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1 Introduction 

While high fidelity models are mainly used for  
deterministic design, which assumes a perfect knowledge  
of the environmental and operational parameters, 
uncertainty can arise in many aspects of the  
entire design-production-operational process: from the 
assumptions done in the mathematical model describing the 
underlying physical process to the manufacturing tolerances 
and to the operational parameters and conditions that could 
be affected by unpredictable factors (e.g., atmospheric 
conditions). Exact and approximate techniques for 
propagating these uncertainties require additional 
computational effort but are progressively well-established. 
The proposed study takes place in NODESIM-CFD FP6 
project (Martinelli and Hascoët, 2008; NODESIM-CFD, 
2008). The automatic differentiation (AD) tool TAPENADE 
(Hascoët and Pascual, 2004) is discussed in Section 2. It has 
been developed for a large range of applications where the 
code-to-code direct and reverse differentiation is needed. 
Direct and reverse ADs are used for addressing numerical 
error reduction since they help building correctors  
(Section 3). In Section 4, uncertainty propagation is 
addressed by a perturbation technique using the first terms 
of Taylor series of the high-fidelity model (method of 
moments). Previous investigation of these methods can be 
found in Ghate and Giles (2006, 2007). We present as 
example the response surface of a wing. 

2 AD improvements 

Our AD tool TAPENADE has been extended to deal with 
Fortran95 and with ANSI C (Pascual and Hascoët, 2005; 
Pascual and Hascoët, 2008). Figure 1 shows the architecture 
of TAPENADE. It is implemented mostly in Java (115,000 
lines) except for the separate front-ends which can be 
written in their own languages. Front- and back-ends 
communicate with the kernel via an intermediate abstract 
language (‘IL’) that makes the union of the constructs of 
individual imperative languages. Notice also the clear 
separation between the general-purpose program analysis 
and the differentiation engine itself. 

Figure 1 Overall architecture of TAPENADE 

 

Thanks to the language-independent internal representation 
of programs, this still makes a single and only tool and 
every development benefits to differentiation of each input 
language. One of these developments concerned the pointer 
analysis. The reverse mode now accepts most uses of 

pointers and allocation. Another development concerned 
declarations. The differentiated program respects the order 
of declarations, uses the include files and keeps the 
comments from the original program. Generated codes are 
more readable and often smaller. We also investigated 
extensions to TAPENADE to successive differentiations, in 
particular to efficiently handle tangent differentiation of the 
stack primitives present in the reverse differentiated codes. 
We implemented user directives for the reverse 
differentiation of a frequent class of parallel loops (directive 
II-LOOP) and for optimal checkpointing in reverse 
differentiation (Naumann et al., 2008; Hascoët et al., 2008; 
Tber et al., 2007). TAPENADE lets the user specify finely 
which procedure calls must be checkpointed or not with the 
directive NOCHECKPOINT. 

3 Numerical errors reduction 

3.1 Error estimates and correctors 

Let us recall first how linearised – direct or adjoint – states 
can be useful for improving numerical accuracy issues. 

Numerical error involves the deviation between the 
solution ( , , )=W W x y z  of mathematical model, i.e., of the 
non-linear PDE symbolised by: 

( ) 0,=WΨ  (1) 

and the output data produced by the computations, i.e., the 
more or less perfect numerical solution of the discrete 
system: 

( ) 0 .N= ∈Rh hΨ W  (2) 

The discrete unknown hW  is the N-dimensional array of 
degrees of freedom: 

, = [( ) ].N∈Rh h h iW W W  

The output data produced by the computation do not involve 
a function hW  but, instead the array hW  which needs to be 

transformed via an interpolation: let 2 ( )∈V L Ω  a space of 

rather smooth function. In practice, 0 ( ).V ⊂ ΩC  Let hR  be 
a linear interpolation operator transforming an array of N  
degrees of freedom into a continuous function: 

: .N → 6Rh h h hR V Rv v  (3) 

Let: 

( , , ) ( )( , , ).=h h hW x y z R x y zW  

Similarly, we need an operator from continuous functions to 
arrays. Let hT  be an operator transforming a continuous 
function into an array of N  degrees of freedom: 

: .N→ 6Rh hT V v T v  (4) 

