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Abstract. We present a formalization of coherent and strongly discrete
rings in type theory. This is a fundamental structure in constructive al-
gebra that represents rings in which it is possible to solve linear systems
of equations. These structures have been instantiated with Bézout do-
mains (for instance Z and k[x]) and Prüfer domains (generalization of
Dedekind domains) so that we get certified algorithms solving systems
of equations that are applicable on these general structures. This work
can be seen as basis for developing a formalized library of linear algebra
over rings.
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1 Introduction

One of the fundamental operations in linear algebra is the ability to solve linear
systems of equations. The concept of (strongly discrete) coherent rings abstracts
over this ability which makes them an important notion in constructive alge-
bra [14]. This makes these rings suitable as a basis for developing computational
homological algebra, that is, linear algebra over rings instead of fields [3].

Another reason that these rings are important in constructive algebra is that
they generalize the notion of Noetherian rings.1 Classically any Noetherian ring
is coherent but the situation in constructive mathematics is more complex and
there is in fact no standard constructive definition of Noetherianity [16]. Logi-
cally, Noetherianity is expressed by a higher-order condition (it involves quan-
tification over every ideal of the ring) while ”coherent” is a simpler notion, which
involves only quantification on matrices over the ring, and ”strongly discrete” is
a first-order notion.

One important example (aside from fields) of coherent strongly discrete rings
are Bézout domains, which are a non-Noetherian generalization of principal ideal
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1 Rings where all ideals are finitely generated.



domains (rings where all ideals are generated by one element). The two standard
examples of Bézout domains are Z and k[x] where k is a field. Another example
of coherent strongly discrete rings are Prüfer domains with decidable divisibility
which are a non-Noetherian generalization of Dedekind domains. The condition
of being a Prüfer domain captures what Dedekind thought was the most impor-
tant property of Dedekind domains [1], namely the ability to invert ideals (which
is usually hidden in standard classical treatments of Dedekind domains). This
property also has applications in control theory [18].

All our proofs and definitions are expressed in a constructive framework.
While it would be possible to use classical logic in the proof of correctness of
our algorithms, we feel that they are clearer and shorter in this way. It can also
be argued that our definitions are better expressed in this way. For instance, we
can define a coherent ring as one for which a linear system has a finite number
of generators. In a classical framework, to express this in a computationally
meaningful way would involve the notion of recursive functions.

All of these notions have been formalized2 using the SSReflect exten-
sion [11] to the Coq proof assistant [5]. This work can be seen as a generalization
of the previous formalization of linear algebra in the SSReflect library [10].

The main motivation behind this work is that it can be seen as a basis for
a formalization of computational homological algebra. This approach is inspired
by the one of homalg [3] where homological algorithms (without formalized
correctness proofs) are implemented based on a notion that they call computable
rings [2] which in fact are the same as coherent strongly discrete rings. Another
source of inspiration is the work of Lombardi and Quitté [13] on constructive
commutative algebra.

This paper is organized as follows: first the formalization of coherent rings is
presented followed by strongly discrete rings. Next Prüfer domains are explained
together with the proofs that they are both coherent and strongly discrete. This
is followed by a section on how to implement a computational version of the
SSReflect development. We end by a section on conclusions and further work.

2 Coherent rings

Given a ring R (in our setting commutative but it is possible to consider non-
commutative rings as well [2]) one important problem to study is how to solve
linear systems over R. If R is a field, then we have a nice description of the space
of solution by a basis of solutions. Over an arbitrary ring R there is in general
no basis.3 But an important weaker property is that there is a finite number of

2 Documentation and formalization can be found at:
http://www.cse.chalmers.se/~mortberg/coherent/

3 For instance over the ring R = k[X,Y, Z] where k is a field, the equation pX +
qY + rZ = 0 has no basis of solutions. It can be shown that a generating system of
solutions is given by (−Y,X, 0), (Z, 0,−X), (0,−Z, Y ).



solutions which generate all solutions. We say that the ring is coherent if this is
the case.

