
THÈSE DE DOCTORAT
Calcul pratique de chemins simples

avec des contraintes de longueur et de
diversité dans des réseaux complexes

et multimodaux

Ali AL ZOOBI
Inria Sophia Antipolis Méditerranée & Laboratoire I3S

Présentée en vue de l’obtention
du grade de docteur en Informatique
de l’Université Côte d’Azur

Dirigée par : David COUDERT, Directeur de
Recherche, Inria, Sophia-Antipolis
Co-encadrée par : Nicolas NISSE, Chargé de
Recherche Inria, Sophia-Antipolis
Soutenue le : 25 Novembre 2021

Devant le jury, composé de :
Jean-Charles RÉGIN, Professeur, Université
Côte d’Azur,
David ILCINKAS, Chargé de Recherche
CNRS, LaBRI, Université de Bordeaux
Laurent VIENNOT, Directeur de Recherche,
Inria, IRIF, Paris
Christian LAFOREST, Professeur, Univer-
sité Clermont Auvergne
Mohammed Amine AIT OUAHMED, Ingé-
nieur R&D, Instant-System

CALCUL PRATIQUE DE CHEMINS SIMPLES AVEC DES
CONTRAINTES DE LONGUEUR ET DE DIVERSITÉ DANS DES

RÉSEAUX COMPLEXES ET MULTIMODAUX

Practical computation of simple paths with length and diversity
constraints in complex and multimodal networks

Ali AL ZOOBI

./

Jury :

Président du jury
Jean-Charles RÉGIN, Professeur, Université Côte d’Azur,

Rapporteurs
David ILCINKAS, Chargé de Recherche CNRS, LaBRI, Université de Bordeaux
Laurent VIENNOT, Directeur de Recherche, Inria, IRIF, Paris

Examinateurs
Christian LAFOREST, Professeur, Université Clermont Auvergne
Mohammed Amine AIT OUAHMED, Ingénieur R&D, Instant-System

Université Côte d’Azur

Ali AL ZOOBI
Calcul pratique de chemins simples avec des contraintes de longueur et de diversité
dans des réseaux complexes et multimodaux

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : output.tex – 1/10/2021 – 12:54

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau

À ma précieuse maman, merci de m’avoir laissé partir

Calcul pratique de chemins simples avec des contraintes de longueur
et de diversité dans des réseaux complexes et multimodaux

Résumé

Le problème du plus court chemin est l’un des problèmes les plus étudiés en théorie des graphes
et en recherche opérationnelle. Une généralisation classique de ce problème est le problème de
trouver k plus courts chemins simples (kSSP). C’est-à-dire, le problème de trouver le plus
court, le deuxième plus court, etc. jusqu’au k-ième plus court chemin simple d’une source à
une destination dans un graphe orienté pondéré. Yen (1971) a proposé l’algorithme avec la
meilleure complexité théorique connue pour résoudre le kSSP dans un graphe orienté pondéré
à n sommets et m arcs, avec une complexité en O(kn(m + n logn)). Depuis, le problème a
été largement étudié du point de vue de l’ingénierie algorithmique.
Dans cette thèse, nous étudions également le problème kSSP sous cet angle, c’est-à-dire que
nous proposons des algorithmes exacts offrant de meilleures performances en pratique que
l’état de l’art, en termes de temps d’exécution, de consommation mémoire ou offrant de
meilleurs compromis espace-temps. Nous montrons aussi comment étendre nos algorithmes
au cas des graphes avec des poids arbitraires sans cycles négatifs.
De plus, nous étudions le problème de trouver k plus courts chemins simples qui sont mutuel-
lement dissimilaires. Plus précisément, nous étudions la complexité du problème en fonction
de quatre mesures de similarité différentes, et nous montrons dans quels cas le problème est
NP-Complet ou peut être résolu en temps polynomial.
Enfin, nous montrons comment adapter le problème kSSP à un modèle de réseau de transport
public multimodal. Nous adaptons certains de nos algorithmes pour le kSSP au problème de
trouver, dans un réseau de transport public multimodal, les k itinéraires d’une station source et
à une station destination arrivant au plus tôt.

Mots-clés : Théorie des graphs, plus court chemin, Ingénierie algorithmique.

8

Practical computation of simple paths with length and diversity
constraints in complex and multimodal networks

Abstract

The shortest path problem is one of the most studied problem in graph theory and operations
research. A classic generalization of this problem is the problem of finding k shortest sim-
ple paths (kSSP for short). That is, the problem of finding a shortest, a second-shortest, etc.
until a k-th shortest simple path from a source to a destination in a directed weighted graph.
Yen (1971) proposed the state-of-the-art kSSP algorithm, with theoretical time complexity in
O(kn(m+ n logn)), where n is the number of vertices and m is the number of arcs of the in-
put digraph. Since then, the problem has been widely studied from an algorithmic engineering
perspective, that is designing exact algorithms offering better performances in practice.
In this thesis, we study the kSSP problem from an algorithm engineering perspective. More
precisely, we design new kSSP algorithms allowing to outperform the state-of-the-art algo-
rithms in terms of running time, memory consumption, or offering a better space-time trade-
off. We also show how to apply our algorithms in graphs with arbitrary arc weights without
negative cycles.
Then, we study the problem of finding paths respecting dissimilarity constraints. Precisely, we
study the complexity of the problem according to four different similarity measures, and we
show in which cases the problem is NP-Complete or polynomial time solvable.
Finally, we show how to adapt the kSSP problem to a multimodal public transportation network
model, i.e., combining metro, tram, buses, and walk. Precisely, we design some kSSP algo-
rithms to solve a related problem, which is, the problem of finding k earliest arrival journeys
from a source station to a destination station in a public multimodal transportation network.

Keywords: Graph theory, shortest path, algorithm engineering.

8

Remerciements

Je remercie d’abord les membres de mon jury de thèse. Merci à David ILCINKAS et Laurent
VIENNOT pour avoir eu la gentillesse de rapporter ma thèse. Je remercie également Jean-Charles
RÉGIN, Christian LAFOREST et Mohammed Amine AIT OUAHMED d’accepter d’être membre de
mon jury de thèse.

Un très grand merci à mon encadrant, David COUDERT, d’avoir accepté de m’encadrer pour
ces trois ans, d’avoir écouté mes idées avec un son esprit ouvert, sa patience en lisant mon code
pourri et en corrigeant mes bugs débiles, et les efforts de qualité qu’il a mis afin que cette thèse se
déroule bien malgré les conditions particulières. Merci aussi à mon co-encadrant, Nicolas NISSE

de m’avoir appris à écrire (formellement), ce qui est la chose la plus importante que j’ai apprise au
cours de ces trois ans. Je tiens bien sûr à remercier tous les autres membres de l’équipe COATI et
apparentés : Patricia (sa majesté), à mes co-bureau Nataza et Hicham, à Fréderic HAVET (un jour
je serais titulaire et je te battrai au ping-pong), à Stéphane PÉRENNES, le génie discret, pour ses
idées intéressantes qui m’ont aidé à finir mes preuves, pour Luc HOGIE pour son aide technique
indispensable pour mes expérimentations, merci à Michelle, Joanna, Fréderic (Minus), Emilio, Ha,
Foivos, Francesco, Arthur, Thomas et tous les COATIs. Un grand merci pour Arthur FINKELSTEIN

pour sa patience pendant notre projet “dure et long". Finalement, je remercie mes anciens profs
Ahmad AL ZOGHBI et Bilal SAÏD pour leurs conseils scientifiques et humains pendant ces trois
ans.

Des remerciements à ma famille d’être là malgré leurs conditions difficiles. Merci encore une
fois à ma mère pour son amour inconditionnel et de m’avoir laissé partir, à mon père d’avoir
partagé ses morceaux de poésie avec moi, et pour ses précieux conseils. Je remercie spécialement
ma tante Alima et ma nièce Salam (mes amies en même temps) d’avoir la curiosité de découvrir
ce que je fais pendant ma thèse, je ne peux pas décrire ce que je ressens quand je vois leurs yeux
fiers.

Finalement, je remercie mes amis “originaux" : Abbass, Nour, Hussein et Ali. Et tous les amis
que j’ai rencontrés pendant ces trois ans : Nader, Hassan, Yahya, Clara, Gaby, Julia, Salwa, Ryma,
Mervat, Riam, Ziyad, Tala et Arij.

Table of contents

Introduction 13
1.1 Overview . 13
1.2 Model . 15

1.2.1 Definitions and Notation . 16
1.3 The shortest path problem . 16

1.3.1 One-to-all . 17
1.3.2 One-to-one query acceleration . 18
1.3.3 Multicriteria shortest paths . 20

1.4 The k shortest (simple) paths problem . 20
1.4.1 Motivations . 20
1.4.2 The k shortest paths kSP problem . 21
1.4.3 The k shortest simple paths problem (kSSP) 22
1.4.4 On arbitrarily weighted graphs . 25
1.4.5 Contributions . 26

1.5 The k (shortest) dissimilar paths problem . 27
1.6 The k earliest arrival time journeys in public transit networks 29

1.6.1 Public Transit models . 29
1.6.2 Problem Variants . 30
1.6.3 Earliest arrival journey planning . 31
1.6.4 k earliest arrival journeys query algorithms 32

1.7 Techniques used . 33
1.8 Summary of the contributions . 33
1.9 Overview of the manuscript . 35
1.10 Publications . 35

On finding k shortest simple paths in a graph 37
2.1 Introduction . 39
2.2 Preliminaries . 41

2.2.1 Definition and Notation . 41
2.2.2 Yen’s algorithm . 42
2.2.3 A Node Classification algorithm . 43

2.3 Sidetrack Based (SB) algorithm . 44
2.3.1 Compact representation of a path . 44
2.3.2 The SB algorithm . 45
2.3.3 The SB* algorithm . 47

2.4 Space - time tradeoffs . 47
2.4.1 The Parsimonious Sidetrack Based algorithm 47
2.4.2 Special variants of PSB . 48

2.5 Postponing the detours’s computation . 49
2.6 Experimental evaluation . 51

11

12 TABLE OF CONTENTS

2.6.1 Experimental settings . 51
2.6.2 Experimental results . 53
2.6.3 Impact of the properties of the queries 59

2.7 On arbitrarily weighted digraphs with no negative cycles 63
2.7.1 Yen-Ball-String (Y-BS) algorithms . 64
2.7.2 Adaptation of some kSSP algorithms 65
2.7.3 Experimental evaluation . 66

2.8 Arbitrarily weighted digraphs . 68
2.8.1 Finding a shortest simple path . 69
2.8.2 Compact MIP formulation for kSSP . 73
2.8.3 MIP formulation for kSSP with constraints generation 75

2.9 Conclusion . 75

On finding k (shortest) dissimilar paths in a graph 77
3.1 Introduction . 79
3.2 Finding k shortest dissimilar paths . 80
3.3 Finding a path dissimilar to several given paths 81

3.3.1 Finding a path dissimilar to another given path 81
3.3.2 Finding a path dissimilar to several given paths 83
3.3.3 Shortest path dissimilar to one given path 84

3.4 Algorithms for finding k (shortest) dissimilar paths 85
3.4.1 Pseudo Polynomial algorithm . 85

3.5 Conclusion . 88

On finding k earliest arrival journeys in public transit networks 91
4.1 Introduction . 93
4.2 Preliminaries . 94

4.2.1 Timetable - definitions and notations . 95
4.2.2 Connection Scan Algorithm . 96
4.2.3 Profile Connection Scan Algorithm . 96

4.3 Problem definition . 97
4.4 Public Transit Yen’s algorithm (Y-PT) . 98
4.5 Public Transit Postponed Yen’s algorithm (PY-PT) 99

4.5.1 Experimental settings . 103
4.5.2 Experimental results . 104

4.6 Conclusion . 106

Conclusions and Perspectives 107
5.1 Conclusions . 107
5.2 Perspectives and questions . 108

12

Introduction

Travelling from one place to another is a primitive action. Animals move to reach food re-
sources, migrate to better circumstances etc. Humans travel in a transportation network to discover
new places, to go to work, etc. Also, materials are sent from a source to a destination via the post
network. Even virtual object like data may move from a device to another via Internet.

Let G = (V,A) be a graph, i.e, a set of vertices connected by a set of edges. Most of the
networks can be seen as a graph. For instance, a road network can be seen as a graph where
crossroads are represented by vertices and roads by edges, the Internet network can be modeled as
a graph where vertices represent routers and each edge represent a link between two routers, etc.
Analogously to real life networks, a path is a sequence of vertices that one can take to go from one
vertex to another in a graph. The length of a path indicates how long it takes (how much it costs,
etc.) to traverse such path. Finally, a shortest path from one vertex s to another vertex t is a path
with minimum length among all the paths starting from s and ending at t.

A classical problem in graph theory, is the problem of finding shortest paths from a source to
a destination in a graph. Precisely, today’s challenge is to design performant algorithms, in terms
of running time, memory consumption etc. allowing to answer shortest path queries from a source
to a destination. This classical problem has various interesting generalization, like the one-to-all
(finding a path from one vertex to all the others), all-to-one, all-to-all (known as All Pairs Shortest
Paths, APSP, problem), the multi-criteria shortest path (finding a short, fast and cheap path for
example), shortest path in dynamic graphs and the k shortest paths problem.

The k shortest paths problem is one of the most fundamental shortest path problems. It asks
to find a shortest path, a second-shortest path, etc. until a kth shortest path from a source to the
destination in a graph. Depending on the context, some constraints may be added to the output
paths. For instance, the output paths may be required to be simple, i.e, do not visit a vertex more
than once, mutually dissimilar, etc.

In this thesis, we first study the k shortest simple paths problem, where we propose new al-
gorithms outperforming the state-of-the art in terms of running time, memory consumption or
offering space-time trade offs. Then, we add constraints of dissimilarity between paths, where we
study the complexity of the problem regarding various similarity measures, and we show in which
case the problem is NP-complete or can be solved in polynomial time. Finally, we show how to
adapt some of the k shortest simple paths algorithms to extract k-best journeys in a public transit
networks using a well-known public transit model.

1.1 Overview

Shortest path. The shortest path problem is the problem of finding a shortest path from one
vertex to another in a digraph. This problem is extensively studied in the literature, and various
shortest path algorithms are proposed. Let D = (V,A) be a directed weighted graph with length
function ` : A → R+. In 1959, Dijkstra proposed a polynomial time algorithm allowing to
find a shortest path from a given vertex to all other vertices in a positively weighted directed
graph. With the help of advanced data structures (like Fibonacci heap), Dijkstra’s algorithm can

13

14 CHAPITRE 1 — Introduction

reach a complexity bound in O(m + n logn) where n is the number of vertices and m is the
number of arcs. Meanwhile, another algorithm known as Bellman Ford Moore was discovered
with a time complexity of O(nm), Bellman Ford Moore’s algorithm allows to correctly compute
a shortest path from a vertex to all other vertices in a directed weighted graph without negative
cycles (defined below) [106].

Today, with the help of preprocessing routine, one can answer shortest paths queries in mil-
liseconds or less even at continental scale (Section 1.3.2). In addition, several trade-offs between
the computation time of the preprocessing routine, the query time and the space requirements are
proposed [21].

k shortest (simple) paths. The k shortest path problem (kSP) is the problem of finding a shortest
path from a source vertex (s) to a destination vertex (t) in a graph, a second-shortest s-t path, etc.
until a kth shortest path (formally defined in Section 1.4). Henceforth, several versions of this
problem are defined and studied in the literature.

The original version of the k shortest paths problem can be solved by Eppstein’s algorithm [50]
in O(m + n logn + k). That is, only O(k) plus the time needed to compute a single shortest
path from a source to a destination. If we want to extract k shortest paths (and not an implicit
description), we need an extra O(n) time per path, i.e, Eppstein’s algorithm extracts, explicitly, k
shortest paths in O(m+ n logn+ kn) time complexity.

The k shortest simple paths (kSSP for short) problem is a special version of the kSP where
output paths are required to be simple (paths that do not visit a vertex more than once). The first
algorithm solving the kSSP problem has been proposed by Yen [126] in 1971 and has a worst-case
time complexity in O(kn(m+n logn)), that is the best theoretical complexity bound to solve the
kSSP so far. Since then, several solutions have been proposed to improve the efficiency of the
algorithm in practice [67, 79, 111, 70, 59, 54, 83, 82] ; they all feature the same worst-case time
complexity as Yen’s algorithm, that is, O(kn(m+ n logn)) but are much faster in practice.

k shortest dissimilar simple paths. Two distinct paths may differ by a single arc, share half of
their edges, or can be completely different (disjoint). In order to measure how similar / different
they are, the path-similarity is studied. The similarity between two paths can be expressed accor-
ding to the proportion of arcs they share. A path-similarity measure is a function between zero
and one indicating how much two given paths are similar. Various path-similarity measures are
studied in the literature. For instance, a similarity measure can be the portion of the length of the
intersection of the two given paths over the length of their union / the length of the longest / the
length of the shortest path among them, etc. So, two paths are called “dissimilar” if their similarity,
w.r.t. a similarity measure, does not exceed a certain threshold.

The k shortest dissimilar (simple) paths problem is a special version of the k shortest (simple)
paths problem where output paths are required to be mutually dissimilar. This problem is proved to
be NP-complete for several similarity measures, and various exact algorithms (path enumeration,
pseudo-polynomial algorithm) and heuristics (like the additive penalty heuristic) were proposed
to solve it [1, 3, 32, 33].

Journey planning in public transit networks In contrast to road networks that can modeled
using graphs with edges that can be traversed anytime, public transit networks are more complex,
as they are time dependent and contain various transportation mode.

14

1.2 – Model 15

A transit network, also referred to as a (multimodal) transportation network or a timetable, is
a set of stops (such as bus stops or trains stations), a set of routes (such as bus, tramway, ferries,
metro or train lines), and a set of trips. Trips correspond to individual vehicles that visit the stops
along a certain route at a specific time of the day. Trips can be further subdivided into sequences of
elementary connections, each given as a pair of (origin/destination) stops and (departure/arrival)
times between which the vehicle travels without stopping. In addition, footpaths model walking
transfers between nearby stops. A journey is a sequence of trips one can take within a transit
network.

