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aussi bien dans le travail que dans toute autre chose dont j’ai eu besoin.

Je suis également reconnaissante a M.Michel Cuer et a M.Fabien Marche d’avoir

bien voulu faire partie du jury, et a M.Patrick Redont et M.Baptiste Chapuisat

pour leur support informatique.

I



Contents

0.1 Remerciements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

1 Mass Matrix Central Differencing scheme for the advection equa-

tion 1

1.1 Spatial 1D MUSCL formulation . . . . . . . . . . . . . . . . . . . . 1

1.2 Mass Matrix Scheme with central differencing . . . . . . . . . . . . 3

1.3 Time advancing stability . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Explicit time stepping . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Implicit time stepping . . . . . . . . . . . . . . . . . . . . . 7

2 Numerical Method 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Set of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Spacial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Time advancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Turbulence Models 23

3.1 Direct Numerical Simulation . . . . . . . . . . . . . . . . . . . . . 23

3.2 Reynolds-Averaged Navier-Stokes equations . . . . . . . . . . . . . 27

3.2.1 Standard k − ε model . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Low Reynolds k − ε model . . . . . . . . . . . . . . . . . . 29

II



3.3 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 SGS modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Filtered equations of the motion . . . . . . . . . . . . . . . 33

3.3.3 Subgrid Scale model . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Variational Multiscale approach for Large Eddy Simulation . . . . 38

4 Applications 42

4.1 Gaussian translation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Flow around a circular cylinder at ReD = 3900 . . . . . . . . . . . 46

5 Conclusion 63

Bibliography 64

III



Introduction

Turbulent flows have been and continue to be of great interest to the working

engineer simply because most engeineering flows are indeed turbulent.

There are many opportunities to observe turbulent flows in our everyday sur-

roundings, whether it be smoke from a cheminey, water in a river or waterfall, or

the buffering of a strong wind.In observing a waterfall, we immediately see that

the flow is unsteady, irregular, seemingly random and chaotic, and surely the mo-

tion of every eddy or droplet is unpredictable. In the plume formed by a solid

racket motor, turbulent motions of many scales cand be observed, from eddies and

bulges comparable in size to the width of the plume, to the smallest scales the

camera can resolve. The features mentioned in these two exemples are common

to all turbulent flows.

In enginneering applications turbulent flows are prevalent, but less easily seen.

In the processing of liquids or gases with pumps, compressors, pipe lines, etc., the

flows are generally turbulent.Similary the flows around vehicles,-e.g., airplanes,

automobiles, ships and submarines are turbulent. The mixing of fuel and air in

engines, boilers, and furnaces, and the mixing of the reactants in chemical reactors

take place in turbulent flows.

In view of the importance of this subject, understanding turbulent flow is cen-

tral to many important problems. So, it is natural that the study of turbulent flow

has attracted wide-stread attention from scientists all over the world. However,

progress has been limited and understanding turbulent flows remains a challenge.

The main obstacles in turbulent are subjected to the features of turbulence, listed

bellow :

• Turbulence is diffusive.

• Turbulence is not only chaotic motion and but also irregular motion.

• Turbulence is rotational and three dimensional.
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• Turbulence is highly dissipative.

• Turbulence is a continuum phenomenon. The smallest scales of turbulence

are mutch larger than the molecular scales in the enginnering application.

• Turbulence is associated with high levels of vorticity fluctuations. Small

scales are generates by the vortex stretching mechanism.

Mathematically, as long as the continuum hypotesis is valid, turbulent flows are

solutions to the Navier-Stokes equations of motion subjet to appropiate boundary

conditions and initial conditions.

One of the pricipal challenges in studying turbulence is the unavailability of

an analytic solution to the governing differential equations, except for a few very

idealized flows.

Direct Numerical Simulation (DNS) of turbulent flows is feasible only for low

Reynolds numbers (Re) due to the required computational resources, which al-

ready become prohibitively large for Re ' 104. For this reason, turbulence model-

ing is a necessary step for the numerical simulation of flows of engineering interest.

In this context, the most widely used approach for the simulation of high-Reynolds

number turbulent flows is the one based on the discretization of the Reynolds-

Averaged Navier-Stokes equations (RANS). In the RANS approach, time aver-

aging is applied to the Navier-Stokes equations and only the time-averaged flow

is simulated. In this way a noticeable simplification of the problem is obtained,

computational costs are drastically reduced and become almost independent of

the Reynolds number when this is sufficiently large. However, RANS simulations

usually have difficulties in providing accurate predictions for flows with massive

separations, as for instance for the flow around bluff bodies. Indeed, RANS mod-

els are in general too dissipative to properly simulate the three-dimensional and

unsteady phenomena occurring in such flows, yielding to significant discrepancies

with respect to the experimental results.
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An alternative approach is the Large-Eddy simulation (LES), in which a spatial

filter is applied to the equations to get rid of small-scale turbulent fluctuations,

which are thus modeled, while the remaining flow scales are directly simulated.

In this way, the three-dimensionality and unsteadiness of the flow are naturally

taken into account and the LES approach is generally more accurate, but also

computationally more expensive, than the RANS one. Moreover, the cost of LES

simulations increases as the flow Reynolds number is increased. Indeed, the grid

has to be fine enough to resolve a significant part of the turbulent scales, and

spatial resolution becomes particularly critical in the near-wall regions.

A recent approach to LES based on a Variational Multi-Scale (VMS) framework

was intruced by Hughes et al. in Ref. [4]. The VMS-LES differs fundamentally

from the traditional LES in a number of ways. In this approach, one does not

filter the Navier-Stokes equations but uses instead a variational projection. This

is an important difference because as performed in the traditional LES, filtering

works well with periodic boundary conditions but raises mathematical issues in

wall-bounded flows. The variational projection avoids these issues. Furthermore,

the VMS-LES method separates the scales a priori-that is, before the simulation is

started. And most importantly, it models the effect of the unresolved-scales only

in the equations representing the smallest resolved-scales, and not in the equations

for the large scales. Consequently, in the VMS-LES, energy is extracted from the

fine resolved-scales by a subgrid scale (SGS) eddy-viscosity model, but no energy

is directly extracted from the large structures in the flow.

The proposed model has been implemented in a numerical solver (AERO) for

the Navier-Stokes equations in the case of compressible flows and perfect Newto-

nian gases, based on a mixed finite-element/finite-volume scheme formulated for

unstructured grids made of tetrahedral elements. Finite elements (P1 type) and

finite volumes are used to treat the diffusive and convective fluxes, respectively.

Concerning the VMS approach, the version proposed in Ref. [5] for compressible

flows and for the particular numerical method employed in AERO has been used

VI



here.

The discretisation of the convective fluxes for the finite volume scheme used in

the software AERO exhibits a lack of accuracy in the case of irregular mesh. In

order to overcome this problem, we investigate on this work a new mass matrix

scheme with high-order numerical dissipation for the discretization of turbulent

flows.

The present report is organized as follows, we review in chapter 1 a mass

matrix scheme for the 1D advection equation case and we analyse the stability of

this scheme for explicit and implicit mode using Van Newmann analysis, chapter

2 contains the numerical method implemented in our CFD software, chapter 3

is consacreted to turbulence simulation. Results of the simulations and gaussian

translation behavior are presented and discussed in sections 4.
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Chapter 1

Mass Matrix Central

Differencing scheme for the

advection equation

1.1 Spatial 1D MUSCL formulation

Let us first consider the one-dimensional scalar conservation law

ut + f(u)x = 0 (1.1)

We suppose f ∈ C1(R,R). We’ll insist on particulary case where f(u) = cu(c >

0) .

Spatial discretisation

The finite-volume method is used for the discretization in space. Let xj , 1 ≤ j ≤ N

denote the discretization points of the mesh. For each discretization point, we

state : uj ≈ u(xj) and we define the control cell Cj as the interval [xj− 1
2
,xj+ 1

2
]

where xj+ 1
2

= xj+xj+1

2 .
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1 – Mass Matrix Central Differencing scheme for the advection equation

We define the unknown vector U = {uj} as point approximation values of the

function u(x) in each node j of the mesh.

The time advancing scheme is written :

Uj,t + Ψj(U) = 0

where the vector Ψj(U) is built according to approximations of (f(u))x defined at

cell boundaries, as follows:

Ψj(U) =
1
∆x

(Φj+ 1
2
− Φj− 1

2
); Φj+ 1

2
= Φ(u−

j+ 1
2

, u+
j+ 1

2

); (1.2)

where u−
j± 1

2

, u+
j± 1

2

are integration values of u at boundaries of control volume Cj

and Φ is a numerical flux function defined here :

Φ(u,v) =
cu+ cv

2
− δ

2
c(v − u),

(1.3)

where the coefficient δ controls the spatial dissipation.