It is useful to take the adjoint of :hR  
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.∗=h hT R  (5) 

The deviation between the PDE solution and the numerical 
one can be defined as .− hW W  It consists mainly of 
approximation errors, of algorithmic errors arising typically 
because iterative algorithms are not iterated infinitely, and 
of round-off errors due to the fact that the programme is run 
in floating point arithmetic. We discuss here mainly of 
approximation errors, although the other ones may be also 
addressed in part by the method studied here. Another way 
to post-process a computation is to use it for evaluating a 
‘scalar’ functional: 

Let j  a smooth linear functional applying W  into the 
scalar number: 

2 ( )( ) ( , )=
L

j u g W Ω  

where g  is a given 2 ( )L Ω  function. This allows to define: 

                    =gh hT g  

= =gh h h h hg R R T g  (6) 

The continuous adjoint writes: 

( )* .=p g
W
∂Ψ
∂

 

The discrete adjoint equation is then defined by: 

.⎡ ⎤ =⎣ ⎦
∂Ψ
∂
h

h

T

h hW T gp  (7) 

And we can then consider: 

.=h h hp R p  

A fundamental assumption of the present analysis is that 
this discrete adjoint is a good enough approximation of 
continuous adjoint p  for allowing to replace p  by hp  the 
calculations which follow. In order to evaluate the 
approximation error, two kinds of estimates can be applied: 

• A posteriori estimate: 

( ) ( ) ( )− = −Ψ Ψ Ψh hW W W  (8) 

where ( )Ψ hW  is the continuous residual applied to 
discrete solution. Then: 

1
( ).

−
⎡ ⎤− ≈ − ⎣ ⎦

∂Ψ
∂ Ψh hWW W W  (9) 

• A priori estimate: 

( ) ( ) ( )− = −Ψ Ψ Ψh h h h h hTW W TW  (10) 

where ( )Ψh hTW  is the discrete residual applied to 
discretised continuous solution. Then: 

1
( ).

−
⎡ ⎤− ≈ − ⎣ ⎦
∂Ψ
∂ Ψh

h
h h h hWTW TWW  (11) 

 

 

We observe that these estimates involve unavailable 
continuous functions. In the a posteriori estimate, the 
solution of the continuous linearised system can be 
approximated thanks to the discrete Jacobian. For the  
a priori estimate, we can also solve this issue in some 
particular case (see Loseille, 2008), by replacing ( )Ψh hTW  
by an expression ( )Θh hT h W  depending only of .hW  
Corresponding to these estimates, we have the following 
‘field correctors’: 

1
( )

−
⎡ ⎤= − ⎣ ⎦
∂Ψ
∂ Ψh

h
h h h hWW R T Wδ  (12) 

1
( )

−
⎡ ⎤= − ⎣ ⎦
∂Ψ
∂ Θh

h
h h h h hWR R T h WWδ  (13) 

and the following ‘direct-linearised goal-oriented 
correctors’: 

2

1

1
( )

, ( )
L

−⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠
∂Ψ
∂

Ω
Ψh

h
h h hWj g R T Wδ  (14) 

2

1

2
( )

, ( )
L

−⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠
∂Ψ
∂

Ω
Θh

h
h h h hWj g R T Wδ  (15) 

Also follows the ‘adjoint-based goal-oriented correctors’: 

21 ( )( , ( ))L= − ΩΨh h hj p T Wδ  (16) 

22 ( )( , ( ))L= − ΩΘh h h hj p T Wδ  (17) 

We recognize here the superconvergent corrector of Pierce 
and Giles (1998). We observe that, thanks to the choice of 
hT  as the adjoint operator of ,hR  the linearised-based and 

adjoint-based formulation are perfectly equivalent. At the 
contrary, the effort to compute them is very different, 
particularly in the case of unsteady PDE, since the adjoint 
system has to be solved reverse in time while using the state 
solution at all time levels (Hascoët and Dauvergne, 2008). 
This remark leads to the following recommendations: 

• use the direct linearised formulation in any case, you 
only need a corrector for the field as well as a corrector 
for one or several output functionals 

• the adjoint formulation is compulsory when you wish to 
derive a goal-oriented optimal mesh. 