More concretely, given a rectangular matrix M over R we want to find a finite
number of solutions X1, . . . , Xn of the system MX = 0 such that any solution
is of the form a1X1 + · · ·+anXn where a1, . . . , an ∈ R. If this is possible, we say
that the module of solutions of the system MX = 0 is finitely generated. This
can be reformulated with matrices: we want to find a matrix L such that

MX = 0 ↔ ∃Y.X = LY

A ring is coherent if for any matrix M it is possible to compute a matrix L
such that this holds. If this is the case it follows that ML = 0.

For this it is enough to consider the case where M has only one line. Indeed,
assume that for any 1 × n matrix M we can find a n ×m matrix L such that
MX = 0 iff X = LY for some Y . To solve the system

M1X = · · · = MkX = 0

where each Mi is a 1 × n matrix first compute L1 such that M1X = 0 iff
X = LY1 for some Y1. Next compute L2 such that M2L1Y1 = 0 iff Y1 = L2Y2.
At the end we obtain L1, . . . , Lk such that M1X = · · · = MkX = 0 iff X is
of the form L1 · · ·LkY and so L1 · · ·Lk provide a system of generators for the
solution of the system.

Hence it is sufficient to formulate the condition for coherent rings as: For any
row matrix M it is possible to find a matrix L such that

MX = 0 ↔ ∃Y.X = LY

Note that the notion of coherent is not stressed in classical presentations of
algebra since Noetherian rings are automatically coherent, but in a computa-
tionally meaningless way. It is however fundamental, both conceptually [13, 14]
and computationally. The system homalg [3] for instance takes this notion as
the central one.

In the development, coherent rings have been implemented as in [9] using the
Canonical Structure mechanism of Coq. In the SSReflect libraries matrices
are represented by finite functions over pairs of ordinals (the indices):

(* ’I_n *)

Inductive ordinal (n : nat) := Ordinal m of m < n.

(* ’M[R]_(m,n) = ’M_(m,n) *)

(* ’rV[R]_m = ’M[R]_(1,m) *)

(* ’cV[R]_m = ’M[R]_(m,1) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

Hence the sizes of the matrices need to be known when implementing coherent
rings. But in general the size of L cannot be predicted so we need an extra
function that computes this:



Record mixin_of (R : ringType) : Type := Mixin {

size_solve : forall m, ’rV[R]_m -> nat;

solve_row : forall m (V : ’rV[R]_m), ’M[R]_(m,size_solve V);

_ : forall m (V : ’rV[R]_m) (X : ’cV[R]_m),

reflect (exists Y : ’cV[R]_(size_solve V), X = solve_row V *m Y)

(V *m X == 0)

}.

Here *m denotes matrix multiplication and V *m X == 0 is the boolean equal-
ity of matrices, so the specification says that this equality is reflected by the ex-
istence statement. An alternative to having a function computing the size would
be to output a dependent pair but this has the undesired behavior that the pair
has to be destructed when stating lemmas about it which in turn would mean
that these lemmas would be cumbersome to use as it would not be possible to
rewrite with them directly.

Using this we have implemented the algorithm for computing the generators
of a system of equations:

Fixpoint solveMxN (m n : nat) :

forall (M : ’M_(m,n)), ’M_(n,size_solveMxN M) :=

match m return forall M : ’M_(m,n), ’M_(n,size_solveMxN M) with

| S p => fun (M : ’M_(1 + _,n)) =>

let L1 := solve_row (usubmx M)

in L1 *m solveMxN (dsubmx M *m L1)

| _ => fun _ => 1%:M

end.

Lemma solveMxNP : forall m n (M : ’M[R]_(m,n)) (X : ’cV[R]_n),

reflect (exists Y : ’cV_(size_solveMxN M), X = solveMxN M *m Y)

(M *m X == 0).

In order to instantiate this structure one can of course directly give an al-
gorithm that computes the solution of a single row system. However there is
another approach that will be used in the rest of the paper that is based on the
intersection of finitely generated ideals.