For the uppwind scheme(mode of a dissipation based on sixth order spatial deriva-

tives) developped by Debiez et al., these reconstructed values are given by: u−
j+ 1

2

=

uj + 1
2∆u

−
j+ 1

2

and u+
j+ 1

2

= uj− 1
2∆u

+
j+ 1

2

(same reconstruction for u−
j− 1

2

and u+
j− 1

2

)

where the slopes ∆u−
j+ 1

2

and ∆u+
j+ 1

2

are defined by:

∆u−
j+ 1

2

= (1− β)(uj−1 − uj) + β(uj − uj−1) (1.4)

+θc(−uj−1 + 3uj − 3uj+1 + uj+2) (1.5)

+θd(−uj−2 + 3uj−1 − 3uj + uj+1) (1.6)

and
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1 – Mass Matrix Central Differencing scheme for the advection equation

∆u+
j+ 1

2

= (1− β)(uj+1 − uj) + β(uj+2 − uj+1) (1.7)

+θc(−uj−1 + 3uj − 3uj+1 + uj+2) (1.8)

+θd(−uj + 3uj+1 − 3uj+2 + uj+3) (1.9)

We observe that for β = 1
3 ,θc = −1

10 and θd = −1
15 , this scheme becomes fifth-order

accurate. The dissipation is then made of sixth-order derivatives and can be writ-

ten as:

Dj(u) =
D

j+1
2
(u)−D

j− 1
2
(u)

∆x

where Dj+ 1
2
(u) = δc

60(−uj−2 + 5uj−1 − 10uj + 10uj+1 − 5uj+2 + uj+3)

1.2 Mass Matrix Scheme with central differencing

The usual central-differences three-point scheme is penalized by a dispersion lead-

ing error. This error is compensated in the case where we introduce the finite-

element P1 consistent mass matrix. The time advancing is written:

MU(t) + ∆xΨ(U) = 0 (1.10)

(MU(t))j = mj,j−1Uj−1,t +mj,jUj,t +mj,j+1Uj+1,t

where

mj,j−1 = 1/6∆x

mj,j = 2/3∆x

mj,j+1 = 1/6∆x .

(1.11)
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1 – Mass Matrix Central Differencing scheme for the advection equation

Then we can combine this time derivative with a flux as defined before. Terms

fj/2 + fj+1/2 will contribute to the central differenced flux, while terms Tj+1/2/2

(defined after here) will appear only in dissipative terms and finally give the sixth-

order dissipation:

Φ(uj ,uj+1) =
uj + uj+1

2
− δc

2
Tj+ 1

2
(1.12)

According to the Pascal triangle, a fifth-order difference evaluated between j and

j + 1 can be written as follows (C > 0):

Tj+1/2 = Cc(−uj−2 + 5uj−1 − 10uj + 10uj+1 − 5uj+2 + uj+3) (1.13)

We choose the constant C as:

C =
δ

60
.

in order to have the same level of dissipation as in the upwind case . Finally we

get:

Ψj(U) =
c

2∆x
( C uj−3

+ (−6C) uj−2

+ (−1 + 15C) uj−1

+ (−20C) uj

+ (1 + 15)C uj+1

+ (−6C) uj+2

C uj+3

) (1.14)
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1 – Mass Matrix Central Differencing scheme for the advection equation

1.3 Time advancing stability

1.3.1 Explicit time stepping

Let us consider a time integration of the system MUt = AU , with A the spatial

approximation matrix and M the P1 finite element mass matrix. We can combine

the above scheme with the standard six-stage Runge-Kutta scheme:

U (0) = Un

U (k) = U (0) + ∆t
N−k+1M

−1Ψ
(
U (k−1)

)
, k = 1 . . . N

Un+1 = U (6)

(1.15)

The stability study of the scheme is made with the Fourier analysis. Let us

include in equations (1.4) the Fourier mode: ûnj = uke
ijθk where θk is the frequence

parameter.

We obtain:

mθ
dûn

j

dt = − ˆ(Ψ δ)
j

n

i.e

mθ
dûn

j

dt = λθû
n
j

with:

ˆ(Ψ δ)
j

n = c
2∆x(R3 cos(3θ) +R2 cos(2θ) +R1 cos(θ) +R0 + iI1 sin(θ))ûnj

and
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R3 = 2δC

R2 = −12δC

R1 = 30δC

R0 = −20δC

I1 = 2

Because ˆ(Ψ δ)
j

n = −λθûnj , we have:

λθ = − c
2∆x(R3 cos(3θ) +R2 cos(2θ) +R1 cos(θ) +R0 + iI1 sin(θ))

We introduce the Courant number ν = c∆t
∆x and the amplification factor is Gθ =

Gθ(zMθ ) with zMθ = λθ∆t
mθ

,where Gθ is the caracteristic polinomial of RK6, Gθ(z) =

1 + z+ z2

2 + z3

6 + z4

24 + z5

120 + z6

720 . We recall that the P1 finite element mass matrix

M is a three-diagonal one, equal to M=Three-diag(1
6 ,

2
3 ,

1
6) and we get:

mθ = 1
3(2 + cos(θ))

Finaly, we have:


zMθ = − 3ν

2(2+cos(θ))(z
R
θ + izIθ )

zRθ = R3 cos(3θ) +R2 cos(2θ) +R1 cos(θ) +R0

zIθ = I1 sin(θ)

The figure bellow illustrate the stability study for the explicit scheme RK6. We vi-

sualize the stability curve of the scheme for different values of the parameters.This

stability curve is represented by the function:

g(ν) = max
θ∈[0,π]

(‖Gθ‖) (1.16)

As we can see on the figure, for RK6 our centred dissipated scheme is not

stable.
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1 – Mass Matrix Central Differencing scheme for the advection equation

Figure 1.1. Stability study for different values of dissipation factor

1.3.2 Implicit time stepping

The purpose of this section is the convergence analysis of the implicite scheme. This

can be also done with Fourier analysis. The computation is made on the same

one-dimensional scalar conservation law. Let us use the implicite scheme like a

δ-scheme:

TnδUn+1 = ∆tnΨ(Un)

with δUn+1 = Un+1 − Un and Tn is the implicite matrix.

In case of a first order scheme, Tn represents the following three-diagonal matrix :

Tn = diag(−ν,1 + ν,0)

With the Fourier analysis we obtain:

tθ = 1 + ν(1− cos(θ)) + iν sin(θ)
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1 – Mass Matrix Central Differencing scheme for the advection equation

The amplification factor is then given by:

G(∆t) = tθ+zθ
tθ

We are must interested on behavior of the amplification factor when the time

step ∆t tends to +∞ on the aim to know if the builds ones schemes are precondi-

tionated at first ordre with satisfactory factors of convergence. Let us denote lim
∆t→∞

G(∆t) =

fθ(δ). We are searching the Fourier’s modes for different schemes witch maximises

the functions fθ(δ) = 1− 1
4(1−cos(θ))mθ

[(1−cos(θ))zRθ +sin(θ)zIθ ]+i[
sin(θ)zR

θ −(1−cos(θ))zI
θ

4mθ(1−cos(θ)) ].

The results of stability are examined in the figures (1.2)(1.3)(1.4)(1.5)(1.6)(1.7)

(1.8) bellow, where we can observe that our implicit scheme is inconditionally sta-

ble.Let us denote that the optimal value that minimise the gain function is for

δ = 1.

Figure 1.2. Stability domaine for ν = 1.73 and δ = 1
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1 – Mass Matrix Central Differencing scheme for the advection equation

Figure 1.3. Stability domaine of first order implicit scheme for δ = 1

Figure 1.4. Gain function for δ = 1
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1 – Mass Matrix Central Differencing scheme for the advection equation

Figure 1.5. Stability domaine of first order implicit scheme for δ = 0.5

Figure 1.6. Gain function for δ = 0.5
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1 – Mass Matrix Central Differencing scheme for the advection equation

Figure 1.7. Stability domaine of first order implicit scheme for δ = 0.3

Figure 1.8. Gain function for δ = 0.3
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Chapter 2

Numerical Method

2.1 Introduction

In the present chapter the code AERO, used in the present study, is described.

The code permits to solve the Euler equations, the Navier Stokes equations for

laminar flows and to use different turbulence models for RANS, LES and hybrid

RANS/LES approaches. The unknown quantities are the density, the components

of the momentum and the total energy per unit volume. AERO employs a mixed

finite-volume/finite-element formulation for the spatial discretization of the equa-

tions. Finite-volumes are used for the convective fluxes and finite-elements (P1)

for the diffusive ones.