Journeys planning in (schedule-based) public transit networks and accelerating queries for
efficient journey planning is a long-standing problem [21]. In the last decade, many algorithms
have been developed not only to answer efficiently basic queries like a quickest or an earliest
arrival journey, but also to optimize additional criteria like the number of transfers, the cost of the
trip, etc. or even to offer Pareto optimal solutions combining several criteria [21, 43, 46].

1.2 Model

To model a problem, to solve a riddle or to express ideas, we begin spontaneously to draw
circles and connect them by lines as a graph. Graphs offer a formal and expressive structure en-
abling to model networks. In this section, we present few examples of how a graph can be used
to model networks, then we formally present several graph related concepts that are used in this
chapter.

Travelling in a map is usually done via routes and crossroads. So, from a routing perspective,
a map can be seen as a road network, i.e, is restricted to crossroads and routes. Also, a straight-
forward model of a road network is a graph (a set of vertices and edges) model. As shown in
Figure 1.3, a road network can be seen as a graph where vertices represent crossroads, with an
edge between two vertices if there is a route linking the two corresponding crossroads. Indeed,
this basic model can be further improved using directed weighted graphs where edges are directed
(called arcs), and each edge is labelled with a value corresponding to its length, travel-time, cost,
etc.

Figure 1.1 – A road network Figure 1.2 – A graph model

Figure 1.3 – A graph model of a road network

More generally, most of the well-known networks can be seen as a graph. For instance, the
Internet network can be seen as a graph where vertices are the routers and edges are the links bet-
ween them. A social network can be seen as a graph where vertices represent the people accounts

15

16 CHAPITRE 1 — Introduction

and the edges (arcs) represent the friendship (follow) relationship between the accounts. In a sche-
duling context, the vertices of a graph can represent the tasks and the arcs represents precedence
constraints between them, etc.

1.2.1 Definitions and Notation

Let D = (V,A) be a directed graph (digraph for short) with vertex set V and arc set A ⊆
V × V . Let n = |V | be the number of vertices and m = |A| be the number of arcs of D. For
the sake of simplicity, we restrict ourselves to simple graphs, i.e, self loops and multi-arcs are not
allowed. For each arc a = uv, the vertex u is called the tail of a and v is called the head of a. Let
` : A→ R+ be a length function over the arcs. For every u, v ∈ V , a (directed) path from u to v in
D is a sequence P = (u = v0, v1, · · · , vr = v) of vertices with vivi+1 ∈ A for all 0 ≤ i < r. Note
that vertices may be repeated, i.e., paths are not necessarily simple. A path is simple if, moreover,
vi 6= vj for all 0 ≤ i < j ≤ r. The length of the path P equals `(P) =

∑
0≤i<r `D(vi, vi+1).

Let s, t be two vertices of V . An s-t path P = (v0 = s, v1, · · · , vr−1, vr = t) is a path starting
with s and ending with t. A shortest path from s to t is a path such that no other path from s to t
has a strictly smaller length. The distance d(s, t) between two vertices s, t ∈ V is the length of a
shortest s-t path. Note that there might be several shortest s-t paths, all of them having the same
length which is equal to the distance d(s, t).

Given a vertex v ∈ V , N+(v) = {w ∈ V | vw ∈ A} denotes the out-neighbors of v in D. Gi-
ven two paths P = (v0, · · · , vr) andQ = (w0, · · · , wp) and an edge vrw0 ∈ A, we denote by P.Q
the v0-wp path obtained by the concatenation of P and Q. i.e, P.Q = (v0, · · · , vr, w0, · · · , wp) =
(v0, · · · , vr, Q) = (P,w1, · · · , wp).

Let t ∈ V . An in-branching T rooted at t is any sub-digraph of D that induces a (not necessa-
rily spanning) tree containing t, such that every u ∈ V (T)\{t} has exactly one out-neighbor (that
is, all paths go toward t). An in-branching T is called a shortest path (SP) in-branching rooted at t
if, for every u ∈ V (T), the length of the (unique) u-t path P Tut in T equals dD(u, t). Note that an
SP in-branching is sometimes called reversed shortest path tree. Similarly, A shortest path (SP)
out-branching T rooted at s is any sub-digraph of D inducing a tree containing s, such that every
u ∈ V (T) \ {s} has exactly one in-neighbor and the length of the (unique) s-u path P Tsu in T
equals dD(s, u).

A digraph is called arbitrarily weighted if it has negative weighted arcs, i.e, ` : A → R. A
cycle C = (v0, v1, · · · , vr−1, v0) is a path starting and ending with the same vertex. So, the length
of a cycle follows the definition of the length of a path. Moreover, if every cycle in a digraph D
has a non-negative length, we call D a digraph with no negative cycle. For each pair of vertices
s, t in V , we define a shortest s-t path in an arbitrarily weighted digraph as a shortest simple path
from s to t (if any).

1.3 The shortest path problem

The shortest path problem is probably one of the most studied problems in operational re-
search [21, 91], regarding its various applications in networking, transportation, scheduling, bio-
informatics etc.

In this section, we start by giving a formal definition of the shortest path problem with its
various variants, then we survey the fundamental algorithms solving this problem with an overview
of their advantages / drawbacks.

16

1.3 – The shortest path problem 17

1.3.1 One-to-all

Various shortest path algorithms are proposed. Let D = (V,A, `) be a directed positively
weighted graph. The one-to-all shortest path problem asks to find a shortest path from a source
vertex s in V to all other vertices. As long as D has no negative weighted cycles, the one-to-all
problem is the problem of finding an SP out-branching of D rooted at s.

In 1959, Dijkstra proposed a polynomial time algorithm allowing to solve the one-to-all shor-
test path problem.

Let a = (u, v) be an arc of A, and let d[u] (d[v]) be an upper bound on the distance from s to
u (v). Relaxing the arc a consists of updating d[v] with respect to the path via u, that is, applying
the instruction :

d[v]← min(d[v], d[u] + `(u, v))

Dijkstra’s algorithm starts by labeling each vertex u in V with an upper bound on the distances
d[u] from s to u (that is zero for s and∞ for the other vertices), then it processes the vertices in a
non-decreasing order of their labels.

Processing a vertex u in Dijkstra’s algorithm consists of adding the distance of the vertex d[u]
to the output (as it is proven that d[u] is a valid distance from s to u), and relaxing its neighbors
(v ∈ N+(u)) via u. Dijkstra’s algorithm stops once all the vertices in V are processed. If only the
distance to a given vertex t is needed (one-to-one), Dijkstra’s algorithm stops once the vertex t is
processed.

Dijkstra’s algorithm needs a data structure to store the unprocessed vertices in a non-
decreasing order of their labels (the upper bound of their distance from s), if this data structure
is a Fibonacci heap, the complexity of Dijkstra’s algorithm became bounded in O(m + n logn).
The correctness of Dijkstra’s follows from the non-decreasing order of vertices extractions, and it
is guaranteed only for positively weighted digraphs.

Another classical algorithm known as Bellman Ford’s (or Bellman Ford Moore’s) algorithm
was discovered simultanously by Bellman, Ford, Moore and Shimbel. Bellman Ford Moore’s al-
gorithm relaxes n−1 times all the arcs ofA. The proof of its correctness follows from the fact that
any s-t simple path (in particular a shortest one) has at most n− 1 vertices. The time complexity
of Bellman Ford Moore’s algorithm is in O(nm), Bellman Ford Moore’s algorithm allows to cor-
rectly compute a shortest path from a vertex to the remaining vertices in a directed weighted graph
without negative cycles [106]. Since then, several algorithms were proposed to speed up / improve
Bellman Ford Moore’s algorithm in practice [93, 106, 42, 40, 73, 115, 61]. A common idea of
these improvements is to relax the arc in a specified order (breadth first search BFS fashion, for
instance), and avoid relaxing an arc once relaxing it won’t improve the lower bound of its head.

Note that both Dijkstra’s and Bellman Ford Moore’s algorithms can be adapted to solve the
all-to-one problem, that is, finding a shortest path from each vertex of the digraph to a destination
vertex. This can be done by reversing the orientation of each arc of the digraph.

Finding a shortest simple path in arbitrarily weighted graph (with negative cycles) in NP-
complete, as it can be reduced from the Longest Path problem. However, several advan-
ced integer linear programming (ILP) models were proposed to solve this problem with ac-
ceptable performances only on small networks (one second for a random graph of 100 ver-
tices [85]) [45, 23, 103, 115, 42, 27].

17

18 CHAPITRE 1 — Introduction

1.3.2 One-to-one query acceleration

In most of the shortest path applications, we only need source-destination paths, i.e, a shortest
path from a source vertex s to a destination vertex t. Plethora of methods were designed in order to
accelerate the computation of such path. In this section, we briefly present the intuitions of some
of these methods.

Most of these speed-up techniques split the path-finding process into two routines : A prepro-
cessing routine where a data structure summarizing information about the graph is constructed, and
a query routine where, with the help of the already computed data structure, a one-to-one shortest
path is computed. Even though a preprocessing routine could drastically reduce the shortest path
query computation, one may have to repeat the whole preprocessing computation if changes occur
to the input graph (typically for dynamic and time-dependent graphs) [21].

Each of these query accelerating methods offer a different tradeoff between the preprocessing
time, the memory consumption and the query time.

Goal-directed methods (A*, ALT, etc.) With a fast preprocessing routine, the goal-directed me-
thods retrieve a lower bound from each vertex to the destination, which can be done via additional
information like the euclidean distance (for A*) [63], or by picking, heuristically, a set of vertices
called landmarks (8 to 32 landmarks are sufficient for the road network Western US with up to
2 millions vertices), and computing distances from (and to) each vertex to (and from) each one
of the landmarks (for the ALT) [63]. The goal-directed methods apply almost the same routine as
Dijkstra’s algorithm during the query processing, except, they use the accessible lower bound of
each vertex as an indicator on how far it is from the destination. So, they prioritize vertices who
are close to the destination in order to scan less vertices and to reach, as soon as possible, the
destination vertex.

Contraction Hierarchies (CH) The intuition of the Contraction Hierarchies (CH) method is
that some vertices are more important than others in the process of finding a shortest path, so their
distance from / to the other vertices must by computed and accessible. For instance, in road net-
works, highway junctions are “more important” than a junction leading into a dead end. Roughly,
a vertex is more important than another if there are more shortest paths traversing it than the other.

In the preprocessing routine, Contraction Hierarchies (CH) methods select a set of “important”
vertices from the graph and computes “shortcuts” between them, that is, the exact distance. This
can be done by performing iterative vertex contractions, where contracting a vertex consists of
temporarily removing it from the graph and adding an arc “shortcut” between its in-neighbors to
its out-neighbors with a corresponding length. So, one can sort the vertices in a decreasing order
of their “importance” and iteratively contract them until achieving a “small” reduced graph of only
important vertices. The query phase of CH consist of a bidirectional exploration (from the source
and the target) of the graph (with the help of the reduced graph) until the two searches meet, then
the algorithm concatenates paths from both explorations and outputs a shortest path [47].

Hub Labelling methods (HL) A Hub Labeling method consists in precomputing, for each ver-
tex u, a Hub set L(u) containing some vertices along with their distances to u. Those sets are
computed such that, for each pair (s, t) of vertices, there is a vertex u ∈ L(s) ∩ L(t) that is on
a shortest path from s to t. Therefore, a query consists of picking the vertex x in L(s) ∩ L(t)
minimizing d(s, x) + d(x, t).

18

1.3 – The shortest path problem 19

The query running time of a HL method is extremely fast (see below), as it is bounded by
the size of the label set of a vertex. However, the preprocessing routing consists of picking the
appropriate set of labels for each vertex, computing and storing the distance from each vertex to
each one of its label.

In order to achieve satisfying performance in practice, the size of a hub-set should be small (as
its elements must be scanned during each query). However, the problem of minimizing the size
of the hubs (on average or minimizing the size of the bigger Hub) is NP-complete [121]. So, the
hub-sets are usually computed using heuristics based on experimental and theoretical observations
of the topology and the metrics of the networks [2, 80, 5].

Even though the required average label size can be Θ(|V |) in general [62], it can be signifi-
cantly smaller for some graph classes. For instance, an empirical observation for road networks, is
the existence of small hub sets, and consequently efficient shortest path query algorithms. Several
theoretical explanations for this phenomenon were proposed by studying structural parameter as
the highway dimension [2] or the skeleton dimension of the graph [80]. The study of these para-
meters also provides an efficient way of computing labels and helps in finding bounds on the size
of a hub set.

Note that, other query-accelerating methods are proposed in the literature. They either offer va-
rious preprocessing-query-space tradeoffs, like Reach, Lookup (PHAST), Arc Flags, etc. Or have
a context dependent motivation, like Customizable Contraction Hierarchies (CCH), Contraction
Hierarchy, Arc flagS and highway nodE (CHASE), Pruned Landmark Labelling PLL, etc. Several
shortest path survey explain these methods in details, see [21, 91].

Performance in practice In order to evaluate the main query-accelerating methods, a detailed
experiment has been conducted by Bast et al. [21]. As shown in Table 1.1, for the Western Europe
road network, with up to 18.106 vertices and 42.106 arcs, Dijkstra’s algorithm running time was in
average between 1 and 2 seconds, while the ALT-like methods query time achieved a running time
between 20 and 50 (ms) for 5 to 30 (min) preprocessing time. Moreover, CH query time achieved
5 to 20 (µs) for 10 to 30 (min) preprocessing time. On the extreme case, the hub-labelling methods
could achieve a query running time of 0.4 (µs) for up to 2 hours of preprocessing time (with about
20 GiB of memory consumption).

Algorithm Preprocessing time Query time Memory consumption (GiB)
Dijkstra 0 2.2 (s) 0.4

CH 5 mns 0.1 (ms) 0.4
HL 2 (hrs) 0.4 (µs) 20

Table 1.1 – Practical performance on average of some shortest path algorithms on Western Europe
network (n ≈ 18.106 and m ≈ 42.106) [21]

To sum up, one can compute a shortest path from one vertex to another in milliseconds or
less, even at continental scale graphs. Today’s researches aims at finding better trade-offs between
preprocessing effort, space requirements and query time, by designing special variants of these
methods (like customization for CH [47] and skeleton dimension for HL [80]).

19

20 CHAPITRE 1 — Introduction

Figure 1.4 – Three alternative paths from Nice to Strasbourg

1.3.3 Multicriteria shortest paths

In various scenarios, the choice of a best path does not depend only on a single criterion. In a
transportation context, for example, one may like to optimize the traveling distance, the travelling
time, the tolls payments, etc. (Figure 1.4). In this case, the graph model could be updated to
be a multi-labelled graph. That is, several length functions are associated to the arcs. Formally,
we define `1, `2, · · · , `α length functions where `i : A → R+ for 0 ≤ i ≤ α (we suppose
there is α criteria). Following the single-criteria path length definition, the length of the path with
respect to the ith criteria is the sum of the length of its arcs `i(P) =

∑
0≤j≤r `i(vj , vj+1), for

P = (v0, · · · , vr).
The Resource Constraint Shortest Path (RCSP) problem takes as input a directed multi-labelled

graph with length functions `1, · · · , `α, with constants C1, · · · , Cα, two vertices s and t, and asks
whether there is an s-t path P s.t. `i(P) ≤ Ci for 0 ≤ i ≤ α.

The Resource Constraint Shortest Path problem is known to be NP-complete [77]. However,
there exists a pseudo-polynomial time algorithm solving it. Moreover, various linear programming
models, heuristics, and approximations were studied. See [69, 72] for details.

1.4 The k shortest (simple) paths problem

1.4.1 Motivations

In various shortest path applications, proposing a single path may not be enough, as it might
be blocked, not satisfying some properties or not meeting the desire of diversity. This may be
illustrated in a transportation context, where a user likes to choose the itinerary he likes among
those proposed by the GPS. For this, the k shortest path problem (kSP) is defined and studied.
That is, the problem of finding a shortest path from a source s to a destination t, a second-shortest

20

1.4 – The k shortest (simple) paths problem 21

s-t path, etc. until a kth shortest path. Several versions of this problem are defined and studied in
the literature.

Apart from its diverse applications in transportation routing [67, 76, 124], the k shortest
(simple) paths is also used as a building block in other important problems. For instance, it is
successfully used for the (0,1)-knapsack problem [125], natural language processing and speech
recognition [24, 30, 31, 36, 108, 114]. Viterbi decoding technique for Markov model [96].
Also, it is used in different areas like biological sequence alignment [26, 94, 120], gene re-
gulation networks [112], reconstruction of metabolic pathways [17], telecommunications net-
works [18, 117] and scheduling [48, 71], as well as in subroutines for several operational research
problems [74, 58, 39, 29]. See Eppstein’s recent comprehensive survey on k-best enumeration for
more applications [51].

1.4.2 The k shortest paths kSP problem

In this section, we define formally the k shortest path problem, then we briefly describe two
main algorithms solving it.

Definition The k shortest path problem (kSP) takes as input a directed weighted graph with
positive length function `, two vertices s and t, and asks to find a set S of k pairwise different
paths from s to t such that no path outside S has a length strictly less than a path in S. Formally,
S = {P1, P2, · · · , Pk} such that, for 1 ≤ i ≤ k, Pi is an s-t path and `(Pi) ≤ `(P) for every s-t
path P /∈ S.

Eppstein’s algorithm The original version of the k shortest paths can be solved by Eppstein’s
algorithm [50] in O(m + n logn + k) time complexity. That is, only O(k) plus the time needed
to compute a single shortest path from a source to the remaining vertices. Note that, Eppstein’s
algorithm (1997) output only a description of the k shortest paths, i.e, a data structure allowing to
extract k shortest paths in linear time each. In other words, one can use Eppstein’s algorithm to
extract k shortest paths in O(m+ n logn+ kn).

Eppstein’s algorithm starts by computing a shortest path out-branching T rooted at t, i.e, an
all-to-one shortest path query, together with a shortest s-t path P . Then, each arc tailing at P (each
arc with a tail in P) and not in T is called a sidetrack. Each sidetrack sequence (a1, a2, · · · , aα)
encodes the path starting at s, following P until the tail of a1, taking a1, then following T from the
head of a1 until reaching the tail of a2, etc. until the head of aα, then following T until reaching t.
Each sidetrack a = (u, v) is associated with a corresponding residual length δ, that is, the length
of deviating from T via a. Formally, δ(a) = `(u, v) + `(P Tvt)− `(P Tut).