2.1 Ideal intersection and coherence

In the case when R is an integral domain one way to prove that R is coherent is
to show that the intersection of two finitely generated ideals is again finitely gen-
erated. This amounts to given two ideals I = (a1, . . . , an) and J = (b1, . . . , bm)
compute generators (c1, . . . , ck) of I ∩ J . For I ∩ J to be the intersection of I
and J it should satisfy

I ∩ J ⊆ I

I ∩ J ⊆ J

∀x. x ∈ I ∧ x ∈ J → x ∈ I ∩ J



The first two of these mean that the generators of I ∩ J should be possible
to write as a linear combination of the generators of both I and J . The third
property states that if x can be written as a linear combination of the generators
of I and J then it can be written as a linear combination of the generators of
I ∩ J .

A convenient way to express this in Coq is to use strongly discrete rings,
which are discussed in section 3. For now we just assume that we can find matri-
ces V and W such that IV = I ∩J and JW = I ∩J (with matrix multiplication
and ideals represented by row-vectors containing the generators). Using this
there is an algorithm to compute generators of the solutions of a system:

m1x1 + · · ·+ mnxn = 0

The main idea is to compute generators, M0, of the solution for m2x2 +
· · · + mnxn = 0 by recursion and also compute generators t1, . . . , tp of (m1) ∩
(−m2, . . . ,−mn) together with V and W such that

(m1)V = (t1, . . . , tp)

(−m2, . . . ,−mn)W = (t1, . . . , tp)

The generators of the module of solutions are then given by:[
V 0
W M0

]
This has been implemented by:

Fixpoint solve_int m : forall (M : ’rV_m),’M_(m,size_int M) :=

match m return forall (M : ’rV_m), ’M_(m,size_int M) with

| S p => fun (M’ : ’rV_(1 + p)) =>

let m1 := lsubmx M’ in

let ms := rsubmx M’ in

let M0 := solve_int ms in

let V := cap_wl m1 (-ms) in

let W := cap_wr m1 (-ms) in

block_mx (if m1 == 0 then delta_mx 0 0 else V) 0

(if m1 == 0 then 0 else W) M0

| 0 => fun _ => 0

end.

Lemma solve_intP : forall m (M : ’rV_m) (X : ’cV_m),

reflect (exists Y : ’cV[R]_(size_int M), X = solve_int M *m Y)

(M *m X == 0).

Here cap_wl computes V and cap_wr computes W . Note that some special
care has to be taken if m1 is zero, if this is the case we output a matrix:[

1 0 · · · 0 0
0 0 · · · 0 M0

]



However it would be desirable to output just[
1 0
0 M0

]
But this would not have the correct size. This could be solved by having a

more complicated function that outputs a sum type with matrices of two different
sizes. As this would give slightly more complicated proofs we decided to pad with
zeroes instead. In section 5 we will discuss how to implement a more efficient
algorithm, without any padding, that is more suitable for computation.

3 Strongly discrete rings

An important notion in constructive mathematics is the notion of discrete ring,
that is, rings with decidable equality. Another important notion is strongly dis-
crete rings, these are rings where membership in finitely generated ideals is
decidable and if x ∈ (a1, . . . , an) there is an algorithm computing w1, . . . , wn

such that x =
∑

i aiwi.
Examples of such rings are multivariate polynomial rings over discrete fields

(via Gröbner bases [6, 12]) and Bézout domains with explicit divisibility, that
is, whenever a | b one can compute x such that b = xa. We have represented
strongly discrete rings in Coq as:

CoInductive member_spec (R : ringType) n (x : R) (I : ’rV[R]_n)

: option ’cV[R]_n -> Type :=

| Member J of x%:M = I *m J : member_spec x I (Some J)

| NMember of (forall J, x%:M != I *m J) : member_spec x I None.

Record mixin_of (R : ringType) : Type := Mixin {

member : forall n, R -> ’rV_n -> option ’cV_n;

_ : forall n (x : R) (I : ’rV_n), member_spec x I (member x I)

}.