The resulting scheme is second order accurate in space. The equations can be

advanced in time with explicit low-storage Runge-Kutta schemes. Also implicit

time advancing is possible, based on a linearised method that is second order

accurate in time.
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2 – Numerical Method

2.2 Set of equations

In the AERO code the Navier Stokes equations are numerically normalised with

the following reference quantities:

• Lref =⇒ characteristic length of the flow

• Uref =⇒ velocity of the free-stream flow

• ρref =⇒ density of the free-stream flow

• µref =⇒ molecular viscosity of the free-stream flow

The flow variables can be normalised with the reference quantities as follows:

ρ∗ =
ρ

ρref
u∗j =

uj
Uref

p∗ =
p

pref

E∗ =
E

ρrefU
2
ref

µ∗ =
µ

µref
t∗ = t

Lref
Uref

. (2.1)

The non-dimensional form of the Navier Stokes equations for the laminar case

are reported in the following:

∂ρ∗

∂t∗
+
∂(ρ∗u∗j )
∂x∗j

= 0

∂(ρ∗u∗i )
∂t∗

+
∂ρ∗u∗iu

∗
j

∂x∗j
= −∂p

∗

∂x∗i
+

1
Re

∂σ∗ij
∂x∗j

∂(ρ∗E∗)
∂t∗

+
∂(ρ∗E∗u∗j )

∂x∗j
= −

∂(p∗u∗j )
∂x∗j

+
1
Re

∂(u∗jσ
∗
ij)

∂x∗i
− γ

RePr

∂

∂x∗j

[
µ∗

(
E∗ − 1

2
u∗ju

∗
j

)]
(2.2)

where the Reynolds number, Re = UrefLref/ν, is based on the references quanti-

ties, Uref and Lref , the Prandlt number, Pr, can be assumed constant for a gas

and equal to:
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2 – Numerical Method

Pr =
Cpµ

k

and γ = Cp/Cv is the ratio between the specific heats at constant pressure and

volume. Also the constitutive equations for the viscous stresses and the state

equations may be written in non-dimensional form as follows:

σ∗ij = −2
3
µ∗

(∂u∗k
∂x∗k

δij

)
+ µ∗

(∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
p∗ = (γ − 1)ρ∗

(
E∗ − 1

2
u∗ju

∗
j

)
. (2.3)

In order to rewrite the governing equations in a compact form more suitable

for the discrete formulation, the following unknown variables are grouped together

in the W vector:

W = (ρ, ρu, ρv, ρw, ρE)T .

If two other vectors, F and V are defined as function of W , as follows:

F =


ρu ρv ρw

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw ρvw ρw2 + p


and

V =



0 0 0

σxx σyx σzx

σxy σyy σzy

σxz σyz σzz

uσxx + vσxy + wσxz − qx uσxy + vσyy + wσyz − qy uσxz + vσyz + wσzz − qz


they may be substituted in (2.2), to get a different compact format of the governing

equations which is the starting point for the derivation of the Galerkin formulation

and of the discretization of the problem:
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2 – Numerical Method

∂W

∂t
+

∂

∂xj
Fj(W )− 1

Re

∂

∂xj
Vj(W ,∇W ) = 0 . (2.4)

It is important to stress that the vectors F and V are respectively the convec-

tive fluxes and the diffusive fluxes.

2.3 Spacial discretization

Spatial discretization is based on a mixed finite-volume/finite-element formulation.

A finite volume upwind formulation is used for the treatment of the convective

fluxes while a classical Galerkin finite-element centred approximation is employed

for the diffusive terms .

The computational domain Ω is approximated by a polygonal domain Ωh. This

polygonal domain is then divided in Nt tetrahedrical elements Ti by a standard

finite-element triangulation process:

Ωh =
Nt⋃
i=1

Ti. (2.5)

The set of elements Ti forms the grid used in the finite-element formulation.

The dual finite-volume grid can be built starting from the triangulation following

the medians method.

In the medians method a finite-volume cell is constructed around each node

ai of the triangulation, dividing in 4 sub-tetrahedra every tetrahedron having ai

as a vertex by means of the median planes. Ci is the union of the resulting sub-

tetrahedra having ai as a vertex and they have the following property:

Ωh =
Nc⋃
i=1

Ci. (2.6)

where Nc is the number of cells, which is equal to the number of the nodes of the

triangulation.
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2 – Numerical Method

Convective fluxes

Indicating the basis functions for the finite-volume formulation as follows:

ψ(i)(P ) =

 1 if P ∈ Ci
0 otherwise

the Galerkin formulation for the convective fluxes is obtained by multiplying the

convective terms of (2.4) by the basis function ψ(i), integrating on the domain Ωh

and using the divergence theorem. In this way the results are:

∫∫
Ωh

(∂Fj
∂xj

)
ψ(i) dxdy =

∫∫
Ci

∂Fj
∂xj

dΩ =
∫
∂Ci

Fjnj dσ

where dΩ, dσ and nj are the elementary measure of the cell, of its boundary and

the jth component of the normal external to the cell Ci respectively.

The total contribution to the convective fluxes is:

∑
j

∫
∂Cij

F(W ,~n) dσ

where j are all the neighbouring nodes of i, F(W ,~n) = Fj(W )nj , ∂Cij is the

boundary between cells Ci and Cj , and ~n is the outer normal to the cell Ci.

The basic component for the approximation of the convective fluxes is the Roe

scheme, Ref. [13]:

∫
∂Cij

F(W ,~n) dσ ' ΦR(Wi,Wj ,~νij)

where

~νij =
∫
∂Cij

~ndσ

and Wk is the solution vector at the k-th node of the discretization.

The numerical fluxes, ΦR, are evaluated as follows:
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2 – Numerical Method

ΦR(Wi,Wj ,~νij) =
F(Wi,~νij) + F(Wj ,~νij)

2︸ ︷︷ ︸
centred

− γs dR(Wi,Wj ,~νij)︸ ︷︷ ︸
upwinding

where γs ∈ [0,1] is a parameter which directly controls the upwinding of the scheme

and

dR(Wi,Wj ,~νij) =
R(Wi,Wj ,~νij)

Wj −Wi

2
. (2.7)

R is the Roe matrix and is defined as:

R(Wi,Wj ,~νij) =
∂F
∂W

(Ŵ ,νij) (2.8)

where Ŵ is the Roe average between Wi and Wj .

The classical Roe scheme is obtained as a particular case by imposing γs = 1.

The accuracy of this scheme is only 1st order. In order to increase the order of

accuracy of the scheme the MUSCL (Monotone Upwind Schemes for Conservation

Laws) reconstruction method, introduced by Van Leer, Ref. [16], is employed. This

method expresses the Roe flux as a function of the extrapolated values of W at

the interface between the two cells Ci and Cj , Wij and Wji:

∫
∂Cij

F(W ,~n) dσ ' ΦR(Wij ,Wji,~νij)

where Wij and Wji are defined as follows:

Wij = Wi +
1
2
(~∇W )ij · ~ij , (2.9)

Wji = Wj +
1
2
(~∇W )ji · ~ij . (2.10)

To estimate the gradients (~∇W )ij · ~ij and (~∇W )ji · ~ij the V 6 scheme is used,

Ref. [6]:
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2 – Numerical Method

(~∇W )ij · ~ij = (1− β)(~∇W )Cij · ~ij) + β(~∇W )Uij · ~ij) +

ξc [(~∇W )Uij · ~ij)− 2(~∇W )Cij · ~ij) + (~∇W )Dij · ~ij)] +

ξc [(~∇W )M · ~ij)− 2(~∇W )i · ~ij) + (~∇W )Dj · ~ij)] , (2.11)

(~∇W )ji · ~ji = (1− β)(~∇W )Cji · ~ij) + β(~∇W )Uji · ~ij) +

ξc [(~∇W )Uji · ~ij)− 2(~∇W )Cji · ~ij) + (~∇W )Dji · ~ij)] +

ξc [(~∇W )M ′ · ~ij)− 2(~∇W )i · ~ij) + (~∇W )Dj · ~ij)] , (2.12)

where (~∇W )i and (~∇W )j are the nodal gradients at the nodes i and j respectively

and are calculated as the average of the gradient on the tetrahedra T ∈ Ci, having

the node i as a vertex. For example for (~∇W )i we can write:

(~∇W )i =
1

V ol(Ci)

∑
T∈Ci

V ol(T )
3

∑
k∈T

Wk
~∇Φ(i,T ) . (2.13)

where Φ(i,T ) is the P1 finite-element basis function defined before. (~∇W )M · ~ij,

for the 3D case, is the gradient at the point M in Fig. 2.1 and it is computed

by interpolation of the nodal gradient values at the nodes contained in the face

opposite to the upwind tetrahedron Tij . (~∇W )M ′ · ~ij is the gradient at the point

M ′ in Fig. 2.1 and it is evaluated in the same way as (~∇W )M · ~ij. The coefficients

β, ξc, ξd are parameters that control the combination of fully upwind and centred

slopes. The V6 scheme is obtained by choosing them to have the best accuracy on

cartesian meshes, Ref.[?]:

β = 1/3, ξc − 1/30, ξd = −2/15 .

An important variant of the above scheme involves a time derivative that is eval-

uated with the finite-element consistent mass matrix, expressed in terms of the

usual P1 test functions as follows:
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Mij =
∫
ϕiϕjdν

which carries an extra parameter ω equal to 1 when the matrix is from FEM,

0 when we keep the previous diagonal one:

Mω
ij = ω

∫
φiφj dv + (1− ω)MFVM

i j

MFVM
i j = V ol(Ci) if i = j, 0 else.