The second recommendation is motivated by the fact that an 
optimal mesh will be derived from minimisation of the error 
term in which we need to put in evidence the dependance of 
error with respect to mesh. Since the adjoint is an 
approximation of a continuous function, it does not much 
depend of mesh. At the contrary, the continuous residual 

( )Ψh hT W  or the truncation error ( )Θh h hT W  are 
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proportional to a power of the mesh size. In Loseille (2008), 
the truncation error is expressed in terms of second 
derivatives of solution field and allows the derivation of an 
optimal mesh. 

3.2 An example 

To end this discussion, we give a numerical example of 
corrector evaluation built on a finite-element approximation. 
We can write Euler equations under the form: 

1 5( ) , ,
ˆ( ) ( ). 0

φ

φ φ
∂

∈ = ∀ ∈

∇ − Γ =∫ ∫
W V H V

W d W nd
Ω Ω

Ω

ΩF F
 (18) 

where ˆ ( )F W  accounts for the different boundary 
conditions. Let us introduce a discretisation of the previous 
EDP. Let hτ  a tetrahedrisation of Ω  with N  vertices. It 
will rely on a discrete space of functions: 

11 5{ ( ) , , }φ φ= ∈ ∀ ∈ ∈PΩh h h hV H T Tτ  

the canonical basis of which is denoted: 

[ ], ( ) , , vertices of ,= = ∀h i i j i j hV span N N x i jδ τ  

and on the interpolation operator: 

: , ( ) ( ), , vertex of .φ φ∏ → ∏ = ∀Vh h h i i hV x x i τ  

Comparing with the previous abstract theory, we get: 
5

5
: , [ ] ,
: , [ ( )].

N

N φ φ φ
→ = ∑

→ =
6
6

R
RV

h h h h h i h i i

h h i

R V R N

T T x

f f f  

The discretisation is set into the discrete space, but also it 
differs from the continuous statement in two features, a 
discrete flux Fh  instead of :F  

: ′→F Vh V  

and an extra term of artificial diffusion :hD  

, , ( ( ), ) 0,
with
( ( ), ) ( ).

( ) .

φ φ

φ φ

φ

′×

′×

∈ ∀ ∈ =

= Γ

+

∫
∫

F �
Ω

Ω

Ψ

Ψ

Ω

h h h h h h h V V

h h h V V h h h

h k h

W V V W

W W n d

D W d

 (19) 

The discrete fluxes are chosen as follows: 

( ) ( ) ( ).
( ) ( ) ( ).

= ∏ = ∏ ∏
= ∏ = ∏ ∏

F F F
F F F
h h h h h

h h h h h

W W W
W W W

 (20) 

After some calculations and simplifications, the main error 
term appears as follows: 

( , ) ( ( ) ( ))

ˆ ˆ( ( ) ( )).

φ φ

φ
Γ

= − ∇ −∏

+ −∏

∫
∫

F F

F F

Ω

∂Ψ
Ω

∂

Ω

h
h h h h

h
out out

h h

W W W d
W

W W n d

δ
 (21) 

with ˆ( ). ( ). ( ). .= −F F FW n W n W n  A Gauss quadrature is 
applied for the evaluation of the right hand side. We have 
applied this to a steady subsonic flow and give some 
preliminary results. Figure 2 compares the entropy 
generation in the flow computed directly and the same flow 
corrected by formula (21). Entropy level is one order of 
magnitude smaller. 

Figure 2 Entropy spurious generation for, (a) direct computation 
of a steady flow (b) for a corrected one (see online 
version for colours) 

 
(a) 

 
(b) 

4 Uncertainty propagation 

In optimisation problems, uncertainty propagation analysis 
may concern the study of the ‘cost functional’ 

: ( ) : ( , )= ∈6 Rj j J Wγ γ γ  (22) 

where all varying parameters are represented by the 
‘uncertain (i.e., not-deterministic) control variables; 

,∈Rnγ  and where the state variables ( )= ∈RNW W γ  are 
solution of the (non-linear) ‘state equation’ 

( , ) 0.=Ψ Wγ  (23) 
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It is important to note that the state equation (23) contains 
the governing PDE of the mathematical model of the 
physical system of interest (for example, the stationary part 
of the Euler or Navier-Stokes equations) and it can be 
viewed as an ‘equality constraint’ for the functional (22). 
The basic probabilistic approaches for analysing the 
propagation of uncertainties are Monte-Carlo methods. A 
full non-linear Monte-Carlo method gives us complete and 
exact information about uncertainty propagation in the form 
of its PDF, but with a prohibitively expensive cost in terms 
of CPU time. In NODESIM-CFD, several other 
‘probabilistic’ approaches for analysing the propagation of 
uncertainties are considered such as Latine Hypercubes and 
Polynomial Chaos. We contribute on perturbative methods 
based on the Taylor expansion (Martinelli, 2007). 