The structure of strongly discrete rings contains a function taking an element
and a row vector (with the generators of the ideal) and return an option type
with a column vector. This is Some J if x can be written as I *m J and if it is
None then there should also be a proof that there cannot be any J satisfying x =

I *m J. Note that the use of CoInductive has nothing to do with coinduction
but it should be seen as a datatype without any recursion schemes (as opposed
to datatypes defined using Inductive) on which one can do case-analysis, for
more information see [11].

3.1 Ideal theory

In the development we have chosen to represent finitely generated ideals as row
vectors, so an ideal in R with n generators is represented as a row matrix of type



’rV[R]_n. This way operations on ideals can be implemented using functions on
matrices and properties can be proved using the matrix library of SSReflect.

A nice property of strongly discrete rings is that the inclusion relation of
finitely generated ideals is decidable. This means that we can decide if I ⊆ J
and if this is the case express every generator of I as a linear combination
of the generators of J . We have implemented this as the function subid with
correctness expressed as:

Notation "A <= B" := (subid A B).

Notation "A == B" := ((A <= B) && (B <= A)).

Lemma subidP : forall m n (I : ’rV[R]_m) (J : ’rV[R]_n),

reflect (exists D, I = J *m D) (I <= J)%IS.

Note that this is expressed using matrix multiplication, so subidP says that
if I <= J then every generator of I can be written as a linear combination of
generators of J.

Ideal multiplication is an example where it is convenient to represent ideals
as row vectors. As the product of two finitely generated ideals is generated by
all products of generators of the ideals this can be expressed compactly using
matrix operations:

Definition mulid m n (I : ’rV_m) (J : ’rV_n) : ’rV_(m * n) :=

mxvec (I^T *m J).

Notation "I *i J" := (mulid I J).

Here mxvec flattens a matrix of type ’M[R]_(m,n) into a row vector of type
’rV[R]_(m * n) and I^T is the transpose of I. By representing ideals as row
vectors we get compact definitions and quite simple proofs as the theory al-
ready developed about matrices can be used when proving properties of ideal
operations.

It is also convenient to specify what the intersection of I and J is: it is an ideal
K such that K <= I, K <= J and forall (x : R), member x I -> member x

J -> member x K. So in order to prove that an integral domain is coherent it
suffices to give an algorithm that computes K and prove that it satisfies these
three properties. The cap_wr and cap_wl functions used in solve_with_int can
then be implemented easily by explicitly computing D in subidP.

3.2 Coherent strongly discrete rings

If a ring R is both coherent and strongly discrete it is not only possible to solve
homogeneous systems MX = 0 but also any system MX = A. The algorithm
for computing this is expressed by induction on the number of equations where
the case of one equation follow directly from the fact that the ring is strongly
discrete. In the other case the matrix looks like:[

R1

M

]
X =

[
a1
A

]



Now compute generators G1 for the module of system of solutions of the
homogeneous system R1X = 0 and also test if a1 ∈ R1, if this is not the case the
system is not solvable otherwise get W1 such that R1W1 = a1. Now compute by
recursion the solution S of MG1X = A−MW1 such that MG1S = A−MW1.
The solution to the system is then W1 + G1S as[

R1

M

]
(W1 + G1S) =

[
R1W1 + R1G1S
MW1 + MG1S

]
=

[
a1
A

]
This algorithm has been implemented and proved correct as the function

solve_general. Together with solveMxN this constitutes the only operations
used as basis in the libraries of the homalg project [3].

3.3 Bézout domains are strongly discrete and coherent

The first example of coherent strongly discrete rings that we studied were Bézout
domains with explicit divisibility. These are integral domains where every finitely
generated ideal is principal (generated by a single element). The two main ex-
amples of Bézout domains are Z and k[x] where k is a discrete field.