As in section 1.2 we can combine this time derivative with a flux and we get the

mass matrix scheme :

Φ(Wi,Wj , ~νij) =
F(Wi, ~νij) + F(Wj , ~νij)

2
− δs

2
|R(Wi,Wj , ~νij)|∆Wij (2.14)

where:

∆Wij = C(2(~∇W )M .~ij−5(~∇W )uij .~ij+6(~∇W )cij .~ij−5(~∇W )dij .~ij+2(~∇W )M ′ .~ij) .

with C = δ
60 following the study done for the 1D advection equation. A variant

of this scheme is also investigated and consists in using a dissipation projected in
~ij: |R(Wi,Wj , ~νij)| becomes

∣∣∣R(Wi,Wj , ~̃νij)
∣∣∣ in which ~̃νij = ( ~νij

~ij

‖~ij‖)
~ij

‖~ij‖

Figure 2.1. Sketch of points and elements involved in the computation of gradient
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Diffusive fluxes

The P1 finite-element basis function, φ(i,T ), restricted to the tetrahedron T is

assumed to be of unit value on the node i and to vanish linearly at the remaining

vertexes of T . The Galerkin formulation for the diffusive terms is obtained by

multiplying the diffusive terms by φ(i,T ) and integrating over the domain Ωh:

∫∫
Ωh

(∂Vj
∂xj

)
φ(i,T ) dΩ =

∫∫
T

∂Vj
∂xj

φ(i,T ) dΩ .

Integrating by parts the right-hand side of Eq.(2.3) we obtain:

∫∫
T

∂Vj
∂xj

φ(i,T ) dΩ =
∫∫

T

∂(Vjφ(i,T ))
∂xj

dΩ −
∫∫

T
Vj
∂φ(i,T )

∂xj
dΩ =∫

∂T
Vjφ

(i,T )nj dσ −
∫∫

T
Vj
∂φ(i,T )

∂xj
dΩ . (2.15)

In order to build the fluxes for the node i consistently with the finite-volume

formulation, the contribution of all the elements having i as a vertex needs to be

summed together as follows:

∑
T,i ∈ T

( ∫
∂T
Vjφ

(i,T )nj dσ −
∫∫

T
Vj
∂φ(i,T )

∂xj
dΩ

)
=

−
∑

T,i ∈ T

∫∫
T
Vj
∂φ(i,T )

∂xj
dΩ +

∫
Γh=∂Ωh

φ(i,T )Vjnj dσ . (2.16)

In the P1 formulation for the finite-element method, the test functions, φ(i,T ),

are linear functions on the element T and so their gradient is constant. Moreover,

in the variational formulation the unknown variables contained in W are also

approximated by their projection on the P1 basis function. For these reasons the

integral can be evaluated directly.
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2.4 Boundary conditions

Firstly, the real boundary Γ is approximated by a polygonal boundary Γh that

can be split in two parts:

Γh = Γ∞ + Γb (2.17)

where the term Γ∞ represents the far-fields boundary and Γb represents the body

surface. The boundary conditions are set using the Steger-Warming formulation

([?]) on Γ∞ and using slip or no-slip conditions on Γb.

2.5 Time advancing

Once the equations have been discretized in space, the unknown of the problem is

the solution vector at each node of the discretization as a function of time, W h(t).

Consequently the spatial discretization leads to a set of ordinary differential equa-

tions in time:

dW h

dt
+ Ψ(W h) = 0 (2.18)

where Ψi is the total flux, containing both convective and diffusive terms, of Wh

through the i-th cell boundary divided by the volume of the cell.

Explicit time advancing

In the explicit case a N -step low-stockage Runge-Kutta algorithm is used for the

discretization of Eq.(2.18):


W (0) = W (n),

W (k) = W (0) +∆t αk Ψ(W (k−1)), k = 1,... ,N

W (n+1) = W (N).

in which the suffix h has been omitted for sake of simplicity. Different schemes

can be obtained varying the number of steps, N , and the coefficients αk.
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Implicit time advancing

For the implicit time advancing scheme in AERO the following second order ac-

curate backward difference scheme is used:

αn+1W
(n+1) + αnW

(n) + α(n−1)W
(n−1) +∆t(n)Ψ(W (n+1)) = 0 (2.19)

where the coefficients αn can be expressed as follows:

αn+1 =
1 + 2τ
1 + τ

, αn = −1− τ, αn−1 =
τ2

1 + τ
(2.20)

where ∆t(n) is the time step used at the n-th time iteration and

τ =
∆t(n)

∆t(n−1)
. (2.21)

The nonlinear system obtained can be linearised as follows:

αn+1W
(n) + αnW

(n) + α(n−1)W
(n−1) +∆t(n)Ψ(W (n)) =

−
[
αn+1 + δt(n) ∂Ψ

∂W
(W (n))

]
(W (n+1) −W (n)). (2.22)

Following the defect-correction approach, the jacobians are evaluated using

the 1st order flux scheme (for the convective part), while the explicit fluxes are

composed with 2nd order accuracy. The resulting linear system is solved by a

Schwarz method.
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Chapter 3

Turbulence Models

3.1 Direct Numerical Simulation

Turbulent flows are always characterized by an unsteady and three-dimensional

behaviour and can be described by the Navier-Stokes equations.

For a compressible flow, if a thermally and calorically perfect gas is considered

and if the body forces are absent or negligible, the governing equations may be

written as (Einstein notation used):

∂ρ

∂t
+
∂(ρuj)
∂xj

= 0,

∂(ρui)
∂t

+
∂(ρuiuj)
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

,

∂(ρE)
∂t

+
∂(ρEuj)
∂xj

= −∂(puj)
∂xj

+
∂(ujσij)
∂xi

− ∂qj
∂xj

,

p = ρRT,

E = CvT +
1
2
uiui. (3.1)

In the above equations density, temperature, pressure, total energy for unit mass

and specific heat at constant volume are represented respectively by ρ, T ,p, E and

Cv. In the last equation R is equal to </m where < is the universal constant of
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3 – Turbulence Models

perfect gas and m is the moles mass. By assuming the flow to be Newtonian and

under the Stokes hypothesis, the viscous stress tensor results:

σij = −2
3
µ
∂uk
∂xk

δij + µ
(∂ui
∂xj

+
∂uj
∂xi

)
(3.2)

where δij is the kronecker delta and the viscosity coefficient µ is, generally, a

function of the temperature. Moreover, the Fourier law is adopted to model the

heat flux:

qi = −K ∂T

∂xi
(3.3)

where K is the conduction coefficient for the gas and is generally a function of

the temperature. The system of equations quoted above can be numerically inte-

grated for every turbulent flow provinding a sufficiently fine spatial and temporal

resolution. Because of the non-linearities of the equation system, the problem is

characterized by a large range of spatial and temporal turbulent scales which are

function of Reynolds number. The kinetic turbulent energy is extracted by the

greater scales of turbulence and then it is transferred to smaller and smaller scales

where is dissipated, as predicted by the Energy Cascade concept. A typical distri-

bution of energy in a turbulent flow as function of the wave-number, n, which is

inversely proportional to the spatial scale, is represented in Fig. 3.1.

Fig. 3.1 gives information about the mean-energy of the turbulent structures

which have the same dimensions. These structures can be splitted in the following

ranges:

• energy-containing range, which contains the largest vortical turbulent struc-

tures

• inertial range or subrange, which contains vortexes of intermediate dimen-

sions

• dissipation range, which contains the smallest structures.
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Figure 3.1. Typical energy spectrum of a turbulent boundary layer

To estimate the characteristic time and the spatial dimensions of turbulence,

the results of the Universal Equilibrium Theory of Kolmogorov can be used. For

homogeneous and isotropic turbulence, the spatial orders of magnitude of the

largest scales, L, and of the smallest scale in the flow, lk, are related as follows:

L

lk
= Re3/4 (3.4)

where Re = UL
ν is the Reynolds number of the flow, based on L and on a integral

velocity, which can be assumed similar to the velocity of the largest scales. The

previous relation clearly show that the separation between large and small scales

increases with the Reynolds number. The largest scales of turbulence carry most

of the turbulence kinetic energy so they are responsible of the turbulent transport.

The smallest scales are responsible of most of the dissipation of kinetic energy, so

even if their contribution to the kinetic energy is negligible in comparison with the

largest scales they must be considered to obtain accurate results. To this purpose,

the single computational cell must have the dimensions of the smallest turbulent

scales and the computational domain must be enough large to contain the largest

flow structures. Thus, the number of nodes in the whole domain (N) increases

with the Reynolds number as follows:
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N = Re9/4 . (3.5)

As the Reynolds number increases, strong limitations for numerical simulation

occur due to the time resolution requirements. The governing equations, indeed,

must be advanced for a global time interval, ∆Tc, of the order of the largest

temporal scales, Tc, and the temporal step must be small enough to capture the

smallest temporal scales, of the order of tk. The ratio between the largest and the

smallest temporal scales necessary to simulate the flux is clearly Re dependent:

Tc
tk

= Re1/2 (3.6)

Thus, if the global time step is constant, the number of temporal steps needed to

cover all the range ∆Tc quickly increases, as the Reynolds number is increased.