4.1 Perturbation methods 

To reduce the computational cost, we may think to use only 
some (derivate) quantities characterising the distribution of 
the input variables instead of an entire sample drawn from a 
population with a given PDF. Therefore, the idea behind the 
method of moments is based on the Taylor series expansion 
of the original non-linear functional (22) around the ‘mean 
value’ of the input control ( [ ]),=Eγμ γ  and then 
computing some statistical moments of the output (usually 
mean and variance). In this way, we are assuming that the 
input control γ  can be decomposed as sum of a fully 
deterministic quantity γμ  with a stochastic perturbation 

uδγ  with the property [ ] 0.=uE δγ  With these definitions, 
the Taylor series expansion of the functional ( )j γ  around 
the mean value γμ  is: 

3

( ) ( ) ( )
1 ( )
2

O∗

= + = +

+ +

u u

u u u

j j j G

H

γ γγ μ δγ μ δγ

δγ δγ δγ
 (24) 

where ∂
=
∂ u

j
G

γμ
γ

 is the gradient of the functional respect 

to the uncertain variables and 
2

2
∂

=
∂ u

j
H

γμ
γ

 is the Hessian 

matrix, both evaluated at the mean of the input variables 
.γμ  
By considering various orders of the Taylor expansion 

(24) and taking the first and the second statistical moment, 
we can approximate the mean jμ  and the variance 2σ j  of 
the functional ( )j γ  in terms of its derivatives evaluated at 

γμ  and in terms of statistical moments of the control .γ  
First order moment methods: 

( )
( )2

2 2 3
( ) [ ]

( ) [ ]
O

Oσ

⎧ = +⎪
⎨ ⎡ ⎤= +⎪ ⎣ ⎦⎩

j u

j u u

j E

E G E
γμ μ δγ

δγ δγ
 (25) 

Second order moment methods: 

( )

( )

3

2

2

2 2

4

1( )
2

[ ]

( ) ( )( )
1 1 ( )
4 4

O

O

σ

∗

∗

∗ ∗

⎡ ⎤= + ⎣ ⎦

+

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦

+

γμ μ δγ δγ

δγ

δγ δγ δγ δγ

δγ δγ δγ δγ

δγ

j u u

u

j

u u u u

u u u u

u

j E H

E

E G E G H

E H E H

 

With this method, it is clear that we are using only  
some partial information about the input uncertainties, in 
fact, we are using only some statistical moments of the 
control variable instead of full information available  
with its PDF, and we will not have anymore the PDF  
of the propagated uncertainty, but only its approximate 
mean and variance. Another important point is that the 
method of moments is applicable only for small 
uncertainties, due to the local nature of Taylor expansion 
approximation. 

Two things should be noted here: the first one is that for 
the method of moments ‘we need the derivatives’ of the 
functional respect to the control variables affected by 
uncertainties: in particular, we need the gradient for the first 
order method, and gradient and Hessian for the second order 
method. Due to the fact that ( ) ( , ),=j j Wγ γ  where 

( )=W W γ  is the solution of the state equation (23), we 
have for the derivative: 

= +
u u u

j J J W
W

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂γ γ γ

 

Since we know the solution ( )W γ  by its numerical values 
as result of a program (implementing an appropriate 
method, e.g., fixed point method), it is interesting to use of 
AD tools (like TAPENADE) in order to obtain the needed 
derivatives (Martinelli et al., 2007). The same remarks 
apply to the computation of the Hessian matrix.  
In particular, we note that the derivatives are computed  
at the mean value of the control ,γμ  so they are fully 
deterministic and can be picked out from the expectations  
in the equations (25) or (26). In other words, we can  
write 