Bézout domains can also be characterized as rings with a GCD operation in
which there is a function computing the elements of the Bézout identity. This
means that given a and b one can compute x and y such that xa+by is associate4

to gcd(a, b). Based on this it is straightforward to implement a function that given
a finitely generated ideal (a1, . . . , an) computes g such that (a1, . . . , an) ⊆ (g)
and (g) ⊆ (a1, . . . , an) where this g is the greatest common divisor of all the ai.
To test if x ∈ (a1, . . . , an) in a Bézout domain first compute a principal ideal (g)
and then test if g | x and if this is the case we we can construct the witness and
otherwise we know that x /∈ (a1, . . . , an).

For showing that Bézout domains are coherent let I and J be two finitely
generated ideals and compute principal ideals such that I = (a) and J = (b).
Now it easy to prove that I ∩ J = (lcm(a, b)), where lcm(a, b) is the lowest
common multiple of a and b which is computable in our setting as any Bézout
ring is a GCD domain with explicit divisibility. Hence we have now proved that
Z and k[x] are both coherent and strongly discrete which means that we can
solve arbitrary systems of equations over them.

4 Prüfer domains

Another class of rings that are coherent are Prüfer domains. These can be seen
as non-Noetherian analogues of Dedekind domains and have many different char-
acterizations, for instance does Bourbaki list fourteen of them [4]. The one we
choose here is the one in [13] that says that a Prüfer domain is an integral domain
where given any x and y there exists u, v and w such that

ux = vy

4 a and b are associates if a | b and b | a or equivalently that there exists a unit u ∈ R
such that a = bu.



and

(1− u)y = wx

This is implemented in Coq by:

Record mixin_of (R : ringType) : Type := Mixin {

prufer: R -> R -> (R * R * R)%type;

_ : forall x y, let: (u,v,w) := prufer x y in

u * x = v * y /\ (1 - u) * y = w * x

}.

As we require that Prüfer domains have explicit divisibility it is possible to
prove that they are strongly discrete which in turn means that we can use the
library of ideal theory developed for strongly discrete rings when proving that
they are coherent. However it would be possible to prove that Prüfer domains
are coherent without assuming explicit divisibility.

The most basic examples of Prüfer domains are Bézout domains (in particular
Z and k[x]). However there are many other examples, for instance if R is a Bézout
domain then the ring of elements integral over R is a Prüfer domain, this gives
examples from algebraic geometry like k[x, y]/(y2+x4−1) and algebraic number
theory like Z[

√
−5].

4.1 Principal localization matrices and strong discreteness

The key algorithm in the proof that Prüfer domains with explicit divisibility
are both strongly discrete and coherent is an algorithm computing a principal
localization matrix of an ideal [8]. This means that given a finitely generated
ideal (x1, . . . , xn) one can compute a n× n matrix M = (aij) such that:

n∑
i=1

aii = 1

and

∀ijl. aljxi = alixj

Note that there is no constraint n 6= 0 which means that the first of these
is a bit problematic as if n = 0 the sum will be empty and hence 0. To remedy
this we express the property formally as:

Definition P1 n (M : ’M[R]_n) :=

\big[+%R/0]_(i: ’I_n) (M i i) = (0 < n)%:R.

Definition P2 n (I : ’rV[R]_n) (M : ’M[R]_n) :=

forall (i j l : ’I_n), (M l j) * (I 0 i) = (M l i) * (I 0 j).

Definition isPLM n (I : ’rV[R]_n) (M : ’M[R]_n) := P1 M /\ P2 I M.



The first statement uses an implicit coercion from booleans to rings where
false is coerced to 0 and true to 1. The algorithm computing a principal
localization matrix, plm, is quite involved so we have omitted it from this pre-
sentation, the interested reader should have a look in the formal development
and at the proofs in [8] and [13]. We have proved that this algorithm satisfies
the above specification:

Lemma plmP : forall n (I : ’rV[R]_n), isPLM I (plm I).