The huge computational resources needed to directly simulate turbulent flows at

high Reynolds numbers (Re > 104) are not affordable at present. For this reason,

the direct numerical simulation (DNS) is only used for low Reynolds number flows

in simple geometries. On the other hand the information which can be obtained in

DNS, is much larger than the one required in industrial or engineering problems.

Thus, other simplified models have been developed in order to obtain the required

information at a significantly reduced computational cost. Reynolds Averaged

Navier-Stokes (RANS), Large Eddy Simulation (LES), Detached Eddy Simulation

(DES) and Limited Numerical Scales (LNS) are examples of these models.

It is important to stress, however, that DNS permits to obtain a large amount of

information on turbulence, which is useful to devise and validate turbulent models

for the closure of RANS and LES. Thus, DNS plays an important role for the

industrial numerical simulation, although indirect.
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3.2 Reynolds-Averaged Navier-Stokes equations

The Navier-Stokes equations for compressible flows of (calorically and thermally)

perfect Newtonian gases are considered here, written in a conservative form (see

Eqs. 3.1 ). The RANS equations are derived by first decomposing the variables (f)

in a statistic or time-averaged part (f) and a fluctuating one (f ′); this decompo-

sition, called the Reynolds decomposition, is then introduced in the Navier-Stokes

equations which are successively averaged. Since compressible flows are considered

a density-weighted average (Favre average, f̃) is introduced to suppress correla-

tions of the form ρ′f ′:

f̃ =
ρf

ρ
. (3.7)

The averaged flow variables are the unknowns of the RANS problem. However,

the RANS equations also contain second-order moments of the flow fluctuations.

As well known, these terms must be expressed as a function of the averaged flow

variables in order to close the problem. In the present work, the RANS part is

closed using the classical k− ε model and the Low-Reynolds k− ε model discussed

in the following. The final form of the RANS equations for compressible flows,

with the assumption of an eddy-viscosity model and ignoring some terms write as

follows:

∂ρ

∂t
+ (ρũi),i = 0 ,

(ρũi),t + (ρũiũj),j = − ∂p

∂xi
+

(
(µ+ µt)P̃ij

)
,j

,(
E

)
,t

+
[
ũj

(
E + p

)]
,j

= [ũiσ̃ij ],j + [ũiRij ],j +
[
µt

σk

∂k

∂xj

]
,j

+[
Cp

(
µ

Pr
+

µt

Prt

)
∂T̃

∂xj

]
,j

= 0
,

(3.8)
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where σ̃ij is the averaged viscous-stress tensor, E the averaged total energy

per unit volume (turbulence included), µ the molecular viscosity of the gas, Cp

the specific heat at constant pressure, p the thermodynamic pressure, T the gas

temperature, Prt the turbulent Prandtl number (Prt = 0.9 in the present work)

and µt is the RANS viscosity which depends on the type of closure used (see

Sec.3.2.1 or Sec. 3.2.2). Finally, the constitutive equation for Pij and the averaged

state equations of the gas write as follows:

Pij =
∂ui
∂xj

+
∂uj
∂xi

− 2
3
∂uk
∂k

δij (3.9)

p = ρRT̃ , (3.10)

ẽ = CvT̃ , (3.11)

where R is the gas constant and Cv its specific heat at constant volume.

3.2.1 Standard k − ε model

The k − ε model is an eddy-viscosity 2 equation model in which the turbulent

eddy-viscosity µt is defined as a function of the turbulent kinetic energy k and the

turbulent dissipation rate of energy ε as follows:

µt = Cµρ
k2

ε
, (3.12)

where Cµ is a constant equal to 0.09. The Reynolds stress tensor is the main

unclosed term of the RANS equations, and is modeled according to the Boussinesq

assumption:

Rij = −ρũ′iu′j ' µt

[
∂ũi
∂xj

+
∂ũj
∂xi

− 2
3
∂ũk
∂k

δij

]
︸ ︷︷ ︸

P̃ij

−2
3
ρkδij , (3.13)

δij being the Kronecker symbol.

The spatial distribution of k and ε is estimated by solving the following trans-

port equations:

28



3 – Turbulence Models

∂ρk

∂t
+ (ρũjk),j =

[(
µ+

µt

σk

)
∂k

∂xj

]
,j

+Rij
∂ũi
∂xj

− ρε , (3.14)

∂ρε

∂t
+ (ρεũj),j =

[(
µ+

µt

σε

)
∂ε

∂xj

]
,j

+ Cε1

( ε
k

)
Rij

∂ũi
∂xj

− Cε2ρ
ε2

k
.

(3.15)

where Cε1, Cε2, σk and σε are the model parameters and usually are set as follow:

Cε1 = 1.44 Cε2 = 1.92 σk = 1.0 σε = 1.3

3.2.2 Low Reynolds k − ε model

The Low Reynolds k− ε model used here is that proposed by Goldberg (Ref. [?]).

The Reynolds stress tensor has the same form of that used in the standard k − ε

model (Eq.3.13) but here the turbulent eddy-viscosity µt is defined as follows:

µt = Cµfµρ
k2

ε
(3.16)

Here Cµ = 0.09 as in the standard k−ε model and fµ is a damping function chosen

as follows:

fµ =
1− e−AµRt

1− e−R
1/2
t

max(1,ψ−1) (3.17)

where ψ = R
1/2
t /Cτ , Rt = k2/(νε) is the turbulence Reynolds number (ν = µ/ρ)

and Aµ = 0.01; k and ε are determinated by the following transport equations:
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∂ρk

∂t
+ (ρũjk),j =

[(
µ+

µt

σk

)
∂k

∂xj

]
,j

+Rij
∂ũi
∂xj

− ρε , (3.18)

∂ρε

∂t
+ (ρεũj),j =

[(
µ+

µt

σε

)
∂ε

∂xj

]
,j

+(
Cε1Rij

∂ũi
∂xj

− Cε2ρε+ E

)
T−1
τ .

(3.19)

Where Tτ is the realisable time scale and is expressed as follows:

Tτ =
k

ε
max(1,ψ−1) (3.20)

this time scale is k/ε at large Rt (hence large ψ) but becomes the Kolmogorov

scale, Cτ (ν/ε)1/2, for Rt << 1. The value of Cτ is assumed to be 1.41, Cε1 = 1.42,

Cε2 = 1.83, . The extra source term E in the ε equation is designed such that

its near-wall limit cancels the corresponding non-zero destruction term and is

computed as follows:

E = ρAEV (εTτ )0.5ξ (3.21)

where AE = 0.3, V = max(
√
k, (νε)0.25) and ξ = max( ∂k∂xi

∂τ
∂xi
, 0), with τ = k/ε.
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3.3 Large Eddy Simulation

The large-eddy simulation approach (LES) is intermediate between DNS, where

all fluctuations are resolved, and the statistical simulations based on RANS, where

only the mean flow is resolved. In LES the severe Reynolds number restrictions of

DNS are bypassed by directly simulating the large scales (GS) only and supplying

the effect of the missing small scales (SGS) by a so-called sub-grid model. This is

obtained by filtering the Navier-Stokes equations in space, in order to eliminate the

flow fluctuations smaller then the filter size. In this way, the new unknowns of the

problem become the filtered flow variables. Like for RANS, due to the non-linearity

of the original problem, the new equations contain additional unknown terms, the

so-called sub-grid scale (SGS) terms, representing the effect of the eliminated small

scales on the filtered equations. In order to close the problem, these terms must

be modelled. However, due to the fact that the small unresolved scales are often

simpler in nature than the inhomogeneous large motions and do not significantly

depend on the large scale motion, rather simple closure models may work well for

many applications. Another advantage of this method is the possibility of directly

simulating the largest scales, which are usually more interesting from the engi-

neering point of view. Computationally, LES clearly is less demanding than DNS,

but in general much more expensive than RANS. The reason is that, indepen-

dently of the problem to be solved, LES always requires fully three-dimensional

and unstationary calculations even for flows which are two-dimensional in the

mean. Moreover LES, like DNS, needs to be carried out for long periods of time

to obtain stable and significant statistics. For these reasons, LES should provide

better results for the analysis of complex three-dimensional and time-dependent

problems for which the RANS approach frequently fails, in particular when large

flow separation is present.

The utilisation of LES for engineering problems is still not very extensive, but in

the last years the interest in this method has largely increased.