2 ( ) ( )

, ,
( ) ( )

, ,
( ) ( ) ( )

, ,
2 ( ) ( ) (

( )

( )( )

( )

∗

∗

∗

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤= =⎣ ⎦

∑ ∑
∑ ∑

∑

i k
u i k u u i k ik

i k i k
i k

u u ik u u i k ik
i k i k

i k l
u u u l ik u u u

i k l
i k

u u ik lm u u u

E G GG E GG C

E H H E GG C

E G H GH E

E H H H E

δγ δγ δγ

δγ δγ δγ δγ

δγ δγ δγ δγ δγ δγ

δγ δγ δγ δγ δγ ) ( )

, , ,

⎡ ⎤⎣ ⎦∑ l m
u

i k l m

δγ

(26) 
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where ( )
∂

=
∂

i i
u

j
G

γμ
γ

 are the elements of the gradient, 

2

( ) ( )
∂

=
∂ ∂

ik i k
u u

j
H

γμ
γ γ

 are the elements of the Hessian matrix 

and ( ) ( ) ( ) ( )[ ] cov( )= =i k i k
ik u u u uC E δγ δγ γ γ  are the elements of 

the ‘covariance matrix’. Every expectation term [ ]…E  in 
the equation (26) is defined by the statistical model of the 
uncertainties and could be computed in a pre-processing 
phase. 

For example, for the important case where the 
uncertainties are random and normally distributed, we have: 

( ) ( ) ( )

( ) ( ) ( ) ( )

0⎡ ⎤ =⎣ ⎦
⎡ ⎤ = + +⎣ ⎦

i k l
u u u
i k l m
u u u u ik lm il km im kl

E

E C C C C C C

δγ δγ δγ

δγ δγ δγ δγ
 

and if these (normal) uncertainties are independent, then 
hold the relation 2σ=ik i ijC δ  where 2 ( ) ( )σ ⎡ ⎤= ⎣ ⎦

i i
i u uE δγ δγ  

and the equations (26) become 

2 2 2

2

2 2 2 2

,

( )

( )( ) 0

( ) ( 2 )

σ

σ

σ σ

∗

∗

∗

⎡ ⎤= =⎣ ⎦

⎡ ⎤= =⎣ ⎦

⎡ ⎤= =⎣ ⎦
⎡ ⎤= = +⎣ ⎦

∑
∑

∑

u i i
i

u u ii i
i

u u u

u u ii kk ik i k
i k

E G G

E H H

E G H

E H H H H

δγ

δγ δγ

δγ δγ δγ

δγ δγ

 (27) 

Since we have the term 2( ) 4,∗⎡ ⎤= ⎣ ⎦u uE Hδγ δγ  the error is 

still of the order of 4 .⎡ ⎤= ⎣ ⎦uE δγ  Computing the other terms 
of same order require the knowledge of order of derivatives 
higher than the second. From the previous discussion, it is 
clear that in order to apply the method of moments we need 
to solve only one (expensive) non-linear system with 
derivatives (at the mean γμ ) and then apply the 
(inexpensive) equations (25) or (26) where, for the fully 
non-linear Monte-Carlo approach of the previous section, 
we need to solve 1�N  non-linear systems (23). 

4.2 First and second-order derivatives of a 
functional 

We are interested by obtaining the first and second 
derivatives of a functional j  depending of ,∈RNγ  and 

expressed in terms of a state ∈RNW  as follows: 

{ ( ) ( , ( )) 0
( ) ( , ( ))

= =
=

W
j J W

Ψψ γ γ γ
γ γ γ  (28) 

Our problem can be viewed from two different points of 
view: the first one is consider the solution algorithm for 
state equation as part of j  itself, i.e., considering j  as a 
function of the control variables γ  only. The second one is 
consider the system made by two different routines: one of 

them is the routine that solves the non-linear system 
( , ( )) 0=WΨ γ γ  (and contains the evaluation the residual 
( , )),WΨ γ  and the other is the routine ( , )J Wγ  that 

computes the value of the functional from the state variables 
W  and (eventually) the control variables .γ  

The first approach leads to a straightforward algorithm 
for first order derivatives, in fact, we just need to 
differentiate the entire routine j  with tangent or reverse 
mode. In this context, the routine j  contains the iterative 
solver method for the state equation, and the differentiated 
routines will also contain this loop in differentiated form. If 
we need itern  loop iterations in order to obtain the  
non-linear solution, and we assume for each iteration a 
unitary cost, we can analyse the cost for the gradient of the 
functional. 