The reason that principal localization matrices are interesting is that they
give a way to compute the inverse of a finitely generated ideal I, this is a finitely
generated ideal J such that IJ (with ideal multiplication) is principal. In fact
if I = (x1, . . . , xn) and M = (aij) is its principal localization matrix then every
column of M is an inverse to I. This means that we can define an algorithm for
computing the inverse of ideals in Prüfer domains:

Definition inv_id n : ’I_n -> ’rV[R]_n -> ’rV[R]_n := match n with

| S p => fun (i : ’I_(1 + p)%N) (I : ’rV[R]_(1 + p)%N) =>

(col i (plm I))^T

| _ => fun _ _ => 0

end.

Lemma inv_idP n (I : ’rV[R]_n) i :

(inv_id i I *i I == (I 0 i)%:M)%IS.

Using this it is possible to prove that Prüfer domains with explicit divisibility
are strongly discrete. To compute if x ∈ I first compute J such that IJ = (a).
Now x ∈ I iff (x) ⊆ I iff xJ ⊆ (a). This can be decided if we can decide when
an element is divisible by a.

We have used this to prove that our implementation of Prüfer domains is
strongly discrete which means that the theory about ideals developed for strongly
discrete rings can be used when proving that they are coherent.

4.2 Coherence

The key property of ideals in Prüfer domains for computing the intersection is
that finitely generated ideals I and J satisfy:

(I + J)(I ∩ J) = IJ

This means that we can devise an algorithm for computing generators for
the intersection by first computing (I + J)−1 such that (I + J)−1(I + J) = (a)
and then get that

I ∩ J =
(I + J)−1IJ

a

Note the use of division here. In fact it is possible to compute the intersection
without assuming division but then the algorithm is more complicated. Using
this the function for computing generators of the intersection is:



Definition pcap (n m : nat) (I : ’rV[R]_n) (J : ’rV[R]_m) :

’rV[R]_(pcap_size I J).+1 := match find_nonzero (I +i J) with

| Some i => let sIJ := I +i J in

let a := sIJ 0 i in

let acap := inv_id i sIJ *i I *i J in

(0 : ’M_1) +i (\row_i (odflt 0 (acap 0 i %/? a)))

| None => 0

end.

Here %/? is the explicit divisibility function of R. The reason to add 0 as a
generator of the ideal is simply to have the correct size as the formalized proof
that R is coherent if I∩J is computable requires that I∩J is nonempty. Also note
the function find_nonzero which finds the first nonzero element in a row-vector.
This could have been implemented using the pick function for picking an element
satisfying a decidable predicate which is provided for all SSReflect rings. But
in order to simplify the translation to an efficient version of the algorithm we
avoid using it here.

To prove that pcap really computes the intersection we need to first prove
the main property used above for finding the algorithm computing I ∩ J :

Lemma pcap_id (n m : nat) (I : ’rV[R]_n) (J : ’rV[R]_m) :

((I +i J) *i pcap I J == I *i J)%IS.

Using this it is possible to prove that pcap compute the intersection:

Lemma pcap_subidl m n (I: ’rV_m) (J: ’rV_n): (pcap I J <= I)%IS.

Lemma pcap_subidr m n (I: ’rV_m) (J: ’rV_n): (pcap I J <= J)%IS.

Lemma pcap_member m n x (I : ’rV[R]_m) (J : ’rV[R]_n) :

member x I -> member x J -> member x (pcap I J).

Hence we have now proved that Prüfer domains with explicit divisibility are
coherent strongly discrete rings so not only can we solve homogeneous systems
over them but also any linear system of equations.

4.3 Examples of Prüfer domains

As mentioned before, any Bézout domain is a Prüfer domain. The proof of this
is easy:

Definition bezout_calc (x y: R) : (R * R * R)%type :=

let: (g,c,d,a,b) := egcdr x y in (d * b, a * d, b * c).

Lemma bezout_calcP (x y : R) : let: (u,v,w) := bezout_calc x y in

u * x = v * y /\ (1 - u) * y = w * x.

Here egcdr is the extended Bézout algorithm where g is the gcd of x and y,
x = ag, y = bg and ca + db = 1.

