

Having fun in Paris, New York!

You mean Paris, France! The one with the Eiffel Tower?

Spatial Entity Disambiguation in Social Media Content

Amosse Edouard, PhD Student Nhan LE-THAN, Supervisor

Outlines

- Introduction
 - Context
 - Motivation & Research Question
- Overview of the State of the art
 - Location prediction on social media content
- Named Entity Recognition Process
 - Recognition
 - Disambiguation
 - Identification
- The proposed approach
 - Spatial Entity Modeling
 - Spatial Entity Disambiguation and Identification
- Conclusion And Perspectives

The Web Today

- We have moved a huge part of our social life online.
- Numerous tools
 - Blogs, Microblogs,
 - Social networks
 - Sensors network
- Freedom of the crowd
 - We see, we hear, we thing → we share

The Need ...

■ To go from Data → Information

> From Information → Information meaning

Enable machines to understand data on the Web

Social Media Content

Context dependent

Limited in space in time

Lack of structure

Context

Motivation

- Most spatial entity are ambiguous [4]
 - Paris (France, US), New York (US, South Africa
- Spatial entities might have different meanings

Research Questions

Predicting location of social media content

- Spatial Entity Identification
- Spatial Entity Disambiguation

Why we Care?

- Less than 1% of twitter posts are geo located [1]
- A content might have many locations references
 - User location
 - Event location
 - Server location
- Spatio-temporal analysis of social media
 - Information filtering
 - User trend by location
 - Event detection

Who Cares?

Location prediction on social media content

- Naive Bays approach by S. Kinsella [1]
- Geolocated Flickr photos [2]
- DBPedia Spotlight [3]

Web pages

Web a Where Geotagging Web Content [4]

Location Prediction Process

The Proposed Approach

Spatial Entity Modeling

The world is organized such as a hierarchical tree

Spatial Entity Topological Relation

The Region Connection Calculus [5]

RCC-8

$RCC-8 \rightarrow RCC-5$

\nearrow RCC-8 \rightarrow RCC-5

DJ: A is **disjoint** with B

↗ INC: A is **included** in B

INCi: A contains B

7 EQ: A is **equal** to B

7 PO: A partially overlaps B

RCC-8	RCC-4
A DC B – A EC B	A DJ B
A TPP B – A NTPP B	A INC B
A TPPi B – A NTPPi B	A INCi B
A EQ B	A EQ B
А РО В	АРОВ

Inclusion Relation

$$INC(B,A) = B \subseteq A \leftrightarrow \forall p \subset P(B), p \subset P(A)$$

$$INCi(B,A) = \exists p \subset P(A) / p = B$$

Disjoint Relation

$$DJ(B,A) \leftrightarrow A \cap B = \Theta \rightarrow \{ \not\exists p \subseteq P(A)/p \subseteq P(B) \}$$

Equality Relation

$$EQ(B,A) \leftrightarrow (A=B) = INC(A,B) \land INC(B,A)$$

Partial Overlaping

$$PO (B,A) \leftrightarrow (A \cap B \neq \emptyset \land (A \cap B \neq A \land B \cap A \neq A))$$
$$= \{\exists p / p \subseteq P(A) \land p \subseteq P(B)\}$$

Named Entity Recognition

- Spotting a text to find named entities
- Common named entities
 - Person
 - Organisation
 - Place

Spatial Entity Recognition

- We use the Stanford NER parser
 - **₹** Input : Text
 - Output : Named entities
- No spatial Entity found
 - Enrich the content with data from URL if present
 - Repeat the process

Spatial Relation with Regular Expression

- Entities separated by a comma imply inclusion
 - Paris, New York → INC (Paris, New York)

- Entities separated by a coordinating conjunction are disjoint
 - Paris and New York → DJ (Paris, New York)
 - Paris, New York, Lisborn ...
 - DJ (Paris, New York) DJ (New York, Lisborn)

The Gazetteer

- We have built a local gazetteer with free data obtained from Geonames
 - **7** 114 330 462 RDF triples
 - **7852909** spatial features
- Data are stored in RDF format

Spatial Entity Identification

- The local gazetteer is used
- Sparql-Query the local gazetteer
 - All feature within the same name
 - Linked to their feature parents
- The result is a hierarchical tree

Use of Spatial Relation

- Hypothesis
 - Single sense per discourse
 - Entities appeared within the same context are considered related
- We first determine the relation between entities
- We then build appropriate SPARQL Query to build the hierarchy