Clearly, a second-shortest path is a path encoded by a sidetrack a1 = (u1, v1) with minimum
residual length. Similarly, a third-shortest path is the shorter path among the path encoded by a
sidetrack a2 tailing at P (different from a1), and a path encoded by a1, a

′
2 where a′2 is a sidetrack

with minimum residual length among the extensions of a1, i.e, the sidetracks tailing at P Tv1t.
In [50], Eppstein designed a heap of sidetrack sequences, where each element represents a

sequence of sidetrack encoding an s-t path with the length of the corresponding path as a key.
Eppstein shows that this designed heap allows to extract the k minimum element only inO(k) time
(for a constant k). Therefore, one can extract k sequences of sidetracks with minimum associative
residual length in O(k) time. That is, a data structure allowing to extract, in linear time, each of
the k shortest s-t paths.

21

22 CHAPITRE 1 — Introduction

Eppstein’s algorithm takes O(m + n logn) time to compute a shortest path out-branching
rooted at t, andO(n) time to build and extract the element from the heap. That is,O(m+n logn+
k) time to find the k shortest paths. An additional time of O(kn) is needed to extract the paths
themselves.

Few years later, Jiménez and Marzal proposed a lazy version of Eppstein’s algorithm [75]
allowing to speed it up in practice while preserving the same worst case time complexity.

Hub labelling for the kSP Recently, Akiba et al. [4] show how to adapt one of the hub labelling
methods to answer k shortest paths query from a source to a destination. Similarly to the hub
labelling methods, the algorithm of Akiba et al. computes and stores, for each vertex u and its
labels L(u), data related to the k shortest paths from u to each vertex in L(u).

Precisely, Akiba et al. algorithm computes with a modified BFS or Dijkstra (called top-k BFS
/ top-k Dijkstra), for each vertex u, a Distance Label L(u), that is, for each v in L(u), it computes
and store a set of α shortest u-v paths for 1 ≤ α ≤ k. Then, it computes a Loop Label C(v),
constituting a sequence of k cycles containing v. Therefore, an Index of the algorithm is a pair
I = (L,C).

A kSP query algorithm to find k shortest s-t paths computes the k smallest concatenations
of labels of s, self loops (cycles), and labels of t. Precisely, let ∆(I, s, t) = {δsv + δvv + δvt |
(v, δsv) ∈ L(s), δvv ∈ C(v), (v, δvt) ∈ L(t)}. That is, we first move from s to v, then loop back
to v several times, and finally move from v to t. Then, a set of k shortest s-t paths is a set of k
smallest elements in ∆(I, s, t).

Akiba et al. also show by conducting experiments on large graphs (complex networks) of mil-
lions of vertices and tens of millions of edges that their algorithm, with a reasonable preprocessing
time (less than one hour), can answer kSP queries in few microseconds, that is, up to six orders of
magnitude faster than Eppstein’s algorithm.

1.4.3 The k shortest simple paths problem (kSSP)

In various applications (typically in transportation contexts), we are rather interested in simple
paths (paths that does not visit a vertex more than once). The k shortest simple paths problem
is a special version of the kSP where output paths are required to be simple. This variant of the
problem was first introduced by Clark et al. [37] (1963) while the first algorithm solving it has been
proposed by Yen [126] in 1971 and has a worst-case time complexity in O(kn(m+n logn)), that
is the best theoretical complexity bound to solve the kSSP so far. Recently, Vassilevska Williams
and Williams [118] show that a subcubic kSSP algorithm would also result in a subcubic algorithm
for APSP (All Pairs Shortest Paths), which seems unlikely at the moment.

Baseline solution A baseline solution to find k shortest simple path is to adapt, naively, Epp-
stein’s algorithm to extract only simple paths, i.e, run Eppstein’s algorithm on the input digraph to
extract k′ > k shortest paths, then select the simple paths among them.

Unfortunately, this approach is unpractical. First, this algorithm is not polynomial, as shown in
Figure 1.5, the number of paths that are shorter than the k shortest simple paths can be arbitrarily
large, i.e, not bounded by the size of the input. Second, such scenario is very usual in practice
(in transportation context, a roundabout can form such cycle). So, apart from the fact that this
algorithm is not polynomial, it won’t be a practical heuristic as its running time will be too long.

22

1.4 – The k shortest (simple) paths problem 23

s tu

vw

1 11

1
1

100000

Figure 1.5 – A second-shortest s-t path is (suvwut), a third-shortest path is (suvwuvwut) etc.

Moreover, this method is too memory consuming [104] as using Eppstein’s algorithm require
storing in the memory a description of all the k′ paths.

Yen’s algorithm In 1971, Yen proposed the first algorithm designed to solve the k shortest
simple path problem. The intuition of Yen’s algorithm is the following, it starts by computing a
shortest s-t path. Then, it computes “shortest simple detours” (described below) of the shortest
path in order to pick a smallest detour among them, that is, a second-shortest path. Then, it ap-
plies almost the same routine on the chosen second-shortest path in order to find a third-shortest
path, etc. until finding a kth shortest path. Precisely, Yen’s algorithm (and most of the Yen-Based
algorithms) apply the following routine :

1. Compute a shortest s-t path and add it to a set Candidates

2. For i = 1, · · · , k :

3. Extract a path P with minimum length from Candidates and add it to the output

4. Compute the shortest simple detours of P and add them to Candidates

A shortest (simple) detour of an s-t path P on a vertex v is a shortest (simple) path deviating
from P at v, i.e, a path Q.Q′ where Q is the subpath starting with s and ending with v in P and
Q′ is a shortest v-t path such that the second vertex in Q′ is different than the vertex right after
v in P . Each shortest simple detour of P at v can be computed by a v-t shortest path query after
removing some vertices and arcs of the input digraph. Similarly, the shortest simple detours of an
s-t path P is the set of simple shortest simple detour of P at each of its vertices.

Yen’s algorithm uses Dijkstra’s algorithm to compute each shortest simple detour, each of these
calls is done independetly from the others. As the number of vertices of an s-t path is bounded
by O(n), Yen’s algorithm takes O(n(m + n logn)) per path, i.e, O(kn(m + n logn)) to find k
shortest simple paths.

Note that, the most expensive part (in terms of practical running time) in Yen’s algorithm is
the phase of computing the shortest simple detours.

From an algorithm engineering perspective, several works have been proposed to improve
the efficiency of the algorithm in practice [67, 79, 111, 70, 59, 54, 83, 82] ; they all feature the
same worst-case running time as Yen’s algorithm i.e,O(kn(m+n logn)). All of these algorithms
(except the Sidetrack-Based, SB, algorithm [83]) are Yen-Based algorithms, i.e, they only differ on
how they compute the shortest simple detours. In what follows, we present two of these methods
and their practical performances.

23

24 CHAPITRE 1 — Introduction

Node Classification (NC) algorithm In 2014, Feng [54] ∗ proposed a new kSSP algorithm cal-
led the Node-Classification (NC) algorithm. The NC algorithm starts by computing a shortest
path in-branching T rooted at t, and uses T to extract a first shortest path. Then, in contrast with
Yen’s algorithm where shortest simple detours are computed independently of each others. The
NC algorithm classifies (with the help of T) at each shortest simple detour computation, the nodes
(vertices) of the digraph into three parts :

— Red (forbidden vertices) : The removed vertices in Yen’s algorithm,
— Green (bypass vertices) : Vertices reaching t via T without passing through a Red vertex,
— Yellow (scan-vertices) : All the remaining vertices.
So, the NC algorithm restricts the search space of Dijkstra’s call to the scan-vertices, i.e, the

Yellow area, which is, in practice, considerably smaller than the whole digraph. Feng showed,
experimentally on several real networks, that the NC algorithm outperforms all of preceding kSSP
algorithms. Another advantage of the NC algorithm is its low memory consumption in practice,
as it save only a single SP in-branching in the memory (and the candidate paths †). In fact, the NC
algorithm is, so far, the fastest kSSP algorithm with low memory consumption in practice.

Sidetrack Based (SB) algorithm Recently, Kurz and Mutzel [83, 82] proposed the Sidetrack
Based (SB) algorithm. In contrast with other kSSP algorithms, the SB is not a Yen-based algo-
rithm. Actually, the SB algorithm can be seen as the first non-obvious and polynomial time adap-
tation of Eppstein’s kSP algorithm to extract only simple paths. We will start by describing a data
structure representing a path in the SB algorithm, then we will briefly describe the SB algorithm.

The SB algorithm uses a data structure generalizing the representation of a path proposed by
Eppstein [50]. Such compact representation uses sequences of shortest path in-branchings rooted
at t, T0, T1, · · · , Th and sidetracks a0, a1, · · · , ah (this time, a sidetrack of a path P is any arc not
in P but tailing at P).

Precisely, the sequence ε = (T0, a0, T1, a1, · · · , Th, ah, Th+1) with ai = viwi for all 0 ≤ i ≤
h, represents the path P starting at s, following T0 until the tail v0 of a0, then the sidetrack a0,
then T1 from the head w0 of a0 until it reaches the tail v1 of a1, etc. until it reaches the head
wh of ah, plus (possibly) the path from wh to t in Th+1. That is, P is the sequence of vertices
of the paths P T0

sv0 , P
T1
w0v1 , · · · , P

Th
wh−1vh followed by the vertices of P Th+1

wht
if this latter path exists.

Note that, two consecutive shortest path in-branchings Ti and Ti+1 are not necessarily distinct (see
Figure 1.10 for example).

The SB algorithm also uses a set Candidates to manage candidate paths that are encoded
using the above data structure. Sequentially, it extracts a shortest element ε from Candidates. If ε
represents a simple path, this path is added to the output and the representations of its shortest, but
not necessarily simple, detours (that will be found using the last in-branching in the representation
of ε) are added to Candidates. Otherwise, the SB algorithm attempts to modify ε by instantiating
its last in-branching. If this computation leads to a representation of a simple path, then it is added
to Candidates. Otherwise, ε is discarded. The SB algorithm goes on iteratively until k paths are
found. The initialization consists in computing a first shortest path in-branching T0 rooted at t inD
(using Dijkstra’s algorithm) and so a shortest s-t (simple) path P T0

st and adding its representation
to Candidates.

∗. Even though it is called Feng’s algorithm in the literature [83, 82], almost the same algorithm is proposed by Gao
et al. [59]
†. A path among the candidate paths does not exceed 1000 vertices in practice and saving the candidate paths is not

an issue

24

1.4 – The k shortest (simple) paths problem 25

Figure 1.6 – A graph G
Figure 1.7 – An SP in-branching T0 ofG rooted
at t

Figure 1.8 – T0
Figure 1.9 – An SP in-branching T1 of G \
{s, v1} rooted at t

Figure 1.10 – An exemple of a path representation in the SB algorithm, the path P =
{s, v3, v1, v2, v3, v4, v2, t} can be represented as (T0, e1, T0, e2, T1), note that P is not simple.

Note that, for each element ε = (T0, a0, T1, a1, · · · , Th, ah, Th+1), a set of its corresponding
shortest path in-branchings (up to h+1 in-branching if they are all distinct) is stored in the memory,
and this may became hard to manage for large graphs and requested number k of paths. In other
words, a main drawback of the SB algorithm is its large memory consumption.

Kurz and Mutzel proved that their SB algorithm has the same complexity bound of Yen’s
algorithm, that isO(kn(m+n logn)). Moreover, the SB algorithm is much faster than the previous
algorithms in practice.

To conclude, the fastest known algorithm with low working memory consumption (i.e, the
same working memory as Yen’s algorithm) is the Node Classification (NC) algorithm, proposed
independently by [54] and [59]. With larger memory consumption, the Sidetrack Based algorithm
(SB) [83] can achieve an impressive speed up. For instance, the SB algorithm computes k = 1000
shortest paths in 50 ms for the DC network [44] while it required about 5 s with Yen’s algorithm
and about 0.3 s by NC algorithm.

1.4.4 On arbitrarily weighted graphs

The problem of finding a shortest path from a source to a destination in an arbitrary weighted
digraph has concrete applications, as negative arc lengths arise in several applications, typically in
network survivability, in arbitrage problems in foreign exchange markets, in job scheduling with
deadlines and so on [28, 109]. Similarly to digraphs with positive arc lengths, a single shortest
path may not be satisfying for the same reasons. Despite the fact that the problem of computing a
shortest path in an arbitrary weighted digraph has been intensively studied [106, 42, 40, 73, 115,
61], and the extensive number of researches tackling the kSP on positively weighted digraphs, we
are not aware of any study on arbitrarily weighted digraphs, not even on digraphs with no negative
cycles, dedicated directly to the kSP or kSSP. Finding a shortest s-t path in arbitrarily weighted

25

26 CHAPITRE 1 — Introduction

digraph (known as shortest elementary path problem SEP) is NP-complete, and polynomial if the
digraph has no negative cycles. So, solving the kSP or the kSSP seems to be more difficult on such
digraphs.

1.4.5 Contributions

Here, we describe the contributions of this thesis, related to the k shortest paths problem. The
details of these contributions are presented in Chapter 2.

On positively weighted digraphs We propose a new algorithm with low working memory
consumption, called Postponed Node Classification (PNC), that is faster, in practice, than the NC
algorithm while preserving the same working memory. Our experimental results show that the
PNC algorithm is the fastest, in practice, kSSP algorithm with low working memory among all
considered algorithms. Furthermore, it competes with the algorithms with large memory consump-
tion on road networks.

Considering large working memory, we show how to speed up the SB algorithm using dyna-
mic updates of shortest path trees resulting with the SB* algorithm, that is, in practice on road
networks, the fastest kSSP algorithm (on median) with large memory consumption among the
considered algorithms. Moreover, we propose a new algorithm called Parsimonious Sidetrack
Based (PSB), that is based on the SB algorithm. The PSB algorithm gives, on road network, a
space-time trade off between SB and NC algorithms. That is, it enables to significantly reduce the
working memory of SB at the cost of an increase of the running time. Nonetheless, on complex
networks, the PSB algorithm gives the best running time among all the considered algorithms.

We further propose parameterized variants of PSB (called PSB-v2 and PSB-v3) that improve
its performances, both in terms of working memory consumption and of running time, on road
networks.

We analyze the behavior of all the aforementioned algorithms on different types of networks
(road, biological, Internet and social networks). We have also investigated the relationships bet-
ween the performances of the algorithms and some properties of the queries, such as the number
of hops and the stretch from the center. Finally, we end up with a first empirical framework for
selecting the most suitable kSSP algorithm for a given use case.

On arbitrarily weighted digraphs Also, we have studied the problem of finding k shortest
simple paths from a source to a destination in arbitrary weighted digraphs. We first prove that
the classical framework of Yen remains valid on arbitrarily weighted digraphs. Precisely, Yen’s
algorithm remains valid after replacing the shortest path algorithm used in Yen’s algorithm, i.e,
Dijkstra’s, by any other exact shortest path algorithm able to compute a shortest simple path in
arbitrary weighted digraphs. This leads to several improvements.

Considering arbitrary weighted digraphs with no negative cycles, the kSSP can be solved
naively by replacing Dijkstra’s algorithm by Bellman-Ford-Moore’s algorithm. This gives a poly-
nomial time algorithm, referred to as Y-BFM, with time complexity in O(kn2m). Furthermore,
we show how to use shortest path tree update [90] in order to improve the time complexity to
O(kn(m + n logn)), which is surprisingly, equal to the complexity of Yen’s algorithm. Moreo-
ver, we propose a new algorithm, called Postponed Yen (PY-BFM), that is, more than one order
of magnitude faster than the Y-BFM algorithm in practice. Finally, we design a special variant of
PY-BFM called PY-BFM* that is, up to twice as fast as PY-BFM.

26

1.5 – The k (shortest) dissimilar paths problem 27

In contrast to the previous context, the problem of finding a shortest simple path on arbitrary
weighted digraphs (with negative cycles), also called shortest elementary path (SEP) [92], is NP-
complete as it can be reduced to the Hamiltonian path problem. However, as we are also interested
in efficient solutions, we give several initiatives to solve the problem. This is done by proposing
several mixed integer linear programming (MIP) models.

1.5 The k (shortest) dissimilar paths problem

Motivation A major drawback of the kSSP is that, in practice, the k shortest paths are somehow
“similar”. As shown in Figure 1.11, solving naively the k shortest simple path may lead to very
similar paths, that are the same from a user’s perspective. For instance, except in the case of a car
accident or a demonstration, no one is usually interested in taking tiny local detours of a path.

Figure 1.11 – Six shortest paths from a source to a destination in a road network.

State of the art The similarity between two paths can be measured according to the proportion of
arcs they share and the problem of computing “dissimilar” (shortest) paths has been investigated.

The first related study, we are aware of, is proposed by Erkut and Verter [53], motivated by
the transportation of hazardous materials where it is recommended to avoid residential areas and
crowded routes. In [53], Erkut and Verter introduced several definitions of the similarity between
two paths (including the Jaccard and the Max measures also studied later in [34]). Few years
later, Akgün et al. [3] proposed and analysed the first basic solution, consisting in computing a
huge set of shortest paths and then selecting a subset of paths that are mutually dissimilar (for
one of the similarity measures defined in [53]). In their experiments, this method scaled only on
small transportation networks (about 300 vertices). The first scalable solutions were proposed by
Abraham et al. [1] where a shortest path P is fixed, and “locally shortest” paths with limited
intersection with P are requested (this corresponds to the Asymmetric measure defined below).
However, except for the initial path P , this definition does not guaranty any mutual dissimilarity
between the computed paths. A noticeable heuristic proposed in [1] is the penalty based approach.
This heuristic adds a penalty on the arcs of the already chosen paths in order to limit the chances
of falling back on them again.

Several recent studies by Chondrogiannis et al. (see [35]) offer both theoretical and empirical
study of the problem of finding k shortest dissimilar paths. First, they formally proved that finding
k shortest dissimilar paths is weakly NP-complete for both the Asymmetric measure and a new
dissimilarity measure that they define (referred to as Min measure below). For these two mea-
sures, they proposed an exact pseudo polynomial time algorithm with several pruning techniques
enabling to find 4 dissimilar paths in the road network of Rome (3,000 vertices) in less than one

27

28 CHAPITRE 1 — Introduction

second. They also proposed advanced heuristics enabling to scale on a road networks with one
million vertices and two millions arcs while achieving acceptable paths “quality”.