Using tangent mode, the cost for the entire gradient will 
be iter( )Tn n α  where n  is the number of components of the 
gradient and 1 4< <Tα  is the overhead associated with the 
differentiated code respect to the original one. For this 
strategy, the memory requirements will be of the same order 
of the undifferentiated code. 

With reverse mode (Hascoët et al., 2005) we are able to 
obtain the entire gradient with a single evaluation of the 
differentiated routine, but the total cost (in terms of CPU 
time and memory) will depends on the strategy used by the 
AD tool to solve the problem of inverse order differentiation 
for the original routine. For the case of a store-all (SA) 
strategy, the CPU cost will be iter( )Rn α  with 1 ,< <Rα  i.e., 

Rα  times the undifferentiated code, but the required 
memory will be n  times greater. For a recompute-all (RA) 
strategy, the CPU cost will be 2

iter( ),Rn α  i.e., iter( )Rn α  the 
non-linear solution, but the memory will be the same of the 
undifferentiated routine. For real large programs, neither SA 
nor RA strategy can work, so we need a special 
storage/recomputation trade-off in order to be efficient 
using ‘checkpoints’. Obviously, with checkpointing the 
CPU cost will be greater than the cost of SA strategy and 
can be shown that the cost for the differentiated code will be 
of the order of iter

s n  (where s  is the number of snapshots 
available). 

It is clear that for gradient computation with 1,�n  the 
reverse mode is faster than tangent mode, but for a program 
containing an iterative algorithm, the reverse mode is not 
always applicable. The problem relies on the fact that the 
reverse mode computation is performed in the opposite way 
of the original code (‘backward sweep’) after a ‘forward 
sweep’ needed to store the variable needed in the successive 
phases. 

For the previous arguments, we prefer differentiate not 
the entire program (solution of the state equation + 
functional evaluation), but the two main component in a 
separate way, using the fact that at the solution, the 
residuals will be zero (i.e., we do not differentiate the 
routine containing the main loop, but only the quantities 
involved after the last iteration). For this second approach, 
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we have to analyse the influence of state equation and the 
functional evaluation in more details. This is the purpose of 
the next sections. 

4.2.1 First derivative 

Using the chain rule, the gradient of the functional 
( ) ( , ( ))=j J Wγ γ γ  is given by: 

= +
dj J J dW
d W d

∂ ∂
∂ ∂γ γ γ

 

where the derivatives of the state variables ( )W c  are 
obtained solving the linear system 

0.= + =
d dW
d W d
ψ
γ γ γ

∂Ψ ∂Ψ
∂ ∂

 

Therefore, two strategies can be applied. 

Direct differentiation 

It consists in computing the Gateaux-derivatives  
with respect to each component direction 
(( (0, 0,1,0, ,0) ,= … … T
ie  where 1 is at the i -esim 

component): 

= = +i
i i i

dj dj J J dW
e

d d W d
∂ ∂
∂ ∂γ γ γ γ

 (29) 

with: 

= i
i

dW
e

W d
∂Ψ ∂Ψ
∂ ∂γ γ

 (30) 

This has to be applied to each component of ,γ  i.e., n  
times and the cost is n  linearised N-dimensional systems to 
solve. If we choose to solve the single system (30) with an 
iterative matrix-free method, and the solution is obtained 
after itern  step, the total cost will be of the order of 

iter, ,αT Tn  i.e., iter,Tn  evaluation of the matrix-by-vector 

operation ,⎛ ⎞
⎜ ⎟
⎝ ⎠

x
W
∂Ψ
∂

 where each evaluation costs αT  times 

the evaluation of the state residual ( , )WΨ γ  (and the cost of 
the state residual is taken as reference equal to 1). 
Therefore, the cost of the full gradient will be iter, .αT Tn n  

Inverse differentiation (reverse mode) 