We have not yet formalized the proof that Z[
√
−5] and k[x, y]/(y2 − 1 + x4)

are Prüfer domains but we have previously implemented this in Haskell [15].



5 Computations

In the paper algorithms are presented on structures using rich dependently typed
datatypes which is convenient when proving properties but for computation this
is not necessary. In fact it can be more efficient to implement the algorithms
on simply typed datatypes instead, a good example is matrices: As explained in
section 2 they are represented using finite functions from the indices (represented
using ordinals) but this representation is not suitable for computation as finite
functions are represented by their graph which has to be traversed linearly each
time the function is evaluated.

In order to develop more efficient versions of the algorithms we use a previ-
ously developed library where matrices are represented using lists of lists and im-
plement the algorithms on this representation. These algorithms are then linked
to the inefficient versions using translation lemmas. The methodology that we
follow is summarized in [7] as:

1. Implement an abstract version of the algorithm using SSReflect structures
and use the libraries to prove properties about them. Here we can use the
full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect structures and
prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the low-
level data types, ensuring that they will perform the same operations as their
high-level counterparts.

So far we have only presented step 1. The second step involves giving more
efficient algorithms, a good example of this is the algorithms on ideals. A simple
optimization that can be made is to ensure that there are no zeroes as generators
in the output of the ideal operations. The goal would then be to prove that
the more efficient operations generate the same ideal as the original operation.
Another example is solve_int that can be implemented without padding with
zeroes, this would then be proved to produce a set of solution of the system and
then be translated to a more efficient algorithm on list based matrices.

The final step corresponds to implementing “computable” counterparts of
the structures that we presented so far based on simple types. For example,
computable coherent rings are implemented as:

Record mixin_of (R : coherentRingType)

(CR : cstronglyDiscreteType R) : Type := Mixin {

csize_solve : nat -> seqmatrix CR -> nat;

csolve_row : nat -> seqmatrix CR -> seqmatrix CR;

_ : forall n (V : ’rV[R]_n),

seqmx_of_mx CR (solve_row V) = csolve_row n (seqmx_of_mx _ V);

_ : forall n (V: ’rV[R]_n),

size_solve V = csize_solve n (seqmx_of_mx _ V)

}.



Here seqmatrix is the list based representation of matrices and seqmx_of_mx

is the translation function from SSReflect matrices to seqmatrix. Using
this more efficient versions of the algorithms presented above can be imple-
mented simply by changing the functions on SSReflect matrices to functions
on seqmatrix:

Fixpoint csolveMxN m n (M : seqmatrix CR) : seqmatrix CR :=

match m with

| S p => let u := usubseqmx 1 M in

let d := dsubseqmx 1 M in

let G := csolve_row n u in

let k := csize_solve n u in

let R := mulseqmx n k d G in

mulseqmx k (csize_solveMxN p k R) G (csolveMxN p k R)

| _ => seqmx1 CR n

end.

Lemma csolveMxNE : forall m n (M : ’M[R]_(m,n)),

seqmx_of_mx _ (solveMxN M) = csolveMxN m n (seqmx_of_mx _ M).

The lemma states that solving the system on SSReflect matrices and then
translating is the same as first translating and then compute the solution us-
ing the list based algorithm. The proof of this is straightforward as all of the
functions in the algorithm have translation lemmas, so it is done by expanding
definitions and translating using already implemented translation lemmas.

This way we have implemented all of the above algorithms and instances to
make some computations with Z using the algorithms for Bézout domains. First
we can compute the generators of (2) ∩ (3, 6):

Eval vm_compute in (cbcap 1 2 [::[::2]] [::[::3; 6]]).

= [:: [:: 6]]

Next we can test if 6 ∈ (2):

Eval vm_compute in (cmember 1%N 6 [::[:: 2]]).

= Some [:: [:: 3]]

It is also possible to solve the homogeneous system:[
1 2
2 4

] [
x1

x2

]
=

[
0
0

]
Eval vm_compute in (csolveMxN 2 2 [::[:: 1;2];[::2;4]]).