As shown in Table 1.5, each of the considered similarity measures, and those of the state of
the art that we are aware of [53, 3, 35], are a function between zero and one indicating how much
two given paths are similar. All of them are a ratio between the length of the common arcs over
the length of one of the two paths or their union. Each of these measures has it own advantage. For
instance, Min and Asymmetric measures are interesting in transportation scenarios, especially in
the process of finding shortest paths. However, the Jaccard measure give a natural and well known
set similarity measure. Finally, the Max measure gives a restricted and constrained measure.

Contributions In Chapter 3 of the thesis, we further study the computational complexity of
computing (shortest) dissimilar paths for four of the main measures. More formally, let P, P ′ be
two paths of D and let X =

∑
e∈A(P)∩A(P ′) `(e). The four considered measures are defined as

follows.

s a b c

d e

t

Figure 1.12 – Two s-t paths, Q = (s, a, b, c, t) (dotted) and Q′ = (s, d, a, b, e, c, t) (thick). Every
arcs have length 1.

Name (Z) Jaccard [53] Asymmetric [1] Min [34] Max [53]

SZ(P, P ′) = X
`(P∪P ′)

X
`(P)

X
Min{`(P),`(P ′)}

X
Max{`(P),`(P ′)}

[Fig.1.12] SZ(Q,Q′)= 0.25 0.5 0.5 0.33

Let S = {Asymmetric, Jaccard,Min,Max}. Given one of the similarity measures Z ∈ S
and a threshold 0 ≤ θ ≤ 1, two paths P and P ′ are said θ-dissimilar (or P ′ is said θ-dissimilar to
P in the case of asymmetrical measure) for a measure Z if SZ(P, P ′) ≤ θ.

In this thesis, we study the problem of finding k shortest pairwise dissimilar paths. We give a
unified and simple proof of the NP-completeness of this problem for each of the four similarity
measures defined above.

Nevertheless, in many practical scenarios, a part of the solution is generally already given
or it can be easily determined. For instance, a first path i.e, a shortest path can be computed in
polynomial time, an alternative path could be an earliest arrival path, etc. Therefore, a natural
question is whether one can find a (shortest) path dissimilar to a set of given paths.

We study the problem from this perspective. More precisely, we show that if only one path
P is initially given, computing a second path that is dissimilar to P for the Asymmetric measure
can be done in polynomial time while it is NP-complete for the remaining measures (Min, Max
and Jaccard). Moreover, we prove that finding a path dissimilar (for each of the considered four
measures) to a given set of k ≥ 2 paths is NP-complete on DAGs. Finally, for each of these
four measures, we show that computing a shortest path among those dissimilar to a given path is
NP-complete on DAGs.

28

1.6 – The k earliest arrival time journeys in public transit networks 29

Finally, we propose an alternative pseudo polynomial time algorithm allowing to find k shor-
test dissimilar paths for the Asymmetric and the Min measures. Our alternative algorithm has the
advantage to work on arbitrarily weighted graph with no negative cycles.

1.6 The k earliest arrival time journeys in public transit networks

As mentioned before, a road network can easily be modeled as a weighted digraph, and finding
k “best” (shortest, fastest or cheapest) paths from a given origin to a given destination in a road
network is straightforward using any kSSP algorithm. Unfortunately, this problem becomes harder
in public transit networks (also referred to as a transportation network, a multimodal network or a
timetable). First, because public transit networks are time dependent, i.e., certain segments of the
network can only be traversed at specific times. Second, several additional optimization criteria
are considered in public transit network such as the arrival time, the departure time, the number of
transfers, etc. In this section, we present the state of the art of journey planning in public transit
networks, and our adaptation of the k shortest path problem and some of its algorithms to such
context.

1.6.1 Public Transit models

In this section, we review three main models and several variants of the shortest path problem
in these public transit models.

Time-expended model The main idea of the time-expanded model is to build a space-time graph
(often also called an event graph) that encodes time. Roughly, suppose there is T time slots (during
a day), a time-expended model creates T copies of the station-connections graph, where each copy
Gt correspond to the timetable at a time slot t for t ∈ [0;T]. Moreover, for each t ≤ t′ ≤ T , each
vertex ut of Gt is connected to each ut′ and each vertex vt′ if there is an elementary connection
(defined below) from u to v starting at t and ending at t′. For example, suppose there are two
stops u and v with an elementary connection starting from u at 9h00 and reaching v at 9h05, the
Time-expended model creates two copies u9h00, v9h00 and u9h05, v9h05 with an arc (u9h00, v9h05)
(the possibility to take the connection), and an arc (u9h00, u9h05) (waiting at the same stop).

Time dependent model The main disadvantage of the time-expanded model is that making T
copies (for a time interval T) of the network results with a large graph. Besides, an alternative
model called the time-dependent approach can be used to result with smaller graphs. In a time-
dependent model, vertices correspond to stops (bus stops for instance), and an arc is added from a
vertex u to another v if there is at least one elementary connection serving the corresponding stops.
In other words, departure and arrival times are encoded by the travel time function associated with
the arc (u, v). For example, two stops u and v with three elementary connections between them (at
9h00− 9h05, 9h10− 9h15 and 9h30− 9h40) are connected by three arcs, each of them labelled
with its departure and arrival time.

It is worth mentioning that an alternative model called a Frequency-Based Model is proposed
by Bast and Storandt [22]. This model exploits the fact that in real-world timetables trips often
operate according to specific frequencies at times of the day. For instance, a bus may run every 5

29

30 CHAPITRE 1 — Introduction

minutes during rush hour, and every 10 minutes otherwise, etc. This model can be seen as a time-
dependent model with an extra advantage of compacting the data structure encoding the whole set
of connections into a basic function of time intervals and frequencies. For example, two stations
u and v with an an elementary connection between them passing each 5 mns from 9h00 to 19h00
can be modeled by a single arc from u to v labelled with (f = 5mns, T = 9h00− > 19h00).

Multimodal A multimodal network combine time-constrained means of transport (bus, metro
etc.) and unconstrained one (walking, bike, etc.), i.e., static graphs. Pajor [98] discusses how to mo-
del the union of these two types of networks in order to adapt the existing algorithms to such case.
Similarly, Phan and Viennot [100] presented an example of how connections between vertices can
be found in an underlying static graph during the exploration of a temporal graph, typically for
unrestricted walking journey planning.

In this thesis, we only consider time-dependent models, which are not necessarily frequency-
based.

A timetable (or public transit network) represents for one specific day the vehicles that exist
(train, bus, tram, ferry, ...), when they travel, where they travel and how a passenger can go from
one vehicle to another.

Formally, a timetable is a quadruple T = (S, T, C, F) of stops S, trips T , connections C and
footpaths F :

— A stop is a position outside a vehicle where a passenger can wait. At a stop (and only at a
stop) a vehicle can halt and passengers can leave or get on.

— A trip is defined by a vehicle going through stops at fixed times. Precisely, a trip is a
scheduled vehicle, i.e, a journey done by a unique vehicle from a starting stop to a last stop
at a fixed time.

— A connection is a vehicle going from one stop to another with no intermediate stops.
— A footpath is used to model a transfer, i.e, how to get from one vehicle to another.
A journey is a sequence of trips one can take within a transit network.

1.6.2 Problem Variants

In contrast to road networks where it is focused on computing a shortest path according to a
single length function (distance, travel-time, etc.), there are various variants of this problem for
public transit networks.

As mentioned in [21], the earliest arrival problem is the simplest variant. That is, given a
source stop o, a target stop d, and a departure time t0. It asks to find a journey departing from o
after t0 and reaching d as soon as possible. Similarly, the latest departure problem takes an arrival
time tmax and asks to find a journey from o, reaching d before tmax and departing as late as
possible. A related variant is the profile (or range) problem, which replaces the departure time by
a time range [t0, tmax] (a whole day, for instance), and asks to find a set of journeys of minimum
travel time that depart within that range. In other words, it asks to find a set of Pareto optimal
solutions between the earliest arrival time (after t0) and the latest departure time (before tmax).
Note that, other criteria may be considered, as the number of transfers or the cost of the journey,
this leads to the multicriteria problem.

30

1.6 – The k earliest arrival time journeys in public transit networks 31

1.6.3 Earliest arrival journey planning

Journeys planning in (schedule-based) public transit networks and accelerating queries for
efficient journey planning is a long-standing problem [21]. In the last decade, many algorithms
have been developed to answer efficiently basic queries like an earliest arrival journey, and to
optimize additional criteria like the number of transfers, the cost of the trip, etc. or even to offer
Pareto optimal solutions combining several criteria [21, 43, 46].

Plethora of algorithms were proposed to efficiently answer queries of optimal journeys from
a given origin o to a given destination d after a departure time t0 in a public transit network. For
instance, the Connection Scan Algorithm (CSA) [46] is the fastest known algorithm, without any
preprocessing routine, enabling to find an earliest arrival journey from o to d departing after a
departure time t0, i.e., finding an earliest arrival time journey. With the help of a heavy preproces-
sing routine, the Transfer Patterns algorithm [20] can achieve a tremendous speed up with respect
to the CSA. Besides, Round Based Public Transit Routing (RAPTOR) [43] is the fastest known
algorithm (also without any preprocessing routine) enabling to compute a Pareto optimal set of
journeys optimizing the arrival time and the number of transfers of a journey. Recently, Bast et
al. [21] presented an extensive survey on the topic of journey planning in road and public transit
networks.

Connection Scan Algorithm Similarly to Dijkstra’s algorithm, the CSA stores an earliest arrival
time for each stop in an array. A connection c is considered reachable if a passenger can sit in the
public transit vehicle of the connection, i.e, a traveler starting from the origin stop o, can reach the
departure stop of c before its departure time (the departure time of c). However, the main difference
between Dijkstra’s algorithm and the CSA is the fact that the CSA does not use a priority queue.
Instead, the CSA iterates over all the connections sorted by their departure time (the same ordering
is used for all queries). The CSA checks whether a connection is reachable or not. If so, it improves
the arrival time at the arrival stop of the connection. Once all the connections have been scanned,
the earliest arrival time to a stop is the current arrival time stored for the stop. The main advantage
of avoiding the use of a priority queue is that, while more connections are scanned, the amount
of work per connections is significantly reduced. This is why the CSA is significantly faster than
Dijkstra’s algorithm in this context [46].

Profile Connection Scan Algorithm The result of the Profile Connection Scan Algorithm
(PCSA) is a mapping between a departure time from a departure stop onto the earliest arrival time
at the arrival stop. In other words, the profile problem solves simultaneously the earliest arrival
problem for all departure times.

Compared with the CSA, the PCSA iterates on the connections sorted decreasingly by de-
parture time, which leads to the fact that it solves the all-to-one problem. The PCSA constructs
journeys from late to early and exploits the fact that an early journey can only have later journeys
as subjourneys. It has been reported in [46] that the PCSA is one order of magnitude slower than
the CSA, which is acceptable considering the fact that it solves the all-to-one problem.

RAPTOR The Round Based Public Transit Routing (RAPTOR) algorithm [43] is based on dy-
namic programming. Precisely, it computes the travel times from the source to any vertex of the
graph using a single mean of transport, then, with the help of this solution it computes the travel
time to any vertex using at most two means of transport, etc. until it finds the travel time from the

31

32 CHAPITRE 1 — Introduction

source to the remaining vertices using at most k means of transport (such that, the travel times
are the same as those of the k − 1th iteration. As discussed in [21], RAPTOR is one of the most
efficient algorithm without preprocessing.

1.6.4 k earliest arrival journeys query algorithms

Despite the extensive research on finding optimal journeys in public transit networks, we are
aware of only two initiatives of finding k optimal journeys in such context. Precisley, there is two
known papers where the problem of finding k shortest (or fastest) arrival time jouneys in public
transit networks is studied and concrete algorithms were proposed.

First, Vo et al. [119] proposed a time dependent graph modeling a bus network. Then, they
adapt Yen’s algorithm to find alternative journeys in this network model. Precisely, they select a
set of alternative journeys (journeys sharing only a limited part of their common edges) among
those given by Yen’s adaptation.

As shown above, Yen’s algorithm uses Dijkstra’s algorithm as a basic brick to compute shortest
detours of a given path. Analogously, Vo et al. [119] used a standard time-dependent shortest path
(TDSP) algorithm [107] to compute earliest detours of a journey in a bus network. They evaluated
their method on a single network of around 4 000 stops and 8 000 connections, resulting in an
average running time of around 1 second to find 5 journeys.

On the other hand, Scano et al. [104] proposed a labelled directed graph modeling a trans-
portation network where a label is an object composed of the transportation mode (foot, car, bus,
etc.) and a travel time. This model merges a road and a public transport network together. Then,
it is shown how the k shortest path algorithms can be adapted for this model. Specifically, they
adapted Yen’s and Eppstein’s algorithm to work on their model. In both algorithms, a Dijkstra-
like algorithm called Dijkstra Regular Language Constraint (DRegLC) [19] is used to answer
earliest arrival journeys queries. Moreover, an Iterative Enumeration Algorithm (IEA) is proposed
to extract only simple journeys using Eppstein’s algorithm. i.e, using Eppstein’s k shortest paths
algorithm as an iterator and then selecting the simple corresponding journeys (a journey is simple
if it does not visit a stop more than once).

Experimentally, Scano et al. showed that their IEA is faster than Yen’s straightforward adap-
tation on the transportation network of Toulouse (75 000 nodes, 500 000 road edges and 43 000
public transport edges). On this network, the average running time of Yen’s adaptation to find 100
journeys is 250 seconds while it is 0.6 seconds using their refined IEA. However, IEA is not a
polynomial-time algorithm, and its memory consumption is too high [104]. In addition, using the
labelled directed graph model described in [104] may cause a duplication of the public transit part
in practice, i.e, many journeys given by the algorithms proposed in [104] may only differ on the
foot-path part while sharing the exact same public transit part. This is undesirable in applications
requesting diverse public transit journeys.

Our contribution In this thesis (Chapter 4) ‡, we study the problem of finding k earliest arrival
journeys from a given origin to a given destination in a public transit network. For this purpose, we
use the timetable model of public transit networks, i.e, the well-known common model used in [21,
46, 43]. First, we propose a performant adaptation of Yen’s k shortest simple paths algorithm to

‡. The contributions related to journey planning in multimodal transportation networks are the outcome of collabo-
rations of the ANR-MULTIMOD members, where we manage to exchange the industrial need and afford an appropriate
tool to our industrial partner PME INSTANT-System.

32

1.8 – Techniques used 33

public transit networks (Yen - Public Transit, Y-PT algorithm). In contrast with [104, 119], we use
the Connection Scan Algorithm (CSA) to answer earliest arrival journey queries in our algorithm.

Our main contribution is a novel algorithm, called Postponed Yen’s algorithm for Public Tran-
sit networks (PY-PT). With the help of a lower bound on the arrival time of a detour journey (a
journey that could be one of the k earliest arrival journeys), PY-PT postpones the effective com-
putation of such detour (and so the corresponding earliest arrival journey queries using CSA) with
the aim of skipping it.

Our experimental results on several train and public transit networks show that the running
time of our adaptation of Yen’s algorithm is acceptable in practice. Moreover, on the same dataset,
the PY-PT algorithm performs 10 to 30 times faster than the Y-PT algorithm on average.

1.7 Techniques used

In this section, we describe briefly the technologies and the datasets used in the experiments
conducted during the thesis

k shortest simple paths in a graph In order to evaluate our algorithms and their speed-up
with respect to the state-of-the-art algorithms, we implemented in C++ (using the STL library)
the most performant state-of-the-art kSSP algorithms and our algorithms. We run experiments on
road networks of the 9th DIMAC’s challenge and various complex networks : biological, social
and Internet networks from [89]. In order to evaluate algorithms on negative weighted digraphs, we
conducted experiments on complex networks with negative length functions like cryptocurrency
exchanges and social trust network, and road networks of DIMAC’s challenge with small modifi-
cations, i.e., flipping the sign of the length of some arcs. We made our code publically available
on Gitlab [13].

We have considered the running time and the number of shortest path calls, i.e, Dijkstra’s
algorithm calls for positively weighted digraphs and Bellman-Ford-Moore algorithm for negati-
vely weighted digraphs with no negative cycle. Note that the number of shortest path algorithm
calls is an indication of the running time and the working memory, which is independent of the
implementation and the architecture of the machine.

k earliest arrival time journeys in public transportation networks We have implemented Y-
PT and PY-PT algorithms in Java and we made our code publicly available [16]. We have evaluated
the performances of our k earliest arrival journey algorithms on two train networks (Germany
and Switzerland) and three public transit networks (Paris, Berlin and Stockholm). This dataset is
publicly available (https://transitfeeds.com/).

Similarly to the kSSP algorithms evaluations, we have considered the execution time and the
number of CSA calls. Note that the number of CSA calls is also a machine and implementation
independent indication of the running time.

1.8 Summary of the contributions

The k shortest simple paths problem. This problem has different favors depending on each
context and the considered constraints. In this thesis, we outperform the state-of-the-art algo-
rithms in practice, we study the problem with dissimilarity constraints, and we adapt some of

33

https://transitfeeds.com/

34 CHAPITRE 1 — Introduction

these algorithms to work with public transportation networks. The contribution of this thesis can
be summarized as follows :

— On the k shortest simple paths : First, we study the original k shortest simple path pro-
blem (kSSP). The following initiatives are outlined :
— New kSSP algorithms, outperforming the state-of-the-art algorithms either in the run-

ning time in practice, in the practical space requirement or offer space-time trade-offs.
— Analyze the performance of the considered kSSP algorithms on road and complex

networks in order to conclude the best algorithm for each use case and end up with an
empirical framework.

— Initialization of the study the kSSP on digraph with arbitrarily weighted arcs (possibly
negative), and show how and where some algorithms can be adapted to such case.

Some of these results have been presented at SEA’20 [10], AlgoTel’20 [8] and JGA’20 [7]
(full version submitted to a journal [12]).

— On the k (shortest) dissimilar paths : Second, we study the k shortest dissimilar paths
problem. For four of the most studied measures in the literature, we give a unified and
simple proof of the fact that finding k shortest dissimilar paths is NP-complete. Moreover,
we consider the problem of finding a (shortest) path that is dissimilar to one or more given
paths. This study results with a complexity classification of several variants of the problem
with respect to the similarity measure, the number of the given paths and the optimization
criteria. In addition, we propose an alternative pseudo-polynomial time algorithm allowing
finding k shortest dissimilar paths for two of the considered measures.