31



3 – Turbulence Models

3.3.1 SGS modeling

The energy-containing large scales structures (GS) mainly contribute for the tur-

bulent transport while the dissipative small scale motions (SGS) carry most of the

vorticity and act as a sink of turbulent kinetic energy. For high Reynolds numbers

the dissipative part of the spectrum becomes clearly separated from the low wave-

number range, in a way shown by Eq. (3.4). Some of the significant differences

between GS and SGS scales are summarised in Tab. 3.1, Ref. [12].

To illustrate the role of SGS models, it is useful to consider possible consequences

GS turbulence SGS turbulence
Produced by mean flow Produced by larger eddies
Depends on boundaries Universal

Ordered Chaotic
Requires deterministic description Can be modelled statistically

Inhomogeneous Homogeneous
Anisotropic Isotropic
Long-lived Short-lived
Diffusive Dissipative

Difficult to model Easier to model

Table 3.1. Qualitative differences between GS turbulence and SGS turbulence

if turbulent simulation are performed with insufficient resolution. In this case the

viscous dissipation in the flow cannot properly be accounted for. This will typically

result in an accumulation of energy at the high wave-number end of the spectrum

which reflect a distorted equilibrium state between production and dissipation of

turbulent kinetic energy. For sufficiently high Reynolds numbers (or sufficiently

coarse grids) the discrete representation of the flow even becomes essentially in-

viscid and the non-linear transfer of energy can lead to an unbounded growth of

turbulence intensities and eventually to numerical instability of the computation.
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3.3.2 Filtered equations of the motion

In LES any dependent variable of the flow, f , is split into a GS part, f , and a SGS

part, f ′:

f = f + f ′ (3.22)

Generally, the GS component, f , represents that part of the turbulent fluctua-

tion which remains after some smoothing which has been applied to the flow field.

As done in Sec.3.2 it is convenient to define a density weighted filter since it allows

to partially recover the formal structure of the equations of the incompressible

problem. This filter is defined as in Eq. (3.7)

Applying the filtering operation to the Navier-Stokes equations, Eq. (3.1),

yields the equations of motion of the GS flow field. Like in RANS the filter-

ing of the non linearities is of particular interest since it gives rise to additional

unknowns terms. For LES of compressible flows, the filtered form of the equations

of motion for a thermally and calorically perfect gas is the following:

∂ρ

∂t
+
∂(ρũj)
∂xj

= 0

∂(ρũi)
∂t

+
∂(ρũiũj)
∂xj

= − ∂p

∂xi
+
∂(µP̃ij)
∂xj

−
∂M

(1)
ij

∂xj
+
∂M

(2)
ij

∂xj

∂(ρẼ)
∂t

+
∂[(ρẼ + p)ũj

∂xj
=

∂(ũj σ̃ij)
∂xi

− ∂q̃j
∂xj

+
∂

∂xj

(
Q

(1)
j +Q

(2)
j +Q

(3)
j

)
.

(3.23)

In the momentum equation the sub-grid terms are represented by the terms M (i)
ij

which can be defined as follows:

M
(1)
ij = ρuiuj − ρũiũj (3.24)

M
(2)
ij = µPij − µP̃ij (3.25)
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where Pij is defined in Eq.3.9. M (1)
ij takes into account the momentum trans-

port of the sub-grid scales and M
(2)
ij represents the transport of viscosity due to

the sub-grid scales fluctuations.

In the energy equation the sub-grid term are represented by the terms Q(i)
j

which can be defined as follows:

Q
(1)
j =

[
ũi

(
ρẼ + p

)
− ui(ρE + p)

]
(3.26)

Q
(2)
j =

(
µPijuj

)
−

(
µP̃ij ũj

)
(3.27)

Q
(3)
j = K

∂T

∂xj
−K

∂T̃

∂xj
(3.28)

Q
(1)
j represents three distinct physical effects:

• the transport of energy E due to small scales fluctuations;

• the change of the internal energy due to the sub-grid scale compressibility(
p
∂uj

∂xj

)
;

• the dissipation of energy due to sub-grid-scale motions in the pressure field(
uj

∂p
∂xj

)
;

Q
(2)
j takes in account the dissipative effect due to the sub-grid scale transport

of viscosity; Q(3)
j takes in account the heat transfer caused by the motion of the

neglected sub-grid scales.

3.3.3 Subgrid Scale model

Smagorinsky’s model

The Smagorinsky model is an example of closure models (ref.[15]). We assume

that low compressibility effects are present in the SGS fluctuations and that heat

transfer and temperature gradients are moderate. The retained SGS term in the

momentum equation is thus the classical SGS stress tensor:

34



3 – Turbulence Models

Mij = ρuiuj − ρ̄ũiũj (3.29)

where the over-line denotes the grid filter and the tilde the density-weighted Favre

filter (Eq.3.7). The isotropic part of Mij can be neglected under the assumption

of low compressibility effect in the SGS fluctuations. The deviatoric part, Tij ,

may be expressed by an eddy viscosity term, in accordance with the Smagorinsky

model extended to compressible flow:

Tij = −2µs
(
S̃ij −

1
3
S̃kk

)
, (3.30)

µs = ρ̄Cs∆
2|S̃|. (3.31)

where Sij = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
is the resolved strain rate tensor, µs is the SGS

viscosity, ∆ is the filter width, Cs is a constant which must be assigned a priori

and |S̃| =
√
S̃ijS̃ij . The width of the filter is defined for every grid elements, l, as

follows:

∆(l) = V ol
1/3
j (3.32)

where V olj is the volume of the j − th grid element.

In the energy equation the effect of the SGS fluctuations has been modified by the

introduction of a constant SGS Prandtl number to be assigned a priori:

Prsgs = Cp
µs
Ksgs

(3.33)

where Ksgs is the SGS conductivity coefficient and it takes into account the diffu-

sion of total energy caused by the SGS fluctuation. In the filtered energy equation,

the term Ksgs is added to the molecular conductivity coefficient.

Experiments pointed out that a Cs constant valor brings a lot of problems, like a

wrong asintotic behaviour in the near wall region ( τij different from zero) and the

impossibility of turbulent energy passage from little to large scales, cause the first
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ones bring only and effect of energy dissipation. This problem has been partially

solved with the introduction of a dynamic version of Smagorinsky model, in which

Cs is locally obtained using the smallest scales computed. This is due to a partic-

ular algebraic identity and the use of a test filter coarser than the one used to filter

Navier Stokes equations (Germano et al., 1991). This approach solves most of the

problems resulting with a static eddy viscosity model closure, although numerical

instability may appear due to high fluctuations of the Cs coefficient that may bring

to a local negative viscosity. Composite eddy viscosity - scale similarity closure

models ( Zang et al.,1993) keep the good results of the classical dynamic eddy

viscosity models drastically reducing instability problems. A limit for LES is due

to the assumption frequently made in SGS modeling that the cut-off of the filter is

in the inertial range and this, for high Reynolds flows, implies huge computational

costs.

Another way to solve the behaviour problem in the near wall region is to use

different expression of the SGS viscosity. The Vreman’s and WALE model are

such exemple of subgrid-scale closure.

Vreman’s model

The Vreman’s model [?] is designed with first-order derivatives and so is not more

complicated than the Smagorinsky’s model. This model is designed to give a zero

eddy viscosity when zero theoretical value is expected and to adapt to the local

level of turbulent activity, while it does not need more than the local filter width

and the first-order derivatives of the velocity field.

The eddy viscosity µv of the Vreman’s model is defined by:

µv = c(
Bβ

αijαij
)

1
2 (3.34)

with

αij = ∂ũj/∂xi

βij = ∆2αmiαmj
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Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23

The constant c ≈ 2.5C2
s where Cs denotes the Smagorinsky constant.

The Vreman’s SGS model has been validated first on a transitional and turbu-

lent mixing layer at high Reynolds number and then on a turbulent channel fow at

Reτ = 360. An appropriate transitional and near-wall flow behaviour was found

with this model which, moreover seems to be robust in high Reynolds number

simulations.

It has been also shown more accurate than the Smagorinsky’s model in homoge-

neous turbulence.

WALE model

The Wall-Adapting Local Eddy -Viscosity (WALE) SGS model proposed by Nicoud

and Ducros [?] is based on the square of the velocity gradient tensor. Improve-

ments compared to the classical Smagorinsky’s model are firstly the property to

give a zero value of the eddy-viscosity near a wall without using a dynamic pro-

cedure, then to produce zero eddy-viscosity in case of a pure shear and finally

the property to detect all the turbulence structures relevant for the kinetic energy

dissipation.

The eddy-viscosity term µw of the model is defined by:

µw = Cw∆
2 (Sij

d
Sij

d)
3
2

(SijSij)
5
2 + (Sij

d
Sij

d)
5
4

(3.35)

with

Sij
d =

1
2
(gij2 + gji

2)− 1
3
δij/gkk

2

is the symmetric part of the tensor gij2 = gikgkj , where gij = ∂ũi/∂xj

and in which the constant Cw is set to 0.1.