Disjoint Query

Select

```
?s
            (SAMPLE (?nn) as ?name)
            (SAMPLE (?code) as ?ccode)
            (SAMPLE (?dpPedia) as ?dpPediaUri)
            (SAMPLE (?clazz) as ?class)
           (GROUP CONCAT(distinct ?cparent; separator="->") as ?parents)
            where
            ?s gn:parentFeature+ ?parent.
            ?parent gn:name ?pname.
            ?s gn:featureClass ?clazz.
            ?s gn:featureCode ?code.
            ?s gn:name ?nn.
            BIND(CONCAT(?parent, ";;", ?pname) AS ?cparent).
            OPTIONAL
            ?s rdfs:seeAlso ?dpPedia
              ?s gn:name "Paris".
GROUP BY ?s
```

Inclusion Query

Select

```
?s
            (SAMPLE (?nn) as ?name)
            (SAMPLE (?code) as ?ccode)
            (SAMPLE (?dpPedia) as ?dpPediaUri)
            (SAMPLE (?clazz) as ?class)
            (GROUP CONCAT(distinct ?cparent; separator="->") as ?parents)
            where
            ?s gn:parentFeature+ ?parent.
            ?parent gn:name ?pname.
            ?s gn:featureClass ?clazz.
            ?s gn:featureCode ?code.
            ?s gn:name ?nn.
            BIND(CONCAT(?parent, ";;", ?pname) AS ?cparent).
            OPTIONAL
            ?s rdfs:seeAlso ?dpPedia
            ?s gn:parentFeature+ ?parent_1.
            ?s gn:name "Paris".
            select distinct ?parent_1 where
             ?parent 1 gn:name "New York".
GROUP BY ?s
```

Thanks to O. Corby!

Spatial Entity Disambiguation

- Enrich ambiguous spatial entity
- Based on
 - Natural Language Processing
 - Linked Data

DBPedia Disambiguation

- We query DBPedia for additional information about the entity:
 - Description
 - Geo Location
 - → A set of spatial-related properties

Disambiguation rule

- Spatial inclusion
 - \rightarrow A dbp:isPartOf B \rightarrow INC (A,B)
 - \rightarrow A dbp:capital B \rightarrow INC (B,A)
 - \rightarrow A dbp:part B \rightarrow INC(B,A)
- Syntactic analysis
 - Stanford dependency graph
 - Qakis Relation Pattern

Syntactic Analysis – DBPedia Resources

Text from DBPedia are well edited

Syntactic analyzer will perform better than on short text

Description of spatial entity often refer to related spatial entities

Qakis Relation Patterns

- Link named entities with dbpedia properties by applying NLP analysis
- We build a set of dbpedia properties that describe spatial inclusion
 - isPartOf, capital, country
- Retain from the result properties that are in the list and above a threshold

Qakis - Relation Patterns

- Paris is the capital and most populous city of France.
- [LOCATION] is the capital and most populous city of [LOCATION].

```
dbo:isPartOf;9.5610166666667;
dbo:twinCity;7;
dbo:largestCity;4.792083333333;
dbo:capital;4.693233333333;
dbo:city;4.5034833333333;
dbo:part;4.3656333333333;
```

Paris isPartOf France INC(Paris, France)
Paris capital France INC(Paris, France)

Stanford Semantic Tree

- Syntactic dependency graph
- Words are nodes and grammatical relation are edge

```
root (ROOT-0, capital-4)
nsubj (capital-4, Paris-1)
cop (capital-4, is-2)
det (capital-4, the-3)
prep_of (capital-4, France-6)
```


Analyzing the Dependency Graph

- We have built a set of prepositions related to location
- Build spatial entity relation
 - We navigate into the graph started from the subject node
- Two entities are spatially related :
 - They have a common subject node
 - The path contains a spatial-related preposition

Analyzing the Stanford Graph

Discussion

- Place name may refer non spatial entities
 - Washington is visiting Paris
 - Obama granted pardon to a turkey
- In the future, we will consider all possible meanings of a term
- We may also apply semantic POS analysis
 - An entity followed by an action verb is more likely a Person than a Spatial thing.

Really? What about this "Paris has woken up under snow today"

Conclusion and Perspectives

- We propose an approach for spatial entity disambiguation based on
 - Natural Language Processing
 - Linked Data
- We are currently limited ourselves to English language
- The semantic dependency graph is a work ongoing
- Evaluation of the approach on a twitter dataset

References

- 1 M. Kinsella, Geolocation using Language Models from Geotags
- Pavel Serdyukov, Placing Flickr Photos on a Map
- 3 J. Daiber et al., Improving Efficiency and Accuracy in Multilingual Entity Extraction
- 4 E. Amitay, Web-a-Where: Geotagging Web Content
- 5 D. Randal et al., A Spatial Logic based on Regions and Connection

Question and Suggestion

Thank you for your attention.