These results have been presented at AlgoTel’21 [11] and ROADEF’20 [9] (full version
submitted to a journal [15]).

— On the k earliest arrival journeys : Finally, we study the k earliest arrival path problem
(kEAT) in public transit networks. In contrast with the state of the art, we use a well-
known public transportation network model, and we show how to extend Yen’s algorithm
to public transit networks. Moreover, we propose a more refined algorithm enabling a
considerable speed up in practice.

These results have been obtained in collaboration with Arthur Finkelstein from Instant-
System and are submitted to a conference [6].

We aim, at the end of this thesis, to build an empirical framework allowing to recommend the
best kSSP algorithm to each use case, regarding either various criterion starting from the model
(graph, transportation network), the additional criteria (dissimilarity of the paths), the topology
of the input graph (complex or road network), the length function of the arc (positive, arbitrarily,
arbitrarily weighted with no negative cycles), and the resources’ availability (typically the memory
consumption).

34

1.10 – Overview of the manuscript 35

1.9 Overview of the manuscript

The manuscript is organized as follows. In Chapter 2, first, we explain in details the state-of-
the-art algorithms of the kSSP problem. Then we describe our new algorithm and their evaluations
on road and complex networks. Finally, we show how to adapt these algorithms to arbitrarily
weighted digraphs (with or without negative cycles). Chapter 3 is dedicated to the k (shortest)
dissimilar paths, where the notion of similarity between paths is formally defined and discussion
with respect to each motivation, then we study the complexity of finding (shortest) dissimilar
paths from a source to a destination, for each case and similarity measure. Finally, we describe a
pseudo-polynomial time algorithm allowing to correctly find k shortest dissimilar paths for two
of the given similarity measures. The study of journey planning in public transit is presented
in Chapter 4, where our algorithms for finding the k earliest arrival journeys are proposed and
analyzed on different public transportation and train networks. Finally, in Chapter 5, we conclude
with a generic framework to find k best paths in a network with respect to the type, topology,
length-function of the network, the additive constraints and resources availability of the machine.

1.10 Publications

International Conferences
— A. Al Zoobi, D. Coudert, N. Nisse. Space and time trade-off for the k shortest simple paths

problem. SEA 2020-18th International Symposium on Experimental Algorithms 160 (18),
13, 2020.

— C. Gou, A. Al Zoobi, A. Benoit, M. Faverge, L. Marchal, G. Pichon, P. Ramet, Improving
Mapping for Sparse Direct Solvers, European Conference on Parallel Processing (EuroPar
2020), 167-182, 2020.

National Conferences
— A. Al Zoobi, David Coudert and Nicolas Nisse. De la difficulté de trouver des chemins

dissimilaires, AlgoTel 2021
— A. Al Zoobi, David Coudert and Nicolas Nisse. Compromis espace-temps pour le pro-

blème de k plus courts chemins simples, AlgoTel 2020
— A. Al Zoobi, David Coudert and Nicolas Nisse. On the Top-k Shortest Paths with Dissimi-

larity Constraints (ROADEF 2020)

Submitted
— A. Al Zoobi, D. Coudert, N. Nisse. Finding the k Shortest Simple Paths : Time and Space

trade-offs. (submitted at JEA).
— A. Al Zoobi, D. Coudert, N. Nisse. On the complexity of finding shortest dissimilar paths

in a graph. (submitted at DMTCS).
— A. Al Zoobi, D. Coudert, A. Finkelstein. On finding earliest arrival time journeys in public

transit networks (submitted at ALENEX 2021).

This thesis has been done in the context of ANR project MULTIMOD with the reference
number ANR-17-CE22-0016 and with the financial support of Région Sud PACA.

35

On finding k shortest
simple paths in a graph

The k shortest simple path problem (kSSP) asks to compute a set of top-k shortest simple
paths from a source to a sink in a digraph. Yen (1971) proposed an algorithm with the
best known polynomial time complexity for this problem, that is in O(kn(m+ n logn))
where n is the number of vertices and m the number of edges. Since then, the problem
has been widely studied from an algorithm engineering perspective. The most noticeable
proposals are the node-classification (NC) algorithm (Feng, 2014) and the sidetracks-
based (SB) algorithm (Kurz and Mutzel, 2016). The latest offers the best running time at
the price of a significant working memory.
We first show how to speed up the SB algorithm using dynamic updates of shortest path
trees resulting in a faster algorithm (SB*) with same working memory. We then propose
the parsimonious SB (PSB) algorithm that significantly reduces the working memory
of SB at the cost of a small increase of the running time. Furthermore, we propose the
postponed Yen (PY) algorithm that combines the best of NC and SB. It offers a significant
speed up compared to NC while using the same amount of working memory of NC.
Our experimental results on complex networks show that all of the considered algorithms
have low working memory, and that the PSB algorithm is the fastest. On road networks,
the SB* algorithm is the fastest (on median) among the considered algorithms, but it
suffers from a large working memory. The PNC algorithm has comparable running time
to SB* on road networks while using the same working memory as NC.
We also initiate the study of the kSSP problem on arbitrarily weighted digraphs. First,
we consider digraphs with no negative cycles where we show that the problem can be
solved with the same time complexity as Yen’s algorithm, i.e,O(kn(m+n logn)). Then,
we show how to adapt some of the original kSSP algorithms to work with arbtitrarily
weighted digraphs with no negative cycles. We propose three algorithms, called Yen-
Bellman Ford Moore (Y-BFM), Postponed Yen - Bellmman Ford Moore (PY-BFM) and
Postponed Node Classification - Bellman Ford Moore (PNC-BFM). Our experiments
on road and complex networks (where weights have been arbitrary modified to include
negative weights) show that the PNC-BFM algorithm is between one and two orders
of magnitude faster than Y-BFM in practice. Finally, we propose several Mixed Integer
linear Programming (MIP) models to solve the kSSP on arbitrarily weighted digraphs,
i.e, with and without negative cycles.

37

38 CHAPITRE 2 — On finding k shortest simple paths in a graph

2.1 Introduction . 39
2.2 Preliminaries . 41

2.2.1 Definition and Notation 41
2.2.2 Yen’s algorithm . 42
2.2.3 A Node Classification algorithm 43

2.3 Sidetrack Based (SB) algorithm 44
2.3.1 Compact representation of a path 44
2.3.2 The SB algorithm . 45
2.3.3 The SB* algorithm . 47

2.4 Space - time tradeoffs . 47
2.4.1 The Parsimonious Sidetrack Based algorithm 47
2.4.2 Special variants of PSB . 48

2.5 Postponing the detours’s computation 49
2.6 Experimental evaluation . 51

2.6.1 Experimental settings . 51
2.6.2 Experimental results . 53
2.6.3 Impact of the properties of the queries 59

2.7 On arbitrarily weighted digraphs with no negative cycles 63
2.7.1 Yen-Ball-String (Y-BS) algorithms 64
2.7.2 Adaptation of some kSSP algorithms 65
2.7.3 Experimental evaluation 66

2.8 Arbitrarily weighted digraphs 68
2.8.1 Finding a shortest simple path 69
2.8.2 Compact MIP formulation for kSSP 73
2.8.3 MIP formulation for kSSP with constraints generation . . . 75

2.9 Conclusion . 75

38

2.1 – Introduction 39

2.1 Introduction

The classical k shortest paths problem (kSP) aims at finding a set of top-k shortest paths bet-
ween a pair of source and destination nodes in a directed weighted graph. This problem has nume-
rous applications in various kinds of networks (road and transportation networks, communications
networks, social networks, etc.) and is also used as a building block for solving optimization pro-
blems. Let D = (V,A) be a weighted digraph with a length function ` : A → R+ (or in R
for arbitrarily weighted digraphs), an s-t path is a sequence (s = v0, v1, · · · , vl = t) of vertices
starting with s and ending with t, such that (vi, vi+1) ∈ A for all 0 ≤ i < l. It is called simple if
it has no repeated vertices, i.e., vi 6= vj for all 0 ≤ i < j ≤ l. The length of a path is the sum of
the length of its arcs. A cycle is a path with both its ends adjacent. A negative weighted cycle is a
cycle s.t. the sum of the lengths of its arcs is negative. A top-k shortest paths is a set containing a
shortest s-t path, a second shortest s-t paths, etc. until a kth shortest s-t path.

Several algorithms for solving kSP have been proposed. In particular, Eppstein [50] proposed
an exact algorithm that computes k shortest paths (not necessarily simple) in O(m+n logn+k)-
time, where m is the number of arcs and n the number of vertices of the graph. An important
variant of this problem is the k shortest simple paths problem (kSSP) introduced in 1963 by
Clarke et al. [37] which adds the constraint that reported paths must be simple. This variant of
the problem has various applications in transportation network when paths with repeated vertices
are not desired by the user. It is also a subproblem of other important problems like constrained
shortest path problem, vehicle and transportation routing [67, 76, 124]. It also can be applied suc-
cessfully in bio-informatics [17], especially in biological sequence alignment [110] and in natural
language processing [24]. For more applications, see Eppstein’s recent comprehensive survey on
k-best enumeration [51].

The most famous algorithm for solving the kSSP problem has been proposed by Yen [126] and
has time complexity in O(kn(m+n logn)). It has been proved that the kSSP problem can be sol-
ved in O(k) iterations of APSP (All Pairs Shortest Paths) [64]. This means that the kSSP problem
can be solved in O(kn(m+n log logn))-time on sparse digraphs and O(kn3(log logn)/ log2 n)-
time on dense digraphs using the fastest APSP algorithms [99, 68]. Vassilevska Williams and
Williams [118] show that a subcubic kSSP algorithm would also result in a subcubic algorithm
for APSP, which seems unlikely at the moment. Recently, Eppstein and Kurz [52] proved that on
digraphs with bounded treewidth, the kSSP problem can be solved in time O(n+ k logn).

On the other hand, several works have been proposed to improve the efficiency of the algorithm
in practice [67, 79, 111, 70, 59, 54, 83, 82] ; they all feature the same worst-case running time as
Yen’s algorithm i.e, O(kn(m+ n logn)).

In particular, Feng [54] proposed an improvement of Yen’s algorithm called the Node Classi-
fication (NC) algorithm. With the help of a precomputed shortest path tree of the digraph, the NC
algorithm classifies the vertices of the digraph with respect to their validity. Thus, computing a
shortest simple detour will be restricted to the non-valid sub-digraph that is smaller than the origi-
nal one. By this restriction, the running time of computing a shortest path remarkably decreases.
An interesting fact about the NC algorithm is that its memory consumption is almost the same as
Yen’s algorithm (only a shortest path tree is kept in the memory).

Recently, Kurz and Mutzel [83, 82] obtained a tremendous improvement of the practical run-
ning time, designing an algorithm called the Sidetrack Based (SB) with the same flavor as Epp-
stein’s algorithm.

39

40 CHAPITRE 2 — On finding k shortest simple paths in a graph

The key ideas are to define a path using a sequence of shortest path trees and deviations, and to
postpone as much as possible the computation of shortest path trees. With this new algorithm, they
were able to compute hundreds of paths in graphs with million vertices in about one second, while
previous algorithms required an order of tens of seconds on the same instances. For instance, Kurz
and Mutzel’s algorithm computed k = 1000 shortest paths in 50 (ms) for the DC network [44]
while it required about 5 (s) with Yen’s algorithm and about 0.3 (s) by the improvement proposed
by Feng [54]. The drawback of the SB algorithm is the need for storing all computed shortest path
trees, thus leading to a large usage of working memory.

Finally, the fastest algorithm with low working memory consumption (i.e, the same working
memory as Yen’s algorithm) is the Node Classification (NC) algorithm, proposed independently
by [54] and [59]. With larger memory consumption, the Sidetrack Based algorithm (SB) [83] can
achieve a tremendous speed up.

In the case of arbitrary weights, negative arc lengths arise in several applications, typically in
network survivability, in arbitrage problems in foreign exchange markets, in job scheduling with
deadlines and so on. So, the problem of finding a shortest path from a source to a destination in
an arbitrary weighted digraph has concrete applications [28, 109]. Similarly to digraphs with non-
negative arc lengths, a single shortest path may not be enough, as it may be blocked, unsatisfying
some constraint or simply does not meet the user’s desire for diversity. While the problem of
computing a shortest path in an arbitrary weighted digraph has been intensively studied [106, 42,
40, 73, 115, 61], we are not aware of any study dedicated to the problem of finding k shortest
simple paths in an arbitrary weighted digraphs.

Our contributions. We propose a new algorithm with low working memory consumption, cal-
led the Postponed Node Classification (PNC), that is much faster than the NC algorithm while
using the same working memory. Our experimental results show that the PNC algorithm is the
fastest kSSP algorithm with low working memory among all considered algorithms. Furthermore,
it competes with the algorithms with large memory consumption on road networks.

Considering large working memory, we show how to speed up the SB algorithm using dynamic
updates of shortest path trees resulting with the SB* algorithm, that is, the fastest kSSP algorithm
(on median) with large memory consumption among the considered algorithms on road networks.
Moreover, we propose a new algorithm called Parsimonious Sidetrack Based (PSB), that is based
on the SB algorithm. The PSB algorithm gives, on road network, a space time trade off between
SB and NC algorithms. That is, it enables to significantly reduce the working memory of SB at
the cost of an increase of the running time. Nonetheless, on complex networks, the PSB algorithm
gives the best running time among all the considered algorithms.

We further propose parameterized variants of PSB (called PSB-v2 and PSB-v3) that improve
its performances, both in terms of working memory consumption and of running time, on road
networks.

We analyse the behavior of all the aforementioned algorithms on different types of networks
(road, biological, Internet and social networks). We have also investigated the relationships bet-
ween the performances of the algorithms and some properties of the queries, such as the number
of hops and the stretch from the center. Finally, we end up with a first empirical framework for
selecting the most suitable kSSP algorithm for a given use case.

Moreover, we study the kSSP in arbitrary weighted digraphs, where we show that the classi-
cal framework of Yen remains valid on arbitrarily weighted digraphs. Precisely, Yen’s algorithm
remains exact after replacing the shortest path algorithm used in Yen’s algorithm (Dijkstra’s al-

40

2.2 – Preliminaries 41

gorithm) by any other exact shortest path algorithm able to compute a shortest simple path in
arbitrary weighted digraphs. This leads to several improvements.

Considering arbitrary weighted digraphs with no negative cycles, the kSSP can be solved
naively by replacing Dijkstra’s algorithm by Bellman-Ford-Moore’s algorithm. This gives a poly-
nomial time algorithm, referred to as Yen - Bellman-Ford-Moore (Y-BFM), with time complexity
in O(kn2m). Furthermore, we show how to use shortest path tree update [90] in order to im-
prove the time complexity to O(kn(m + n logn)), which is surprisingly equal to the complexity
of Yen’s algorithm on non negative weighted digraphs. In addition, we propose a new algorithm,
called the Postponed Yen - Bellman-Ford-Moore (PY-BFM), and an improved variant called Post-
poned Node Classification - Bellman-Ford-Moore (PNC-BFM). Our experiments show that the
PNC-BFM is the fastest kSSP algorithm among the considered ones, and that it outperforms the
Y-BFM algorithm by one to two orders of magnitude.

In contrast, the problem of finding a shortest simple path, also called shortest elementary path
(ESP) [92], is NP-hard on arbitrary weighted digraphs (with negative cycles allowed), as it can
be reduced from the Hamiltonian path problem. However, as we are also interested in efficient
solution, we give several initiatives to solve the problem by proposing mixed integer linear pro-
gramming (MIP) models.

This chapter is organized as follows. We start recalling the Yen and NC algorithms in sec-
tion 2.2. Then, we present in Section 2.3 the SB algorithm with our improvement SB*. In Sec-
tion 2.4, we present the PSB algorithm and its two variants PSB-v2 and PSB-v3. Section 2.5 is
devoted to the presentation of the PY algorithm. We present our experimental evaluation of all
these algorithms on various networks in Section 2.6. The adaptations of some kSSP algorithms to
arbitrarily weighted digraphs, with their experimental evaluations are presented in Section 2.7 and
the MIP models for arbitrarily weighted digraphs are described in Section 2.8.

2.2 Preliminaries

2.2.1 Definition and Notation

We use the same graph definitions and notations of section 1.2.1 page 16.
Given s, t ∈ V , a top-k set of shortest s-t paths is any set S of (pairwise distinct) simple s-t

paths such that |S| = k and `(P) ≤ `(P ′) for every s-t path P ∈ S and s-t path P ′ /∈ S.
The k shortest simple paths problem takes as input a weighted digraph D = (V,A), `D : A→

R+ and a pair of vertices (s, t) ∈ V 2 and asks to find a top-k set of shortest s-t paths (if they
exist).

Recall that, given a vertex t ∈ V . An in-branching T rooted at t is any sub-digraph of D that
induces a (not necessarily spanning) tree containing t, such that every u ∈ V (T) \ {t} has exactly
one out-neighbor (that is, all paths go toward t). An in-branching T is called a shortest path (SP)
in-branching rooted at t if, for every u ∈ V (T), the length of the (unique) u-t path P Tut in T equals
dD(u, t). As we consider directed weighted digraphs in this chapter, we use Dijkstra’s algorithm to
find an SP in-branching. However, it is possible to use any suitable shortest path algorithm instead.

In the forthcoming algorithms, the following procedure will often be used (and the key point
when designing the algorithms is to limit the number of such calls and to optimize each of them).
Given a sub-digraph H of D and u, t ∈ V (H), we use an SP algorithm to compute an SP in-
branching rooted in t that contains a shortest u-t path in H . Note that, the execution of an SP
algorithm may be stopped as soon as a shortest u-t path has been computed (when u is reached),

41

42 CHAPITRE 2 — On finding k shortest simple paths in a graph

i.e., the in-branching may only be partial (not necessarily spanning H). The key point will be
that this way to proceed not necessarily only returns a shortest u-t path in H (if any) but an SP
in-branching rooted in t, containing u. Recall that any such call has worst-case time complexity
O(m+ n logn).