The complete gradient is given by the equation 
* * *

0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − Π⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

dj j
d

∂ ∂Ψ
∂ ∂γ γ γ

 (31) 

where 0Π  is the solution of the linear system 

* *
⎛ ⎞ ⎛ ⎞Π =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

j
W W
∂Ψ ∂
∂ ∂

 (32) 

This computation needs only one extra linearised  
N-dimensional system, the adjoint system (some methods 
for calculation of the adjoint solutions are described in). If 
we choose to solve the adjoint system (32) with an iterative 
matrix-free method, we can apply the same estimate done as 
in the case of the tangent mode differentiation, but this time 
the overhead associated with the evaluation of the matrix-

by-vector operation 
*

⎛ ⎞
⎜ ⎟
⎝ ⎠

x
W
∂Ψ
∂

 respect to the state residual 

evaluation will be αR  and usually ,α α>R T  and the 
number of iteration iter,Rn  for the convergence of the 
solution could be different from iter,Tn  of the previous case 
(but the asymptotical rate of convergence will be the same 

of the original linear system ,⎛ ⎞ =⎜ ⎟
⎝ ⎠

x b
W
∂Ψ
∂

 see Pierce and 

Giles (1998) for more details. Therefore, the cost for the 
gradient will be iter, ,αR Rn  and the reverse mode 
differentiation for the gradient computation is cheaper than 
the tangent mode if 1.�n  

4.2.2 Second derivative 

For second derivatives we have different possibilities. 

Direct-direct option 

This method was initially investigated along with various 
other algorithms, but the publication does not go into the 
implementation details for a generic fluid dynamic code. 
Here we present the mathematical background behind the 
idea and the efficient AD implementation of Ghate and 
Giles but with a different analysis of the computational cost. 

Starting from the derivative (29), we perform another 
differentiation respect to the variable kγ  obtaining 

2 2
2
,= +i k

i k i k

d j j d W
D J

d d W d d
∂
∂γ γ γ γ

 (33) 

where 

2
,

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i k i k i
k

k
i i k

J J dW
D J e e e

W d
J dW J dW dW
e

W d W W d d

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

γ γ γ γ

γ γ γ γ

 

Differentiating the equation (30) we get 
2

2
, 0+ =i k

i k

d W
D

W d d
∂Ψ

Ψ
∂ γ γ

 (34) 

where 

2
,

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i k i k i
k

k
i i k

dW
D e e e

W d
dW dW dW

e
W d W W d d

∂ ∂Ψ ∂ ∂Ψ
Ψ

∂ ∂ ∂ ∂
∂ ∂Ψ ∂ ∂Ψ

∂ ∂ ∂ ∂

γ γ γ γ

γ γ γ γ
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Substituting the second derivatives of the state respect to the 

control variables 
2

i k

d W
d dγ γ

 in equation (33) from equation 

(34) we get 
12

2 2
, ,

2 * 2
, 0 ,

−
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

= −∏

i k i k
i k

i k i k

d j J
D J D

d d W W

D J D

∂ ∂Ψ
Ψ

∂ ∂
Ψ

γ γ  (35) 

where 0∏  is the solution of the adjoint system (32) 
evaluated at the point ( , ( ))Wγ γ  solution of the state 

equation ( , ) 0.=WΨ γ  The n  derivatives 
i

dW
dγ

 should be 

computed (and stored) using tangent mode differentiation of 
the non-linear solver algorithm, and each derivatives costs 

iter .αTn  If we need the full Hessian matrix, we have to 
evaluate the quantity (35) ( 1) 2+n n  times, i.e., we have to 

evaluate the terms 2
,i kD Ψ  and 2

,i kD J  for 1, ,= …i n  and 
, ,= …j i n  due to the symmetry of the Hessian, and each 

evaluation of 2
,( i kD Ψ  costs 2αT  (the evaluation of 2

, )i kD J  is 

negligible respect to 2
,( )).i kD Ψ  Therefore, the full Hessian 

costs iter,[ ( 1) 2].α α+ +T T Tn n n  With similar arguments, if 
we want only the diagonal part of the Hessian, the cost is 

iter,[ ].α α+T T Tn n  

Inverse-direct 

This consists in the direct derivation in any direction 
, 1,=ie i n  of the (non-scalar) function: 

* *

*

( , ( )) ( , ( ))

( , ( ))