The performance of the WALE model has been in particular illustrated for a

freely decaying isotropic turbulence and for a turbulent pipe flow using a hybrid

mesh [?].
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3.4 Variational Multiscale approach for Large Eddy

Simulation

A new approach to LES based on a variational multiscale(VMS)framework was

recently introduced in Hughes et al. The VMS-LES differs fundamentally from

the traditional LES in a number of ways. In this new approach, one does not

filter the Navier-Stokes equations but uses instead a variational projection. This

is an important difference because as performed in the traditional LES, filtering

works as well with periodic boundary conditions but raises mathematical issues in

wall-bounded flows. The variational projection avoids this issues. Furthermore,

the VMS-LES method separates the scales a priori-that is, before the simulation is

started. And most importantly, it models the effect of the unresolved-scales only

in the equations representing the smallest resolved-scales, and not in the equations

for the large scales. Consequently, in the VMS-LES, energy is extracted from the

fine resolved-scales by a traditional model such as Smagorinsky eddy viscosity

model, but no energy is directly extracted from the large structures in te flow. For

this reason, one can reasonably hope to obtain a better behavior near walls, and

less dissipation in the presence of large coherent structures.

A less fundamental, yet noteworthy, difference between the VMS-LES and tra-

ditional LES methods is that the VMS-LES approach leads to governing equations

that are written in terms of the original (or undecomposed) flow variables and the

modeled effect of the unresolved-scales on the smallest resolved one, whereas the

classical LES formulation leads to governing equations that are written in terms

of the filtered flow variables and modeled subgrid-scales. Hence, in the traditional

LES formulation, one first filters the Navier-Stokes equations, then decomposes

the flow variables into their filtered and fluctuating parts in the subgrid-tensor,

then faces the issues of modeling the subgrid-scales. In the VMS-LES approach,

one does not have to decompose into space-averaged and fluctuating parts each

occurence in the Navier-Stokes equations of each flow variable because the final
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equations are expected to be expressed in terms of the importance as it can be

exploited to bypass the modeling of some fluctuating quantities, as will be illus-

trated here for compressible turbulent flows.

The initial developement of the VMS-LES method focused on incompressible

turbulent flows, regular grids, and spectral discretisations where the separaton a

priori of the scales is simple to achieve. For finite element approximations, a hi-

erarchical basis approach and an alternative method based on cell agglomeration

were recently proposed for separating a priori the coarse- and fine-scales. In most

cases, the VMS-LES method was applied mainly to homogeneous isotropic incom-

pressible turbulence, and recently to incompressible turbulent channel flows, fo

witch it demonstrated an improvement over the traditional LES method.

In this Variational Multiscale approach for Large Eddy Simulation (VMS-LES)

approach the flow variables are decomposed as follows:

wi = wi︸︷︷︸
LRS

+ w′i︸︷︷︸
SRS

+wiSGS (3.36)

where wi are the large resolved scales (LRS), w′i are the small resolved scales

(SRS) and wi
SGS are the unresolved scales. This decomposition is obtained by

variational projection in the LRS and SRS spaces respectively. In the present

study, we follow the VMS approach proposed in Ref.[5] for the simulation of com-

pressible turbulent flows through a finite volume/finite element discretization on

unstructured tetrahedral grids. If ψl are the N finite-volume basis functions and φl

the N finite-element basis fonctions associated to the used grid,in order to obtain

the VMS flow decomposition in Eq. (3.36), the finite dimensional spaces VFV and

VFE , respectively spanned by ψl and φl, can be in turn decomposed as follows [5]:

VFV = VFV
⊕

V ′FV ; VFE = VFE
⊕

V ′FE (3.37)

in which
⊕

denotes the direct sum and VFV and V ′FV are the finite volume spaces
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associated to the largest and smallest resolved scales, spanned by the basis func-

tions ψl and ψ′l; VFE and V ′FE are the finite element analogous. In Ref.[5] a

projector operator P in the LRS space is defined by spatial average on macro cells

in the following way:

W = P (W ) =
∑
k

 V ol(Ck)∑
jεIk

V ol(Cj)

∑
jεIk

ψj


︸ ︷︷ ︸

ψk

W k (3.38)

for the convective terms, discretized by finite volumes, and:

W = P (W ) =
∑
k

 V ol(Ck)∑
jεIk

V ol(Cj)

∑
jεIk

φj


︸ ︷︷ ︸

φk

W k (3.39)

for the diffusive terms, discretized by finite elements. In both Eqs. (3.38) and

(3.39), Ik = {j/Cj ∈ Cm(k)}, Cm(k) being the macro-cell containing the cell Ck.

The macro-cells are obtained by a process known as agglomeration [8]. The basis

functions for the SRS space are clearly obtained as follows: ψ′l = ψl − ψl and

φ′l = φl − φl.

A key feature of the VMS-les approach is that the modeled influence of the unre-

solved scales on large resolved ones is set to zero, and so the SGS model is added

only to the smallest resolved scales (which models the dissipative effect of the un-

resolved scales on small resolved ones). This leads to the following equations after

semi-discretizations [5].
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∫
Ci

∂ρ

∂t
dΩ +

∫
∂Ci

ρ~V .~ndΓ = 0∫
Ci

∂ρ~V

∂t
dΩ +

∫
∂Ci

ρ~V ⊗ ~V ~ndΓ +
∫
∂Ci

p~ndΓ

+
1
Re

∫
Ω
σ∇ΦidΩ +

1
Re

∫
Ω
τ
′∇Φ′

idΩ = 0∫
Ci

∂E

∂t
dΩ +

∫
∂Ci

(E + p)~V .~ndΓ +
∫
Ω
σ~V .∇ΦidΩ

+
γ

RePr

∫
Ω
∇e.∇ΦidΩ +

γ

RePrt

∫
Ω
µ
′
t∇e

′
.∇Φ′

idΩ = 0

(3.40)

where e denotes the internal energy (E = e + 1
2
~V 2) and τ

′
is the small resolved

scales SGS stress giben by:

τ
′
= µ

′
+ (2S

′
ij −

2
3
S
′
kkδij)

with S
′
ij = 1

2( ∂u
′
i

∂xj
+

∂u
′
j

∂xi
) and µ

′
t, the small resolved scales eddy viscosity (which

depends pn the chosen SGS model).

One can notice that the laminar Navier-Stokes equations are recovered by sub-

stituting τ
′
= 0 and µ

′
t = 0 in Eq. (3.40) above an that the SGS model is recovered

by substituting τ
′
= τ , µ

′
t = µt, e

′
= e and Φ

′
i = Φi in the equations, where τ and

µt denote the usual SGS stress tensor and SGS eddy viscosity, respectively.

More details about this VMS-LES methodology can be found in Ref. [5] and

[2].
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Applications

4.1 Gaussian translation

In mathematics, a gaussian function (named after Carl Friedrich Gauss) is a func-

tion of the form:

f(x) = a exp
−(x−b)2

2c2

for some real constants a, b and c > 0. The graph of a gaussian is a characteristic

symmetric ” bell shape curve ” that quickly falls towards plus/minus infinity.

For our study we consider the gaussian function :

ρ(x,y,z,0) = 1 + exp−150(x+0,3)

We’re interested on the behavior of the gaussian while we’ll translate it using

the following schemes: Mass Matrix Central Differencing Non Projected and Pro-

jected scheme, Masse Lumping V6 scheme. If the scheme is very dissipative then

the gaussian will be dissipated too and the same thing for the dispersion.

The code AERO is used for the computation of the gaussian translation for regular

mesh and irregular (strong variations of the local mesh size) one too.
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In the regular case, we can observe in the figures 4.1 and 4.2 witch represents the

gaussian translation for Mass Matrix Central Diff scheme and Mass Lumping V6

scheme that the translation is well predicted.In the irregular case, for Mass Matrix

Central Diff schemes (see figures 4.3,4.5)the gaussian is well translated, but for

Mass Lumping V6 scheme (see figure 4.4)we have some perturbations.

Figure 4.1. Gaussian translation for Mass Matrix Central Diff Projected scheme
on regular mesh
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Figure 4.2. Gaussien translation for Mass Lumping V6 sheme on regular mesh

Figure 4.3. Gaussian translation for Mass Matrix Central Diff Projected scheme
on irregular mesh
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Figure 4.4. Gaussian translation for Mass Lumping V6 sheme on irregular mesh

Figure 4.5. Gaussian translation for Mass Matrix Central Diff NonProjected
scheme on irregular mesh
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4.2 Flow around a circular cylinder at ReD = 3900

VMS-LES is performed to simulate the flow past a circular cylinder at Mach num-

ber M∞ = 0.1 and at a subcritical Reynolds number ReD of 3900 (ReD =
u∞D

ν
)

based on cylinder diameter D and free-steam velocity u∞. The computational

domain as shown in Figure 4.6 is −10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and

−π/2 ≤ z/D ≤ π/2 where x, y and z denote the streamwise, transverse and span-

wise direction respectively. The characteristics of the domain are the following:

Li/D = 10, L0/D = 25, Hy/D = 20 and Hz/D = π

The cylinder of unit diameter is centered on (x,y) = (0,0).

