of mathematical algorithms running inside
Coq is an ongoing effort, as shown by recent works on efficient real numbers [16],
machine integers and arrays [2] or a previous approach to compiled execution of
internal computations [10].

We devise a couple of ways to achieve better efficiency:

– Improve the runtime system using the extraction mechanism which trans-
lates Coq code to a functional programming language like OCaml or Haskell.
However, this would not allow us to reuse the result of our homological
computations for further proofs. Indeed, output of external programs are
untrusted so they cannot be imported. Instead, we are using a recent inter-
mediate approach consisting in internally compiling Coq terms to OCaml
with performance comparable to extracted code [18].

– Optimize algorithms and representations using sparse matrices, which is well
suited to simplicial complexes obtained from digital images. We have devel-
oped an Haskell implementation of such an algorithm but we still need to
formally verify its correctness.

In the next section we describe another method to overcome the efficiency
drawback, based on reducing the size of matrices while keeping the same homo-
logical information.

5 Computing discrete vector fields

The method that we are using for the reduction process is based on Discrete
Morse Theory [7]; namely, we work in the algebraic setting of this theory which
was described in [25]. Roughly speaking, the aim of Discrete Morse Theory con-
sists of finding simplicial collapses which transform a simplicial complex K into
a smaller one but keeping its homological properties. In this context, the instru-
mental tool are admissible discrete vector fields which allows one to reduce the
amount of information removing “useless” information but keeping the homo-
logical properties of the original object.

The use of these techniques from Discrete Morse Theory has been welcomed
in the study of homological properties of digital images, see [3, 11, 15], for in-
stance. This is due to the fact that the size of the cellular object associated with
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an image can be huge, but the choice of an appropriate vector field can produce
a much smaller object.

So, the question now is given a cellular complex how we can produce a vector
field as large as possible (the larger the vector field, the smaller the reduced
object). Several approaches to solve this problem have been studied as can be
seen in [24, 12, 23, 19], the strategy that we have chosen was explained in [25]. It
is not the aim of this paper to describe that algorithm (from now on, called RS’s
algorithm; RS stands for Romero–Sergeraert); but, we just introduce some ideas.
This algorithm takes as input one of the boundary matrices associated with the
cellular complex and provides an admissible discrete vector field (subsequently,
from the matrix and the vector field a reduced matrix can be obtained).

The algorithm has been implemented in Haskell; and, some remarkable re-
sults have been obtained in the reduction process. As benchmark to test our
programs, we have considered matrices coming from, on the one hand, 500 ran-
domly generated images; and, on the other hand, biomedical images. In the
former case, the size of the matrices was initially around 100 × 300, and after
the reduction process the average size was 5 × 50. Using the original matrices
Coq takes around 12 seconds to compute their rank; on the contrary, using the
reduced matrices Coq only needs milliseconds. In the latter case, the matrices
coming from biomedical images, the size of matrices is reduced from around
690×1400 to 97×500. In this case, Coq cannot deal with the original matrices;
on the contrary, it is able to handle matrices as the ones obtained after applying
the reduction programs and compute the results in, approximately, 25 seconds.

As a final remark, let us explain the main reason for using Haskell to imple-
ment the RS algorithm. The use of this language is due to the fact that Haskell
is quite close to Coq; and, therefore, algorithms implemented in Haskell can be
verified using Coq, a question which is, as we have seen, instrumental in our
developments. In particular, the formalization of the correctness of the algorithm
in charge of constructing an admissible discrete vector field given a matrix is on-
going work; and, up to now, we have certified that our programs build a discrete
vector field. The proof of the admissibility property remains as further work.

6 Conclusions and further work

In this paper, we have presented how we can use Algebraic Topology techniques
to study biomedical images in a reliable manner. The first step consists in pro-
cessing the biomedical images to obtain an image where homological informa-
tion is as explicit as possible. Subsequently, using programs whose correctness
has been verified in the Coq/SSReflect proof assistant, homological proper-
ties from the pre-processed image are obtained, which in turn are interpreted as
features of the original image.

This methodology has been applied in this paper to the problem of deter-
mining the number of synapses of a neuron. In this case, the problem is reduced
to measure the number of connected components of a monochromatic image. An
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issue which can be solved, even if it is not the straightforward manner, thanks
to the computation of the homology group in dimension 0 of the image.

The use of certified tools able to compute homology groups will be important
in the future; for instance, to recognize the structure of a neuron; a problem which
seems to involve the homology group in dimension 1, see [20]. Other techniques,
like the ones of persistent homology, could be applied in stacks of neurons to
remove the noise of the images and help to the detection of the dendrites (the
branches of the neuron).

Some formalization aspects also remain as future work. We have already
mentioned the on-going work around proving the correctness of the admissible
discrete vector fields programs. Moreover, certifying the correctness of integer
homology computation is also further work (some results about the formalization
of the Smith Normal Form are already encoded in Coq, see [4]).

As we previously mentioned, we are still working on efficiency issues but
switching to better representations and more efficient algorithms will not require
to redo the proofs related to homology.
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