Let P = (v0, v1, · · · , vr) be any path in D and i < r. Any arc a = viv
′ 6= vivi+1 is called a

deviation of P at vi. Moreover, any path P ′ = (v0, · · · , vi, v′, v′1, · · · , v′` = vr) is called a detour
of P at a (or at vi). Note that neither P nor P ′ is required to be simple. However, if P ′ is simple,
it will be called a simple detour of P at a (or at vi). In addition, P ′ is called a shortest (simple)
detour at vi (or at a) if and only if P ′ is a detour with minimum length among all (simple) detours
of P at vi (or at a).

2.2.2 Yen’s algorithm

We start by describing Yen’s algorithm [126] trying to give its main properties and drawbacks.
All the algorithms described below start by computing a shortest s-t path P0 = (s =

v0, v1, · · · , vr = t), and assume that there is always at least one such path. This is done by
applying an SP algorithm from s. Note that P0 is simple since weights are non-negative. A se-
cond shortest s-t simple path must be a shortest simple detour of P0 at one of its vertices. Yen’s
algorithm computes a shortest simple detour of P0 at vi for every vertex vi in P0 as follows. For
every 0 ≤ i < r, let Di(P0) be the graph obtained from D by removing the vertices v0, · · · , vi−1
(this is to avoid non simple detours) and the arc vivi+1 (to ensure that the computed path is a
new one, i.e., different from P0). For every 0 ≤ i < r, an SP out-branching in Di(P0) rooted
at vi is computed using an SP algorithm until it reaches t and therefore returns a shortest path
Qi from vi to t. For every 0 ≤ i < r, the detour (v0, · · · , vi−1, Qi) of P0 at vi is added to a
set Candidate (initially empty). Note that the index i (called below deviation-index) where the
path (v0, · · · , vi−1, Qi) deviates from P0 is kept explicit ∗, i.e, the path is stored with its deviation
index. Once (v0, · · · , vi−1, Qi) has been added to Candidate for all 0 ≤ i < r, by remark above,
a path with minimum weight in Candidate is a second shortest s-t simple path.

More generally, by induction on 0 < k′ < k, let us assume that a top-k′ set S of shortest
s-t paths has been computed and the set Candidate contains a set of simple s-t paths such that
there exists a shortest path Q ∈ Candidate with S ∪ {Q} a top-(k′ + 1) set of shortest s-t paths.
Moreover, let us assume by induction that, for every path R in Candidate, with deviation index
j, all detours of R = (v0, · · · , v|R|) at vertices vi for 0 ≤ i < j have already been computed and
added to Candidate. Yen’s algorithm pursues as follows. Let Q = (v0 = s, · · · , vr = t) be any
shortest path in Candidate † and let 0 ≤ j < r be its deviation-index. First, Q is extracted from
Candidate and it is added to S (as the (k′ + 1)th shortest s-t path). Then, for each vertex v in Q,
a shortest simple detour of Q at v is added to Candidate (since potentially one of these detours
is a next shortest s-t path). For this purpose, for every j ≤ i < r, let πi = (v0, · · · , vi−1) (πi = ∅
if i = 0) and let Di(Q) be a subdigraph of D containing a shortest vi-t path Qi in D such that
Qi ∩ πi = ∅ and the path πi.Qi is new (πi.Qi /∈ S). After the construction of Di(Q) (described
below), an SP out-branching of Di(Q) rooted at vi is computed using an SP algorithm until it
reaches t and therefore returns a shortest path Qi from vi to t in Di(Q). For every 0 ≤ i < r,

∗. The deviation-index is not kept explicitly in Yen’s algorithm. But, since it is a trivial improvement already existing
in the literature [86], we mention it here.
†. Actually Candidate is implemented, using a heap, in such a way that extracting a shortest path in it takes

logarithmic time and insertions are done in constant time.

42

2.2 – Preliminaries 43

the shortest simple detour πi.Qi of Q at vi (together with its deviation index i) is added to the set
Candidate. This process is repeated until k paths have been found, i.e., when k′ = k. Indeed, the
computed detours of Q are distinct from every previously computed paths as they have different
prefixes (this is the reason to keep explicitly the deviation-index).

The procedure of constructing Di(Q) is the following. First, to avoid non simple detours, i.e,
any intersection between Qi and πi, the vertices v0, · · · , vi−1 (if i > 0) are removed from D.
Second, to ensure that the computed path (πi.Qi) is new (different from those in S), each arc viv′

such that S already contains a path with prefix (v0, · · · , vi, v′) is removed from Di(Q).
Therefore, for each path Q that is extracted from Candidate, O(|V (Q)|) calls of an SP algo-

rithm are done. This gives an overall time-complexity of O(kn(m + n logn)) which is the best
theoretical (worst-case) time-complexity currently known (and of all algorithms described in this
manuscript) to solve the kSSP problem.

For completeness, let us formally prove the correctness of Yen’s algorithm in digraphs with
non negative weights. It will allow us to show its correctness in digraphs with arbitrary weights.

Claim 2.2.1. Yen’s algorithm correctly computes k shortest simple paths from s to t in a positive
arc weighted directed graph.

Proof. We proceed by induction on 0 < i ≤ k. For i = 1, the algorithm returns a shortest path
from s to t. So, the algorithm is valid for i = 1.

Now suppose by induction that the algorithm returns correctly i shortest simple paths P =
{P1, P2, · · · , Pi}. Let Pi+1 be the i + 1th path reported by the algorithm and Q be a i + 1th
shortest simple path in the digraph. Let us show that `(Q) ≥ `(Pi+1).

Among the paths already returned by the algorithm until this step, let P ∈ P be a path that
maximizes the length of a common prefix with Q.

Let π = Q∩P = (s = u0, · · · , up) and letQ′ be the subpath ofQ from up to t, i.e,Q = π.Q′.
When the algorithm iterates on the vertex up of P , a shortest up-t path Q∗ is computed. Note that
`(Q∗) ≤ `(Q′) as Q∗ is a shortest up-t path in the same digraph where Q′ is found. So, a path
P ′ = π.Q∗ is added to the set Candidate. Since Pi+1 is a smallest element in Candidate, we
have `(Pi+1) ≤ `(P ′) = `(π.Q∗) = `(π) + `(Q∗) as π.Q∗ is simple. It follows that `(Pi+1) ≤
`(π) + `(Q′) = `(Q). This proves the induction hypothesis for i+ 1. �

Let us denote by Yen’s framework the extension of Yen’s algorithm when using any SP algo-
rithm able to compute a shortest simple path in a digraph with arbitrary arc weights (i.e., when it
is not possible to use Dijkstra’s algorithm). Since no restriction is made on the length of the arcs in
the proof of Claim 2.2.1, it follows that Yen’s framework is valid for arbitrary weighted digraphs.

Corollary 2.2.2. Yen’s framework solves the kSSP in digraphs with arbitrary arc weights.

2.2.3 A Node Classification algorithm

In this section, we present the Node Classification (NC) algorithm, an improvement of Yen’s
algorithm proposed independently by Feng [54] and Gao et al. [59].

The most expensive part of Yen’s algorithm is its large number of calls to an SP algorithm. The
NC algorithm aims at reducing the computing time of each of these calls, and possibly to avoid
some of them.

Precisely, during the process of finding a detour, the search area of an SP algorithm is restricted
to a digraph that is smaller than D with the help of a precomputed shortest path in-branching. The

43

44 CHAPITRE 2 — On finding k shortest simple paths in a graph

NC algorithm starts by computing a shortest path in-branching T of D rooted at t (used to extract
a first shortest path P0). Then, when a path Q = (v0, · · · , vr) with deviation-index j is extracted,
its detours are computed from i = j to r − 1. The NC algorithm classifies the vertices as red,
yellow, and green : a vertex on the prefix (i.e., the path (v0, · · · , vi−1)) is colored red, a
vertex u that can reach t through T without visiting a red vertex (i.e, P Tut ∩ (v0, · · · , vi−1) = ∅)
is colored green, and all other vertices are colored yellow. This coloring can be computed in
linear time using a DFS in T . Moreover, the coloring used to compute the detour at vi+1 can be
obtained faster by updating the coloring for the detour at vi.

Another important ingredient of the NC algorithm is the notion of residual weight. For each
arc e = uv not in T , the residual weight of e is the cost of deviating from T at e. Precisely, it is
the weight of the path u.P Tvt minus the weight of the path in P Tut. Formally, the residual weight of
arc uv is δ(u, v) = w(u, v) +w(P Tvt)−w(P Tut). The residual weight is computed only once (after
computing T) and remains valid till the end of the execution of the algorithm. Note that an arc in
T has residual weight equals 0, and so the residual weight of the path P Tut from any green vertex
u to t in T equals 0.

Recall that to compute a detour ofQ at vi, Yen’s algorithm execute an SP algorithm to compute
a shortest path from vi to t in Di(Q). In the case of NC algorithm, Feng proved that it is sufficient
to execute an SP algorithm using the residual weights and to stop its execution as soon as a green
vertex is reached. This result in restricting the execution of the SP algorithm to the yellow
subgraph that is expected to be smaller than Di(Q), and so to speed up the computation of the
detours.

In Section 2.5, we propose an adaptation of the NC algorithm (using ideas of SB algorithm
presented in the next section) that allows us to speed it up.

2.3 Sidetrack Based (SB) algorithm

We now present the Sidetrack Based (SB) algorithm, proposed by Kurz and Mutzel [83]. We
start by describing the data structure used in the SB algorithm. Then, we explain it and provide
a pseudo code (Section 2.1). Finally we analyse few aspect of it. Note that our contributions in
Section 2.4 strongly rely on this algorithm and that is why we describe it in detail.

2.3.1 Compact representation of a path

The SB algorithm is based on a data structure generalizing the representation of a path propo-
sed by Eppstein [50]. Such compact representation uses sequences of in-branchings T0, T1, · · · , Th
and deviations e0, e1, · · · , eh (recall that a deviation of a path P is any arc not in P but with tail
in P).

Precisely, the sequence ε = (T0, e0, T1, e1, · · · , Th, eh, Th+1) with ei = viwi for all 0 ≤ i ≤
h, represents the path P starting at s, following T0 until the tail v0 of e0, then the deviation e0,
then T1 from the head w0 of e0 until it reaches the tail v1 of e1, etc. until it reaches the head wh
of eh, plus (possibly) the path from wh to t in Th+1. That is, P is the sequence of vertices of the
paths P T0

sv0 , P
T1
w0v1 , · · · , P

Th
wh−1vh followed by the vertices of P Th+1

wht
if this latter path exists. Two

consecutive in-branchings Ti and Ti+1 are not necessarily distinct. SB algorithm ensures that, if P
is an s-t path (i.e., if P Th+1

wht
exists), then the subpath π of P going from s to wh (v0, · · · , wh) is

always simple and P is not simple only if P Th+1
wht

intersects π.

44

2.3 – Sidetrack Based (SB) algorithm 45

2.3.2 The SB algorithm

We are now ready to present the SB algorithm, whose pseudocode is presented in Section 2.1.
Roughly, the SB algorithm uses a set Candidate to manage candidate paths that are encoded
using the above data structure. Sequentially, it extracts a shortest element ε from Candidate. If ε
represents a simple path, this path is added to the output and the representations of its detours (that
will be found using the last tree in the representation of ε) are added to Candidate. Otherwise,
the SB algorithm attempts to modify ε by instantiating its last in-branching (see below). If this
computation leads to a representation of a simple path, then it is added to Candidate. Otherwise,
ε is discarded. The SB algorithm goes on iteratively until it has found k paths. The initialization
consists in computing a first in-branching T0 rooted at t in D (using an SP algorithm) and so a
shortest s-t (simple) path P T0

st and adding its representation to Candidate.
More precisely, the setCandidate is a min-heap in which the weight (the key) of an element is

a lower bound on the weight of the path it represents. Each element µ in Candidate has the form
µ = (ε = (T0, e0, · · · , eh = (vh, wh), Th+1), lb, ζ) where each in-branching Th′ (with h′ ≤ h) is
already computed and lb is a lower bound of the weight of the path represented by ε. The value ζ is
a boolean indicating whether the path represented by ε is known to be simple. If so, it will follow
from the construction that Th+1 has already been computed. Else Th+1 must be first computed to
know if ε represents a simple path. For the initialization, the in-branching T0 is computed and the
element ((T0), ω(P T0

st), ζ = 1) is inserted in Candidate.
The SB algorithm iteratively extracts elements from Candidate by minimum weight (with a

priority to representation of simple paths to break ties) until k paths are obtained or Candidate
is empty. When an element µ = (ε = (T0, e0, · · · , eh = (vh, wh), Th+1), lb, ζ) is extracted from
Candidate, two cases are distinguished. Let i be the index of wh in the path P represented by ε
(note that i plays the same role as the deviation-index in the Yen’s algorithm).

Case ζ = 1. Then, ε represents a simple path P = (v0 = s, · · · , vi = wh, · · · , vr = t) and
all of its in-branchings have already been computed. In this case, the path P is added to the
output. Then, for every deviation tailing at the suffix, i.e, for every deviation e = (vj , w) at
vj with i ≤ j < r (i.e, e is tailing at the suffix (vi, · · · , t) of P), let P Th+1

wt be a shortest path
from w to t in Th+1 (if any) and let Q(vj , e) = (v0, · · · , vj , P

Th+1
wt). If Q(vj , e) is simple,

the representation µ′ = ((T0, e0, · · · , eh, Th+1, e = (vj , w), Th+1), lb(e), ζ = 1) is added
toCandidatewith lb(e) = ω(Q(vj , e)) as a key (note that the computation of lb(e) is done
in constant time since, in particular, Th+1 is already computed). Otherwise ;Q(vj , e) is not
simple, the representation µ′′ = (ε′′ = (T0, e0, · · · , eh, Th+1, e = (vj , w), T ′), lb(e), ζ =
0) is added to Candidate, where T ′ is the name of the in-branching of D \ {v0, · · · , vj}
whose actual computation is postponed, and lb(e) = ω(Q(vj , e)) is a lower bound on the
weight of the path represented by ε′′.

Case ζ = 0. In this case, the algorithm checks for the existence of a wh-t path P Th+1
wt . To do

so, the in-branching Th+1 (whose computation had been postponed) is computed. Note
that Th+1 is an in-branching in D \ {v0, · · · , vh}, which ensures that, if P Th+1

wt is found,
the path Pnew = (s = v0, · · · , vh, P

Th+1
wt) is guaranteed to be simple. Moreover, Pnew

has weight ω(Pnew) = ω((s = v0, · · · , vh, wh)) + ω(P Th+1
wt). Then, the representation

µ′ = (ε′ = (T0, e0, · · · , eh = (vh, wh), Th+1), ω(Pnew), ζ = 1) is added to Candidate.
Finally, if no wh-t path can be found in Th+1, µ is discarded.

45

46 CHAPITRE 2 — On finding k shortest simple paths in a graph

Require: A digraph D = (V,A), a source s ∈ V , a sink t ∈ V , and an integer k
Ensure: k shortest simple s-t paths

1: Let Candidate← ∅, T ← ∅ and Output← ∅
2: T0 ← an SP in-branching of D rooted at t containing s
3: Add ((T0), w(Pst(T0)), ζ = 1) to Candidate
4: while Candidate 6= ∅ and |Output| < k do
5: µ = (ε = ((T0, e0, · · · , Th, eh = (uh, vh), Th+1), lb, ζ) ← a shortest element in
Candidate

6: if ζ = 1 then
7: Extract µ from Candidate and add ε to Output
8: for every deviation e = vjv

′ with vj ∈ P
Th+1
vht

do
9: ε′ ← (T0, e0, · · · , Th, eh, Th+1, e, Th+1)

10: lb′ ← lb− w(P Th+1
vjt) + w(e) + w(P Th+1

v′t)
11: if ε′ represents a simple path then
12: Add µ′ = (ε′, lb′, ζ = 1) to Candidate
13: else
14: T ′ ← the name of an SP in-branching of Dh(P) // T ′ is not computed yet
15: Add T ′ to T
16: Add µ′′ = (ε′′ = (T0, e0, · · · , Th, eh, Th+1, e, T

′), lb′, ζ = 0) to Candidate
17: else
18: if Th+1 has not been computed yet then
19: Compute Th+1, an SP in-branching of Dh(P) and add it to T
20: Let µ′ = (ε′ = (T0, e0, · · · , Th, eh, Th+1), lb+ w(P Th+1

v′t)− w(P Thv′t), ζ = 1)
21: Add µ′ to Candidate
22: return Output

Algorithm 2.1 – Sidetrack Based (SB) algorithm for the kSSP [83]

46

2.4 – Space - time tradeoffs 47

Analysis. In the a worst case scenario, each first extraction of a path from Candidate leads to
a non simple detour, and then a call of an SP algorithm. Note that no more than one call to an SP
algorithm is done per vertex on a path, thanks to the checks of line 18. So, the complexity of the
SB algorithm is bounded by O(kn(m + n logn)) as the number of vertices of a simple path is
bounded by n and the algorithm stops once k paths are added to Output.

There are two key improvements for which the SB algorithm has, in practice, out-performed
all other algorithms for solving the kSSP problem so far. First, it saves an SP algorithm call if the
detour is simple. Second, if the detour is not simple it is inserted with a lower bound on its weight
and the corresponding call to an SP algorithm is postponed. This way, if this detour leads to a long
path (path with weight larger than the kth shortest path), the call to an SP algorithm will never be
performed.

However, as the SB algorithm stores complete in-branchings into memory, it has the drawback
to possibly have an important consumption of working memory (much more than the NC algorithm
that stores a single in-branching, while keeping the whole description of paths it computes).

2.3.3 The SB* algorithm

Here, we propose the SB* algorithm, a variant of the SB algorithm that is a tiny modification
of the SB algorithm but leading to a significant speed up (see Section 2.6.2).

In fact, each time a representation (T0, e0, T1 · · · , eh−1 = (uh−1, vh−1), Th, eh =
(uh, vh), Th+1) is extracted from Candidate with ζ = 0 and that Th+1 has not been compu-
ted yet (i.e., it is only a pointer), our algorithm does not compute Th+1 from scratch as the SB
algorithm does. Instead, the SB* algorithm creates a copy T of Th, discards vertices of the path
from vh−1 to uh in Th, and updates the SP in-branching T using standard methods for updating a
shortest path tree [57]. Then, the pointer Th+1 is associated with the new in-branching T .