The flow domain is discretized by an unstructured tetrahedral grid which con-

sists of approximatively 2.9 × 105 nodes. The averaged distance of the nearest

point to the cylinder boundary is 0.017D which corresponds to y+ ≈ 3.31.

For the purpose of these simulations, the Steger-Warming conditions are im-

posed at the inflow and outflow as well as on the upper and lower surface (y =

±Hy). In the spanwise direction periodic boundary conditions is applied. On the

cylinder surface no-slip boundary conditions are set.

To investigate the influence of different schemas on the VMS-LES approach

with a SGS Wale model, different simulations are carried out.The preconditioning

used for this simulations is the Roe-Turkel solver. The schemes presented in this

section are used with a numerical viscosity parameter γ set to 0.3 and to 1.

Simulation Turbulence model Numerical scheme γ CFL

Simu1 VMS-LES wale MassMatrix V6 1 20

Simu2 VMS-LES wale MassMatrix Central Diff NonProjected 1 20

Simu3 VMS-LES wale MassLump Central Diff NonProjected 1 20

Simu3 VMS-LES wale MassLump Central Diff NonProjected 0.3 20

Simu3 VMS-LES wale MassLump Central Diff Projected 0.3 20

Simu3 VMS-LES wale MassLump V6 0.3 20

Table 4.1. Simulations

The CFL number has been chose so that a vortex shedding cycle is sampled in
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Figure 4.6. Computational domain

a little less than 1000 time steps.The drag and lift history of the simulations are

shown in Figure 4.23,4.24,4.26and Figure 4.25 respectively. Time-averaged values

and turbulence parameters are summarized in Table 4.2 and compared to data

from experiments of Son and Hanratty , Norberg , Cardell and Williamson . Cd

denotes the mean drag coefficient, C
′
d and C

′
l respectively the root mean square

values of the drag and lift, St the Strouhal number.

As shown in the table bellow, for the Mass Matrix V6 (γ = 1)and Mass Lump-

ing V6 (gamma = 0.3) schemes the Strouhal number is in good agreement with the

experimental values, and we notice that for the Mass Matrix Central Differencing

Non Projected and Projeted schemes the parameters are less well predicted.We also

observe that the mean drag coefficient is smaller that the experimental data for
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Simulation gamma St Cd C′
d C′

l

Mass Lump Central Diff NonProjeted 1 0.2372 0.7868 0.0156 0.0488

Mass Matrix Central Diff NonProjeted 1 0.0113 0.7635 0.0167 0.0433

Mass Matrix V6 1 0.2171 1.0892 0.0421 0.4663

Mass Matrix Central Diff Non Projeted 0.3 0.0063 0.0004 0.0000 0.0001

Mass Matrix Central Diff Projeted 0.3 0.0064 0.0004 0.0000 0.0002

Mass Lump V6 0.3 0.2151 1.2307 0.0639 0.592

Exp.
[10] 0.215±0.05 0.99±0.05

Table 4.2. Flow parameters for γ = 1 or γ = 0.3 and CFL=20

Mass Lumping Central Diff Non Projected scheme and Mass Matrix Central Dif-

ferencing Non Projected and Projected (for γ = 1 and γ = 0.3)scheme and larger

than the experiment data for Mass Matrix V6 and Mass Lumping V6 scheme.

The results show that the Masse Matrix V6 scheme improves the quality of the

simulation, since all parameters are almost well predicted.

Figures (4.7),(4.8),(4.9),(4.10) show the time-averaged streamwise velocity on the

centerline direction of the simulations from table 4.2.

Figure 4.7. Time-averaged streamwise velocity on the centerline direc-
tion,experiments:Lourenco ans Shih(LS) and Ong and Wallace (OW)
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Figure 4.8. Time-averaged streamwise velocity on the centerline direc-
tion,experiments:Lourenco ans Shih(LS) and Ong and Wallace (OW)

Figure 4.9. Time-averaged streamwise velocity on the centerline direc-
tion,experiments:Lourenco ans Shih(LS) and Ong and Wallace (OW)

We can observe here that the Masse Lumping Central Diff NonProj scheme for

γ = 1 is the best scheme that follows the experimental results.
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Figure 4.10. Time-averaged streamwise velocity on the centerline direc-
tion,experiments:Lourenco ans Shih(LS) and Ong and Wallace (OW)

Figures (4.11),(4.12),(4.13),(4.14)shows the pressure distribution on the cylin-

der surface averaged in time on homogeneous z direction.

Figure 4.11. Time-averaged and z-averaged pressure distribution on the surface
of the cylinder, experiment: Norberg
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Figure 4.12. Time-averaged and z-averaged pressure distribution on the surface
of the cylinder, experiment: Norberg

Figure 4.13. Time-averaged and z-averaged pressure distribution on the surface
of the cylinder, experiment: Norberg

For Mass Matrix Central Diff Non Projected scheme and Mass Lumping Cen-

tral Diff Non Projected scheme for γ = 1 the results are very close to each other

on the whole cylinder but they don’t match with the experimental data. Watching
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Figure 4.14. Time-averaged and z-averaged pressure distribution on the surface
of the cylinder, experiment: Norberg

figure 4.14,for gamma = 0.3 we can say the same thing about Mass Lumping Cen-

tral Diff Proj and NoProj schemes. Between all these schemes, the better results

are obtained with Mass Matrix V6 scheme. For all these schemes the pressure

coefficient Cp shows discrepancies between 60
◦

and 100
◦
.

Figures (4.15),(4.16),(4.17),(4.18) displays the total resolved Reynolds stress

u′u′ at x = 1.54 and the figures (4.19),(4.20),(4.21),(4.22) displays the total re-

solved Reynolds stress v′v′ at x = 1.54.

Here we can observe that the Mass Lumping Central Diff NonProj scheme

yields better results than the other ones, for γ = 0.3.

In the case of total resolved streamwise Reynolds stress v′v′ at x = 1.54, the best

results are obtained with Mass Lumping Central Diff Projected for γ = 0.3. When

we put γ = 1 we observe that for all the schemes we’re getting far away from our

experiments.
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Figure 4.15. Total resolved streamwise Reynolds stress u′u′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)

Figure 4.16. Total resolved streamwise Reynolds stress u′u′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)
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Figure 4.17. Total resolved streamwise Reynolds stress u′u′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)

Figure 4.18. Total resolved streamwise Reynolds stress u′u′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)
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Figure 4.19. Total resolved streamwise Reynolds stress v′v′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)

Figure 4.20. Total resolved streamwise Reynolds stress v′v′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)
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Figure 4.21. Total resolved streamwise Reynolds stress v′v′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)

Figure 4.22. Total resolved streamwise Reynolds stress v′v′ at x = 1.54, experi-
ments: Lourenco and Shih (LS)
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(a)

(b)

(c)

Figure 4.23. Lift history for Mass Matrix Centeral Diff Non Projected (a) , lift
history for Mass Lumping (b) and lift history for Mass Matrix V6 scheme (c) -all

these for γ = 1
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(a)

(b)

Figure 4.24. Lift history for Mass Lumping Centeral Diff Non Projected (a) , lift
history for Mass Lumping Central Diff Projected(b) -all these for γ = 0.3
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(a)

(b)

(c)

Figure 4.25. Drag history for Mass Matrix Centeral Diff Non Projected (a) , Drag
history for Mass Lumping (b) and drag history for Mass Matrix V6 scheme (c) -all

these for γ = 1
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(a)

(b)

Figure 4.26. Drag history for Mass Lumping Centeral Diff Non Projected (a) ,
Drag history for Mass Lumping Central Diff Projected(b) -all these for γ = 0.3
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(a)

(b)

(c)

Figure 4.27. Spectral analysis for Mass Lumping Centeral Diff Non Projected
scheme (a) , Spectral analysis for Mass Matrix Central Diff Non Projected scheme

(b) and Spectral analysis for Mass Matrix V6 scheme (c) - all these for γ = 1
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(a)

(b)

Figure 4.28. Spectral analysis for Mass Lumping Centeral Diff Non Projected
scheme (a) , Spectral analysis for Mass Lumping Central Diff Projected scheme

(b) - all these for γ = 0.3
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Conclusion

We have presented in this work a first investigation of a new Mass Matrix scheme,

in order to obtain a better accuracy than for Mass Lumping FV scheme on irregular

meshes.

This numerics was installed in a parallel code AERO of research and production.

The obtained results for the circular cylinder test are so far less good than those

predicted by the Mass Lumping FV scheme with sixth order dissipation which is

the basic option for the AERO code.

This Mass Matrix scheme needs to be studied thoroughly before to draw a final

conclusion (in particular the implementation and the dissipation term needs to be

further investigated).
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