= [:: [:: 2; 0];

[:: -1; 0]]

and the inhomogeneous system:[
2 3
4 6

] [
x1

x2

]
=

[
4
8

]



Eval vm_compute in (csolveGeneral 2 2 [::[:: 2; 3]; [:: 4; 6]]

[::[:: 4];[:: 8]]).

= Some [:: [:: -4];

[:: 4]]

The system 2x = 1 does not have a solution in Z:

Eval vm_compute in (csolveGeneral 1 1 [::[:: 2]] [::[::1]]).

= None

We can also do some computations on the algorithms for Prüfer domains
using Z:

Eval vm_compute in (cplm 3 [::[:: 2; 3; 5]]).

= [:: [:: 8; 12; 20];

[:: 12; 18; 30];

[:: -10; -15; -25]]

Eval vm_compute in (cinv_id 2 0 [:: [:: 2; 3]]).

= [:: [:: -2; 2]]

The first computation computes the principal localization matrix of (2, 3, 5)
and the second compute the inverse of the ideal (2, 3).

6 Conclusions and Further Work

In this paper we have represented in type theory interesting and mathematically
nontrivial results in constructive algebra. The algorithms based on coherent and
strongly discrete rings have been refined to more efficient algorithms on simple
datatypes, this way we get certified mathematical algorithms that are suitable for
computation. Hence can this work be seen as an example that the methodology
presented in [7] is applicable on more complicated structures as well.

In the future it would be interesting to prove that multivariate polynomial
rings over discrete fields are coherent and strongly discrete. This would require a
formalization of Gröbner bases and the Buchberger algorithm which has already
been done in Coq [17, 19]. It would be interesting to reimplement this using
SSReflect and compare the complexity of the formalizations.

It would also be interesting to use this work as a basis for a library of for-
malized computational homological algebra inspired by the homalg project. In
fact solveMxN and solveGeneral are the only operations used as a basis in
homalg [2]. This formalization would involve first proving that the category of
finitely presented modules over coherent strongly discrete rings form an abelian
category and then use this to implement further algorithms for doing homological
computations.

In SSReflect all rings are equipped with a choice operator which can be
used to pick an element satisfying a decidable predicate. This could have been
used more in our development, for instance in the implementation of pcap to
find a nonzero generator of an ideal. We believe that using this feature more



would lead to simpler formal proofs, but our experience is that the use of choice
complicates the implementation of efficient algorithms. As we want to be able
to compute with our algorithms inside Coq we decided to have slightly more
complicated proofs but easier translation to efficient algorithms.

Integral domains

Strongly discrete

Coherent Prüfer domains

Bézout domains

Fig. 1. The extension to the SSReflect hierarchy

In Fig. 1 the extension to the SSReflect hierarchy is presented. Integral
domains are already present in the hierarchy and the extension consists of the
other structures. The arrows represent that the target is an instance of the source.
This presentation differ from standard presentations in constructive algebra [13,
14] as there is no need to assume that coherent rings and Prüfer domains are
strongly discrete. The motivation behind this design choice is that it simplified
the formalization and the examples that we are primarily interested in are all
strongly discrete anyway. We actually started to formalize the notions without
assuming that the rings are strongly discrete but this led to too complicated for-
mal proofs as we could not use the library of ideal theory developed for strongly
discrete rings. However, in constructive algebra ideal theory is usually devel-
oped without assuming decidable ideal membership, but in our experience, both
the SSReflect library and tactics are best suited for theories with decidable
functions.

A consequence of this is that it is difficult to formalize things in full gen-
erality, for instance are all rings assumed to be not only strongly discrete but
also discrete. It would be more natural from the point of view of constructive
mathematics to represent more general structures. However, while the use of
SSReflect imposes some decidability conditions, we found that in this frame-
work of decidable structures the notations and tactics provided are particularly
elegant and well-suited.
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