It is clear that the SB* algorithm computes (and stores) exactly the same number of in-
branchings as the SB algorithm. The computational results presented in Section 2.6.2 show that
this update procedure gives an average speed up by a factor of 1.5 to 2 on road networks.

2.4 Space - time tradeoffs

2.4.1 The Parsimonious Sidetrack Based algorithm

Here, we present the Parsimonious Sidetrack Based (PSB) algorithm, which is an adaptation
of the SB algorithm allowing to reduce the memory consumption due to the storage of all in-
branchings computed by the SB algorithm. Here, we only focus on the differences between the SB
and the PSB algorithm.

The main difference is that PSB algorithm stores two types of elements inCandidate. The first
type, of the form (ε = (T0, e0, T1, e1, · · · , Th, eh = (vh, wh), Th+1), lb), represents a simple s-t
path P of weight lb. Contrary to the SB algorithm, the in-branching Th+1 has not necessarily been
computed yet. The second type, of the form (ε,Dev, lb), contains an extra field Dev (explained
below) and, in this case, all of the in-branchings T1, · · · , Th+1 are already computed.

Let us start considering a step of PSB algorithm when an element µ = (ε =
(T0, e0, T1, e1, · · · ,
Th, eh = (vh, wh), Th+1), lb) representing a simple path P is extracted from Candidate. Th+1 is
computed at this step (if not already done) which allows to get P explicitly. Then, PSB algorithm

47

48 CHAPITRE 2 — On finding k shortest simple paths in a graph

adds P = (s = v0, · · · , vi = wh, · · · , vr = t) to Output and (as the SB algorithm), for every
v ∈ {vi, · · · , vr}, and every deviation e with tail v, the detour Q(v, e) of P at e is considered.
If Q(v, e) is simple, then µ′ = ((T0, e0, T1, e1, · · · , Th, eh, Th+1, e, Th+1), ω(Q(v, e))) is added
to Candidate. Otherwise, the deviation e is added to a set Dev (initially empty). Once all de-
viations have been considered, the (unique) element (ε,Dev, lb′) is added to Candidate, where
lb′ = minfj=(uj ,u′j)∈Dev ω(Q(uj , fj)). That is, Dev is the set of all “non simple deviations” of P
at the vertices between wh and t, ordered with respect to the index of their tail on P , i.e, for two
deviations fi = (ui, u′i), fj = (uj , u′j) ∈ Dev, fi ≤ fj if and only if i ≤ j. Finally, let lb′ be a
lower bound on the weight of the detours at a deviation in Dev. The important difference between
SB and PSB algorithms comes from the fact that non simple detours are considered as a unique
object by PSB algorithm.

Now, let us consider a step when PSB algorithm extracts an element µ = (ε = (T0, e0, T1,
e1, · · · , Th, eh, Th+1), Dev = {f1, · · · , fj = (uj , u′j), · · · , fl}, lb) from Candidate. As mentio-
ned above, in this case, ε encodes a simple s-t path (v0, · · · , vr). Let 1 ≤ min ≤ l be the smallest
integer such that lb = ω(Q(umin, fmin)).

Then, PSB algorithm proceeds as follows. For j decreasing from l to min, an in-branching T ′j
in D \ {v0, · · · , vij = uj} is computed (but not stored !) until a path P

T ′j
u′jt

from u′j to t is disco-

vered (if no such path exists, j is decreased by one). If P
T ′j
u′jt

exists, then εj = (T0, e0, T1, e1, · · · ,
Th, eh, Th+1, fj , T

′
j) represents a simple s-t path of weight lbj = ω((v0, · · · , vij)) + ω(fj) +

ω(P
T ′j
u′jt

). Then, the element µj = (εj , lbj) is added to Candidate, but T ′j is not stored (PSB
algorithm might have to recompute it later). A second key improvement is that to speed up
the computation, T ′j is actually computed by updating T ′j+1. which is done using standard tools
from [57]. Then, only when j = min, the in-branching T ′min is stored and µmin = (εmin, lbmin)
is added to Candidate. The reason why T ′min is stored (while other T ′j are not) is that µmin
is expected to be extracted soon from Candidate (because the path represented by εmin is
expected to be short) and we want to avoid the recomputation of T ′min. Finally, the element
µ′ = (ε,Dev′ = {f1, · · · , fmin−1}, lb′) is added to Candidate, where lb′ is the minimum weight
over the non simple detours in Dev′.

The correctness follows from the one of the SB algorithm. Moreover, since most of the com-
puted in-branchings are not stored, the working memory used by PSB is significantly smaller than
for SB algorithm.

2.4.2 Special variants of PSB

A better space and time trade-off than PSB can be achieved if, each computed and stored in-
branching is going to be used in the future steps, i.e, it is used to extract a simple candidate path
that is going to be extracted from Candidate (before the kth shortest path). Unfortunately, such
information cannot be afforded as the weight of the kth path is not previously known. However, if
computing an in-branching leads to constructing a path with length relatively short, say less than
a threshold value time the current outputted path, then storing such in-branching is meaningful
as the extraction of its corresponding element form Candidate is expected soon and saving it
leads to save its redundant computation. Here, we present two variants of the PSB; PSB-v2 and
PSB-v3. PSB-v2 is a tiny improvement of PSB leading to consume less memory by storing less
in-branching while PSB-v3 gives an adaptable trade off depending on the value of the threshold.

48

2.5 – Postponing the detours’s computation 49

Let us consider, again, a step when PSB algorithm extracts an element µ = (ε,Dev =
{f1, · · · , fj = (uj , u′j), · · · , fl}, lb) from Candidate with 1 ≤ min ≤ l the smallest integer
such that lb = ω(Q(umin, fmin)). The PSB algorithm algorithm iterates on j, decreasing from
l to min as explained above, a corresponding in-branching T ′j is computed for each j (but not
stored). Then, only when j = min, the in-branching T ′min is stored.

The PSB-v2 algorithm does not naively store T ′min. Instead, T ′min is stored only if the weight
of its corresponding detour is less than a threshold value θ, times the weight of the shortest simple
path in Candidate. That is, lbmin = ω((v0, · · · , vimin)) + ω(P T

′
min

umint) ≤ θ ∗ ω(Pnext), where
Pnext is the shortest simple path in Candidate. As a result, if the in-branching T ′min leads to a
(relatively) long path that is not expected to be extracted very soon from Candidate, then it is
freed from the memory.

PSB-v3 behaves on every deviation in Dev between min and l the same way PSB-v2 behaves
with fmin. Precisely, for each deviation fj withmin ≤ j ≤ l, PSB-v3 computes its corresponding
in-branching T ′j . This in-branching (T ′j) is stored only if the weight of its corresponding detour is
less than a threshold θ, times the weight of the shortest simple path in Candidate.

The value of the threshold θ could change dynamically during the execution. For instance, it
could be related to the ratio between the two upcoming paths i.e, the two elements in Candidate
with minimum weight.

2.5 Postponing the detours’s computation

In this section, we present the Postponed Yen (PY) algorithm. The PY algorithm have a
O(kn(m + n logn)) time complexity with a similar working memory as the NC algorithm. Ho-
wever, it is faster in practice than the NC algorithm.

Even though the NC algorithm consumes less time during each SP algorithm call than Yen’s
algorithm, the total number of calls remains equal to Yen’s algorithm. Here, with the help of
a lower bound on the weight of a simple detour, we propose (using a similar idea as the SB
algorithm) to postpone the calls in order to avoid some of them. We prove that such postponement
does not hurt the correctness of the algorithm.

Let us describe our PY algorithm.
As in the NC algorithm, our algorithm starts by computing an SP in-branching T0 rooted at

t that will be used throughout the execution of the algorithm. Then, as the NC algorithm, the PY
algorithm proceeds by phases where a new path is added to the output and its detours are computed
and added in the set Candidate. Our algorithm differs from the NC algorithm in how and when it
computes the detours of the paths but also in the structure of the elements in the heap Candidate.

Let us consider a phase when a s-t path P = (s = u0, u1, · · · , ui, · · · , ur−1, ur = t) is
extracted fromCandidate. Let 0 ≤ i < r and consider the step when a shortest simple detour of P
at ui is computed. Let N be the set of neighbors v of ui such that paths with prefix (u0, · · · , ui, v)
have already been added to Output. Let D′ = D \ {(ui, v) | v ∈ N} and let Di(P) = D′ \
(u0, · · · , ui−1).

Let us describe how the PY algorithm finds a new shortest simple detour P ′ of P at ui. Recall
that a detour P ′ is said new if P ′ has not been added to the Output yet. Let vLB ∈ Di(P) be the
neighbor of ui (neither in N nor in the prefix of P) such that the residual weight of (ui, vLB) is
minimum, i.e., δ(ui, vLB) ≤ δ(ui, v′) for every v′ ∈ N+

Di(P)(ui) (recall that δ(u, v) = w(u, v) +
w(P T0

vt)−w(P T0
ut) denotes the residual weight of arc uv as defined in Section 2.2.2). Note that, by

49

50 CHAPITRE 2 — On finding k shortest simple paths in a graph

definition of the residual weight, the path PLB = (s, u1, · · · , ui, P TvLBt) is a shortest new detour
(not necessarily simple) of P at ui, so in particular :

Claim 2.5.1. w(PLB) ≤ w(P ′) for any new simple detour P ′ of P at ui

1: Input A digraph D = (V,A), source s ∈ V , sink t ∈ V and an integer k
2: Output k shortest simple s-t paths
3: Let Candidate← ∅ and Output← ∅
4: T ← an SP in-branching of D rooted at t
5: Add (Pst(T), w(Pst(T)), 0, 1) to Candidate
6: while Candidate 6= ∅ and |Output| < k do
7: (P = (s, u1, · · · , t), w(P), i, ζ)← extract a shortest element from Candidate
8: Color the vertices yellow, red, green with respect to P and ui
9: π ← (s, u1, · · · , ui−1)

10: Devold = {e = (ui, v) s.t there is a path in Output having π.e as prefix}
11: if ζ = 1 (P is simple) then
12: add P to Output
13: for each vertex uj in (ui, · · · , t) do
14: (uj , vLB)← an arc in A \Devold with minimum δ among those tailing at uj
15: PLB ← (s, · · · , uj , vLB, P TvLBt)
16: ζ ′ ← 0
17: if vLB is green then
18: ζ ′ ← 1
19: add (PLB, w(PLB), j, ζ ′) to Candidate
20: else
21: Compute a shortest ui-t path Q in D′ = (V \ π,A \Devold)
22: if Q exists then
23: Add (P ′ = π.Q,w(P ′), i, 1) to Candidate
24: return Output

Algorithm 2.2 – Postponed Yen Algorithm (PY)

Similarly to the SB algorithm (and in contrast to the NC algorithm), PNC algorithm may
add non-simple paths to the set Candidate. Precisely, each element in Candidate has the form
(P = (s = u0, · · · , ur = t), w(P), i, ζ) where i is its deviation index and ζ is a boolean flag
indicating whether the path P is simple or not.

The main idea of the PY algorithm (Algorithm 2.2) is the following. Instead of computing
naively all the shortest simple detours of P , i.e, a shortest simple detour at ui for all i ≤ j < r, the
following procedure is used. For each vertex ui ∈ P , the SP in-branching T0 is colored (yellow,
red, green, as in the NC algorithm) with respect to P and ui. If the color of vLB is green, it
implies that the path PLB is simple, and a shortest simple detour is found (by the remark above).
In this case, (PLB, w(PLB), i, ζ = 1) is added to the set Candidate. Otherwise, i.e., if vLB is
yellow, the detour PLB is added to the set Candidate (even though it is not simple) with its
weight w(PLB) as a key, i.e, the element (PLB, w(PLB), i, ζ = 0) is added to Candidate. The
idea is that, in the latter case, the non-simple path added to Candidate may never be extracted
from Candidate and so a call to an SP algorithm is saved.

50

2.6 – Experimental evaluation 51

When an element (P,w(P), i, ζ) is extracted from Candidate. If ζ = 1, the simple path P is
added to the Output and its detours are added to Candidate as explained above. If not, i.e., P is
not simple, it will be “repaired” into a simple path and re-added to Candidate. More precisely,
after the extraction of P from Candidate, an SP algorithm is called to find a shortest (simple)
pathQ from ui to t inDi(P) and P is replaced by P ′ = (s, u1, · · · , ui−1, Q). Claim 2.5.1 ensures
that the order of extraction of the simple paths from Candidate remains valid. And finally, such
postponement of this SP algorithm call may end up by skipping it.

2.6 Experimental evaluation

In this section we describe our experimental evaluation. First, we start by describing our im-
plementation and settings (Section 2.6.1), then we discuss our experimental results on road and
complex networks (Section 2.6.2). Finally, section 2.6.3 contains an experimental study to some
parameters related to the queries.

2.6.1 Experimental settings

Here we specify the details of the implementation and the setting used in our experiments.
We have implemented ‡ all the algorithms presented in this thesis (Yen, NC [54], PY, SB [83],

SB* and PSB) in C++ and our code is publicly available [13].
Following [83], we have implemented a pairing heap data structure [56] supporting the de-

crease key operation, and we use it for Dijkstra’s shortest path algorithm. Our implementation of
the Dijkstra shortest path tree algorithm is lazy, that is, it stops computation as soon as the distance
from query node v to t is proved to be the shortest one. Further computations might be performed
later for another node v′ at larger distance from t starting from this partial shortest path tree already
computed. Our implementation of Dijkstra’s algorithm supports an update operation when a node
or an arc is added to the graph. Moreover, we have implemented a special copy operation that en-
ables to update the in-branching when a set of nodes is removed from the graph. This corresponds
to the operations performed when creating an in-branching Th+1 from Th in SB*.

Observe that in our implementations the parameter k is not part of the input, and so the sets of
candidates are simply implemented using pairing heaps. This choice enables to use these methods
as iterators, able to return the next shortest path as long as one exists. Note that, if k is part of the
input, the data structure used to store candidates could be changed in order to contain only the k
best candidates, but the algorithm would only return exactly k paths even if more exist. Moreover,
for the SB, SB*, PSB, PSB-v2 and PSB-v3 algorithms, following [83], we store the candidates
into two heaps, the first one to store the simple candidates (Candidatesimple) and the second
one to store the non-simple candidates (Candidatenot−simple). Then, we extract candidates from
Candidatesimple as long as the length of the shortest simple path is smaller or equal to the length
of the shortest non-simple path in Candidatenot−simple. This way, we prioritize the extraction of
simple paths.

Concerning the PSB-v2 and PSB-v3 algorithms, based on preliminary experiments, we choose
to update the value of θ dynamically with respect to the ratio between the pair of the upcoming
paths. Recall that when looking for the ith path, a corresponding in-branching will be stored only
if the length of that path is at most θ times the length of the (i− 1)th path.

‡. Despite several queries, we have not been granted access to the code used for experiments in [54, 83].

51

52 CHAPITRE 2 — On finding k shortest simple paths in a graph

Precisely, let `s be the length of the smallest element in Candidatesimple and let `ns be the
length of the smallest non-simple element in Candidatenot−simple. These values are both set to 1
if any of the corresponding sets is empty. Let also c = max(`s

`ns
, `ns`s) and ρ = c − 1. The value

of θ is set to 1 + αρ, for some constant α > 0. The intuition is to store an in-branching only if
it is expected to be used soon, that is, while extracting one of the upcoming paths. The choice of
these values (`s and `ns) gives us a meaningful indication, and the value of θ is easy to compute.
Observe that in our experiments we have set the factor α in the formula for computing θ to α = 11,
based on preliminary experiments.

Besides, a special implementation of the PY algorithm is proposed, this implementation is
inspired by the NC algorithm and it is called the Postponed Node Classification (PNC) algorithm.
As shown in Algorithm 2.2, the PY algorithm computes a shortest simple detour (line 21) with
an SP algorithm call that may visit the whole sub-digraph. Similarly to NC algorithm, the PNC
algorithm tries to reduce the size of this sub-digraph in order to speed up these calls. For this
purpose, it proceeds the same way as the NC algorithm. That is, it gives a color to each node
(vertex) with respect to its end in the first pre-computed in-branching and call an SP algorithm
visiting only the yellow vertices.

Networks setting We have evaluated the performances of our algorithms on some road networks
from the 9th DIMACS implementation challenge [44] and on several complex networks.

A road network of a city is the digraph modeling its roads, i.e, a vertex is associated to each
crossroad, and there is an arc of length w between two vertices if and only if there is a road of
physical length w (in km) between their corresponding crossroads. Road networks are known to
be sparse, almost planar and to have a bounded degree [123]. We denote by small road networks
the road network of ROME, DC and DE while big road networks denote NY, BAY and COL. The
characteristics of these graphs are reported in Table 2.1.

On the other side, complex networks model different types of networks. Generally, they are
characterized by being small-world, i.e, they have a logarithmic diameter, by a power-law degree
distributions and a high clustering coefficient [25]. For instance, BIOGRID system synthetic letha-
lity represents mutation/deletion of genes resulting in lethality when combined in a same cell [97].
DIP represents protein to protein interactions [102]. The FB network represents social circles from
Facebook [89]. Likewise, LOC is a graph provided from Brightkite location-based social networ-
king [88]. Finally, P2P is the peer-to-peer network of the Gnutella file sharing network [88] and
CAIDA (2013.11.01) is the graph of the relationships between the autonomous system of the In-
ternet [116]. As these networks are unweighted, we only consider the number of hops as the length
of a path. We consider for each network its largest biconnected component. The characteristics of
these graphs are depicted in Table 2.1

In our experiments, we have randomly chosen 1000 queries (source-destination pairs of ver-
tices) for each network, and we have run each algorithm for each of these pairs for k = 1, 000 on
road networks and k = 10, 000 on complex networks. Because of the excessive running time of
Yen’s algorithm, we have chosen to run it only on small road networks.

We have measured the execution time and the number of stored SP in-branchings. Note that the
number of stored in-branchings gives an indication of the memory consumption that is independent
of the implementation and the architecture of the machine [77].

We also attempt in Section 2.6.2 to explain the performance of the algorithms with respect to
the structure of the network and / or some properties of the queries (e.g., the hop distance between
the source and the destination, their stretch from the “center” of the graph...).