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− ∏⎜ ⎟
⎝ ⎠

j J
W W

W

∂ ∂
∂ ∂

∂Ψ
∂

γ γ γ γ
γ γ

γ γ
γ

 

where ( )W γ  and ( , ( ))∏ Wγ γ  are solutions of the above 
two state systems. With some algebra we obtain 

* *2

2

* *

0

* *

0

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ∏⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− ∏ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

i i
i

i i

i i

j j J
e e

j
e

W

W

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂Ψ
∂ ∂ ∂ ∂

∂ ∂Ψ ∂Ψ
∂ ∂ ∂

γ
γ γ γ γ

θ
γ γ γ

θ λ
γ γ

 

The derivation needs the solution of the adjoint systems 
* *

0
⎛ ⎞ ⎛ ⎞∏ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

j
W W
∂Ψ ∂
∂ ∂

 (36) 

and 2n  perturbed N-dimensional linear systems (for the full 
Hessian): 

* *

* *

0

*

0

⎧ = −⎪
⎪
⎪⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎪
⎨ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪+ − ∏⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎪ ⎡ ⎤⎪ ⎛ ⎞− ∏⎢ ⎥⎜ ⎟⎪ ⎝ ⎠⎣ ⎦⎩

∂Ψ ∂Ψ
∂ ∂

∂Ψ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂Ψ
∂ ∂ ∂ ∂

∂ ∂Ψ
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i i

i i

i i

i

e
W

J
e

W W

J
e

W W W

W W

θ
γ

λ
γ

θ
γ

θ

 

where all the functions in the equations (36)–(37) are 
evaluated at the final state (in order to verify 

( , ( )) 0).=WΨ γ γ  

Inverse-inverse 

If we are interested in a (scalar!) functional depending on 
the gradient, then it can be interesting to apply a second 
inverse differentiation. We do not focus on this direction at 
the moment. 

5 Numerical experiments 

The interest of this approach is briefly illustrated by the 
building of a response surface for the wing shape of a 
business aircraft (courtesy of Piaggio Aero Ind.), for a 
transonic regime (see the shape and the mesh in Figure 3). 
The nominal operational conditions are defined by the  
free-stream Mach number 0.83∞ =M  and the incidence 

2 .α = °  We suppose that only these two quantities are 
subject to random fluctuations. For simplicity, we assume 
that their PDF are Gaussian with given mean and variance. 
The mean values correspond to the nominal values. The 
section of the initial wing shape corresponds to the NACA 
0012 airfoil. 

Figure 3 Wing shape and mesh in the symmetry 

 

For the present work, due to the fact that we consider only 
two uncertain variables, we used a ToT approach for the 
Hessian evaluation. The accuracy of the second-order 
response surface obtained with the differentiated software is 
not different from the one obtained with other works, such 
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as those of Ghate and Giles (2007) (who, by the way, also 
used TAPENADE, but on another CFD software). We 
illustrate this accuracy in Figure 4. The direct evaluation 
required 21 × 21 non-linear simulations. The second-order 
approximation required only one non-linear state equation 

0=Ψ  plus four linear systems using ToT. Relative error is 
less than 2% while using only first derivatives produce 
errors of 16%. Let us mention that this method compares 
also well with Kriging methods as was demonstrated in the 
comparison paper of Martinelli and Duvigneau (2008). 

Figure 4 Drag coefficient vs. Mach number and angle of attack 
(first-order spatial accuracy) for the transonic wing,  
(a) non-linear simulations (b) percentage relative 
difference between the non-linear simulations and the 
second order Taylor approximation (see online version 
for colours) 

 
(a) 

 
(b) 

Note: For the top plot we have solved 21 × 21 non-linear 
systems 0.=Ψ  

6 Concluding remarks 

AD methods and tools take place in a process which tends 
to make numerical simulation more secure by contributing 
to build the derived software necessary for addressing 
uncertainty and error. Thanks to AD, the derivation of this 
software is performed with more and more safety. This 
paper has displayed two main examples of this process. 
First, uncertain data are modelled by random variables and 
their impact on the simulation process is evaluated by a 
method of moments. The complexity of the proposed 
method is analysed for large number of uncertain variables. 
The two methods studied are already competitive for a small 
number of variables and even more for a large one. 
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