52

2.6 – Experimental evaluation 53

network n m D 〈d〉 −α 〈cc〉 Description
ROME 3 353 8 870 57 5.2 - 0.025 Road network of Rome [44]
DC 9 559 29 682 140 6.2 - 0.039 Road network of Washington DC [44]
DE 49 109 119 520 573 4.8 - 0.024 Road network of Delware [44]
NY 264 346 733 846 664 5.5 - 0.02 Road network of New York [44]
BAY 321 270 800 172 791 4.9 - 0.016 Road network of San Francisco Bay area [44]
COL 435 666 1 057 066 1219 4.8 - 0.017 Road network of Colorado area [44]
BIOGRID 2 318 12 580 7 21.7 1.96 0.20 Mutation/deletion of genes resulting in cell lethality [97]
FB 3 698 85 963 6 93 - 0.61 Social circles from Facebook [89]
P2P 5 606 23 510 8 16.7 - 0.014 Peer-to-peer network of the Gnutella file sharing network [88]
DIP 13 969 60 621 17 17.4 2.38 0.11 Protein-protein interaction network [102]
CAIDA 29 432 143 000 9 19.4 2.06 0.42 Relationships between Autonomous Systems of the Internet [116]
LOC 33 187 188 577 11 22.7 2.25 0.29 Brightkite location-based social networking service provider [88]

Table 2.1 – Characteristics of the graphs used in kSSP experiments : number of nodes (n), number
of edges (m), diameter (D), average degree (〈d〉), exponent −α of the power-law degree distribu-
tion, and average clustering coefficient (〈cc〉).

All reported computations have been performed on computers equipped with 2 quad-core
3.20GHz Intel Xeon W5580 processors and 64GB of RAM.

2.6.2 Experimental results

In this section, we first describe and analyze our experimental results on road networks and
then on complex networks. We will see that the behavior of the algorithms’ differ from one type
of network to the other.

First, we have measured the average and the median of the algorithms’ running time in all
considered networks. The results on road networks are reported in Table 2.2 and the ones on
complex networks are in Table 2.4. The data in Tables 2.2, 2.4 and 2.3 corresponds to the biggest
experienced value of k (k = 1, 000 for road networks and 10, 000 for complex network).

Then, we have measured the number of stored trees for all networks. As we will discuss below,
in the case of complex networks, there are very few differences in the number of in-branchings.
The results on road networks are described in Table 2.3. Moreover, in Figures 2.3 and 2.4, we
report the evolution of the average and median running times of the algorithms when the number
k of reported paths increases. For the latter figures, the results we obtained differ depending on
the class (road or complex) of the networks but among a same class, they do not differ much
depending on the considered networks, so we only report them in the case of the networks COL,
DC (see Figures 2.1 and 2.2), BIOGRID and CAIDA (see Figure 2.4).

We have then performed a refined comparison of the algorithms on the road networks. The
results we obtained does not differ much depending on the considered networks, so we only report
the comparison of the algorithms on the DC and COL networks in Figures 2.1 and 2.2. More
precisely, we have plot pairwise comparisons of the running times and number of stored trees for
each source-destination pairs on DC and COL network.

Finally, some statistics about the queries’ properties and their impact on the algorithms’ per-
formances are depicted in Figures 2.5 and 2.6.

Road Networks. Note that the algorithms can be classified as three sets : Algorithms with low
memory consumption i.e, the ones storing no more than a single in-branching, that are Yen’s, NC,

53

54 CHAPITRE 2 — On finding k shortest simple paths in a graph

PY and PNC. Algorithms storing big number of in-branchings (SB and SB*). And algorithms
establishing a space - time tradeoff (PSB and its two variants). We first compare the experimental
results of the first class together, then we do the same with the second class. We finally compare
the PSB algorithm with the others, and we give a conclusion on our experiments on road networks.

— We first observe, based on Table 2.2 and Figures 2.3a and 2.3b, that all algorithms are
faster than Yen’s algorithm on small road networks (the average speed up is between one
and two orders of magnitude). Similar experiments described in [54, 83] leads to the same
conclusion on big road networks.
Let us now compare NC, PY and PNC algorithms together, as they all store no more than
a single in-branching in the memory. The average and median running times reported in
Table 2.2 show that the PY algorithm is significantly faster than the NC algorithm for all
road networks (up to 5 times faster on average). Moreover, a refined comparison of the NC
and PY algorithms on DC and COL networks (Figures 2.1b and 2.2b) show that this is true
for all queries.
Surprisingly, PNC algorithm is slower than PY (based on Table 2.2 and Figures 2.1d
and 2.2d) even though its was expected to be faster (see Section 2.6.1). This is due to
the extra time consumed during the coloring procedure that is computed from scratch each
time (unlike PY where no such operation is needed).

— The simulation results reported in Table 2.2 and Figure 2.3 confirm that the use of shortest
path tree update procedures in SB* helps to significantly reduce the running time compa-
red to SB. More precisely, the average and median running times of the SB* algorithm
are significantly smaller than for the SB algorithm on all road networks (SB* is up to
twice faster than SB). A more refined comparison on DC and COL network (Figures 2.1a
and 2.2a) show that SB* is faster than SB for almost all queries (more than 90% of the
queries). The same behavior was observed on all road networks. Finally, we recall that by
design, the number of stored in-branchings is the same in both algorithms.

— Concerning the PSB algorithm, as shown in Table 2.2 and Figures 2.1e, 2.1f, 2.2e and 2.2f,
PSB gives a space time tradeoff between SB and NC i.e, it is faster than NC and consumes
less memory than SB. However, PSB algorithm is, sometimes, beaten by the PY algorithm
as it is faster while consuming less memory (only on in-branching is stored). As a result,
PSB algorithm could give a space time tradeoff only on DC and BAY. Note that, the special
two variants of PSB (PSB-v2 and PSB-v3) lead to a small improvement of the running time
(up to 5% time reduction) but to a significant reduction of the memory consumption (up to
30% memory reduction), see Tables 2.2 and 2.3.
An unexpected observation (in Table 2.2) is the gap between the average and the median
running time of the SB like algorithms (SB, SB*, PSB, PSB-v2 and PSB-v3). That is, the
median could be up to 5 times smaller than the average, while it is not the case with the
remaining algorithm. We discuss this observation further in Section 2.6.3.
Among the considered algorithms, none of them clearly outperforms all the others on road
network. As shown in Table 2.2 and Figure 2.3, on most of the road networks (Rome, DE,
BAY and COL), PY algorithm is the fastest on average (slightly faster than SB*). However,
SB* is, by far, the fastest on median on DC, NY, BAY and COL. This is justifiable by the
big difference between the average and the median running time of SB* algorithm and by
the fact that, on a small number of queries, SB* algorithm is extremely slow, as shown in
Figures 2.1c and 2.2c where a small number of points are very far from the majority of the
other points. Note that the results may change with respect to the value of k (Figure 2.3).

54

2.6 – Experimental evaluation 55

To conclude, among the considered algorithms, PY and SB* algorithms are the fastest on road
networks. SB* has a better average running time while PY algorithm has a running time that is
more stable.

Rome DC DE NY BAY COL

Yen
avg 3389 11316 159785 - - -
med 1439 4945 59463 - - -

NC
avg 407 823 10620 99521 94149 146025
med 178 404 6129 64465 56136 99540

PY
avg 181 326 1972 41923 24970 35265
med 155 299 1644 39389 24064 35039

PNC
avg 203 336 2434 69913 28481 40045
med 173 305 1997 58446 26552 38952

SB
avg 451 184 8469 53423 38390 68077
med 356 75 4321 30300 8783 20535

SB*
avg 282 117 5428 33704 28693 49859
med 199 43 2139 18659 4977 11060

PSB
avg 447 269 7939 106040 53286 81321
med 340 117 6148 81927 23574 40640

PSB-v2
avg 447 265 7513 100377 49683 76766
med 347 117 5849 75914 21812 38732

PSB-v3
avg 446 265 7471 100390 49653 77185
med 346 115 5785 75681 21770 38709

Table 2.2 – Running time (ms) of the algorithms on road networks, (k = 1, 000)

Rome DC DE NY BAY COL
NC, PY and PNC 1 1 1 1 1 1
SB and SB* 1135 243 948 1669 541 585
PSB 694 160 335 536 246 249
PSB-v2 580 138 274 373 194 208
PSB-v3 588 147 290 380 200 212

Table 2.3 – Average number of stored trees using some kSSP algorithms on road networks, (k =
1, 000)

Complex Networks. Here we analyze, and we try to explain the behavior of the algorithms on
complex networks, except for Yen’s algorithm because of its excessive running time (as already
mentioned above).

On complex networks, the PSB algorithm is the fastest kSSP algorithm among the considered
algorithms (Table 2.4 and Figure 2.4). Considering the space consumption, all the kSSP algorithm
have a small memory consumption (for k = 10, 000, the number of stored in-branchings does not
exceed 50). It is also shown in Table 2.4 that the running time of PSB and its two variants (PSB-v1
and PSB-v2) is similar.

55

56 CHAPITRE 2 — On finding k shortest simple paths in a graph

(a) Running time of SB and SB* (b) Running time of NC and PY

(c) Running time of SB* and PY (d) Running time of PY and PNC

(e) Running time of SB and PSB (f) Number of trees of SB and PSB

Figure 2.1 – Comparison of the running time and the number of stores trees on DC. Each dot
corresponds to one pair source/destination (k = 1, 000).

56

2.6 – Experimental evaluation 57

(a) Running time of SB and SB* (b) Running time of NC and PY

(c) Running time of SB* and PY (d) Running time of PY and PNC

(e) Running time of PSB and SB (f) Number of trees of SB and PSB

Figure 2.2 – Comparison of the running time and the number of stores trees on COL. Each dot
corresponds to one pair source/destination (k = 1, 000).

57

58 CHAPITRE 2 — On finding k shortest simple paths in a graph

BIOGRID FB P2P DIP CAIDA LOC

NC
avg 1905 1493 3247 8325 25367 26659
med 1458 1442 3014 7590 18583 23846

PY
avg 1336 1523 2475 6361 22459 21474
med 1303 1492 2386 6354 21824 21065

PNC
avg 1302 1478 2479 6148 21869 18910
med 1281 1449 2396 6087 21122 18332

SB
avg 993 2986 596 870 8637 2524
med 821 2472 575 771 6724 2200

SB*
avg 980 3070 481 802 8506 2508
med 810 2507 476 725 6661 2173

PSB
avg 431 1062 293 456 3644 1237
med 394 971 282 422 3666 1190

PSB-v2
avg 421 1082 294 439 3541 1163
med 387 988 282 410 3574 1122

PSB-v3
avg 431 1081 292 437 3654 1210
med 399 991 280 410 3664 1167

Table 2.4 – Running time (ms) of the algorithms on Complex networks, (k = 10, 000)

(a) Average running time of DC (b) Median running time on DC

(c) Average running time of COL (d) Median running time on COL

Figure 2.3 – The running time of the kSSP algorithms on road network with respect to the values
of k

58

2.6 – Experimental evaluation 59

In what follows, we give some qualitative arguments that may explain the fact that the PSB
algorithm is the fastest among all considered algorithms on complex networks.

Suppose P is a shortest path from s to t. On complex networks, it is likely to have a vertex v
on P with high degree. Let us study the behavior of the different variants of the PSB algorithm
when they compute the detours of P at v, in contrast with the other algorithms.

First, Yen’s, NC, PY and PNC algorithms may compute, independently, for each vertex v′ ∈
N+(v) neighbor of v a shortest path from v′ to t resulting with |N+(v)| shortest path algorithm
calls to find the shortest simple detours at the neighbors of v. On the other hand, SB* and PSB
algorithms compute at most one shortest path in-branching T at v, that works for each neighbor
v′ of v. In another word, SB* and PSB are favorable to iterate on v. Moreover, as v has a high
degree, it is supposed that a large number of the neighbors v′ of v leads to simple candidates, i.e,
P Tv′t∩(s, · · · , v) = ∅. So, the number of shortest path in-branchings computed and/or stored using
SB* and PSB algorithms is expected to be small.

In addition, as the number of hops of a shortest path is “small” (remember that complex net-
work are small-worlds). The number of calls of the shortest path in-branching update is expected
to be small for PSB. As this procedure is faster in PSB than SB* and the number of calls is similar,
PSB algorithm is faster than SB* on complex networks. This is not valid on road network because
the number of hops of a shortest path may be big and the shortest path in-branching update is
called many more times.

To conclude, on complex networks, the PSB algorithm is the fastest among the considered
algorithms, it has a feasible working memory and this seems to be related to structural properties
of complex networks.

2.6.3 Impact of the properties of the queries

Here we study the impact of other parameters (related to the properties of the queries) on the
running time of the algorithms. In particular, the number of hops of a shortest path and the stretch
of a shortest path from the “center” (defined below).

As noticed in Section 2.6.2, some algorithms have different behaviors with respect to the
structure of the network and the query’s properties. In this section, we are investigating whether
some properties of an s-t query may explain the variations of the running time of the algorithms.
For this purpose, we have considered two criteria of each s-t query, the number of hops between
s and t of a shortest s-t path and the stretch of a shortest s-t path from the “center” of the graph.

A similar indicator to the number of hops of a shortest path is the maximum number of hops,
that is the number of hops of a path with maximum number of hops among the k shortest paths
given by an algorithm. Formally, the maximum number of hops of a kSSP query from s to t
using an algorithm A is M if and only if for each path P given by A, |P | ≤ M . We studied
this parameter and the obtained results are almost the same as those obtained while studying the
number of hops. Therefore, we only describe the results corresponding to the number of hops.

The number of hops of the shortest path (the one given by an SP algorithm) is a meaningful
criterion to be studied, as each of the algorithms has the common routine of iterating and eventually
calling an SP algorithm for each vertex on the first shortest path. As the obtained results are similar
on different road networks, we only add and discuss the results of NC, PY, SB* and PSB algorithm
on NY road network.

As shown in Figure 2.5, no clear pattern can lead to a establish a concrete relationship bet-
ween the running time for one of these algorithms and the number of hops. For instance, the SB*

59

60 CHAPITRE 2 — On finding k shortest simple paths in a graph

(a) Average running time of BIOGRID (b) Median running time on BIOGRID

(c) Average running time of CAIDA (d) Median running time on CAIDA

Figure 2.4 – The running time of the kSSP algorithms on complex network with respect to the
values of k

60

2.6 – Experimental evaluation 61

algorithms (Figure 2.5c) has big running time for queries with relatively small number of hops.
However, this is not flagrant and it does not hold on the remaining algorithms (Figures 2.5a, 2.5b
and 2.5d).

(a) Running time of NC (b) Running time of PY

(c) Running time of SB* (d) Running time of PSB

Figure 2.5 – The running time with respect to the number of hops of the shortest path of some
kSSP algorithms on NY. Each dot corresponds to one pair source/destination (k = 1, 000).

Another interesting parameter to be studied in road networks is the stretch from the center (by
center we mean a vertex of minimum eccentricity in the network). So, the stretch of an s-t path P
from the center c is defined as the ratio between the length of a shortest s-t path passing through c
and the length of P . This gives an indicator on how far a path can be from the center. In order to
establish a relation between the running time and the stretch of the center, we plotted (figure 2.6)
the running time with respect to the stretch value. Clearly, no flagrant pattern related to the stretch
value is found. Then, no concrete relation between the running time of these algorithms and the
stretch from the center can be established based on our experiments.

To conclude, no clear relationship between the running time of an algorithm and the number
of hops, neither the stretch from the center is experimentally found. However, it seems that not all
queries perform the same. For instance, in Figures 2.1b, 2.2b, 2.5a and 2.6a, it can be observed
two distinct clouds of points. It would be interesting to understand whether these two clouds

61

62 CHAPITRE 2 — On finding k shortest simple paths in a graph

(a) Running time of NC (b) Running time of PY

(c) Running time of SB* (d) Running time of PSB

Figure 2.6 – The running time with respect to the stretch from the center of some kSSP algorithms
on NY. Each dot corresponds to one pair source/destination (k = 1, 000).

62

2.7 – On arbitrarily weighted digraphs with no negative cycles 63

correspond to some specific properties of the queries. This could help us to design improvements
of our algorithms.

Conclusion. Our simulation results show that the best algorithm to be chosen for solving the
kSSP problem depends on the use case. For instance, on the considered complex networks, the
PSB algorithm achieves the best results. Indeed, it is the fastest among the considered algorithms,
and, similarly to the other algorithms, it has low memory consumption. Besides, on road networks,
if large memory consumption is allowed, the SB* algorithm is the fastest among the considered
algorithms on most of the queries. However, the PY algorithm has a running time that is more
stable, and it has low working memory. Therefore, the PY algorithm seems to offer a better space-
time trade-off than the other considered algorithms on road networks.

An empirical framework for the selection of the most appropriate kSSP algorithm with respect
to the use case is suggested in Figure 2.7.

An open problem is how to handle the kSSP problem on networks with arbitrarily arc weights
(including negative weights). Another interesting question is how to design a data structure en-
abling to quickly answer kSSP queries similarly to the data structures used by the hub labelling
and contraction hierarchy schemes to answer distance queries [21]. A probably more difficult
question would be to address dynamic networks, i.e., where the weights of the arcs evolve a long
time (e.g., in road networks where the traversal time of an arc may vary). Would it be possible to
quickly update the solutions after a modification in the network?

kSSP

PSB large
working

memory?

SB* PY

complex network road network

Yes No

Figure 2.7 – A framework of the appropriate kSSP algorithm with respect to each usecase

2.7 On arbitrarily weighted digraphs with no negative cycles

In this section we study the kSSP problem in arbitrary weighted digraph with no negative
cycles. We first present a straightforward adaptation of Yen’s algorithm, called Y-BFM, with worst-
case running time in O(kn2m), and then show how to reduce this time complexity to O(kn(m+
n logn)) using an SP in-branching update algorithm. Then, we propose two algorithms, called
PY-BFM and PNC-BFM. Both with running time in O(kn2m) but offering better performances
than Y-BFM in practice.

This section is organized as follows. First, a baseline solution is described. Then, we show how
to reduce its time complexity toO(kn(m+n logn)) in Section 2.7.1 while the adaptation of other
kSSP algorithms are described in Section 2.7.2. Finally, an experimental evaluation is presented
in Section 2.7.3.

63

64 CHAPITRE 2 — On finding k shortest simple paths in a graph

A baseline solution Recall that Bellman-Ford-Moore’s (BFM) algorithm [93] can compute an
SP in-branching in a digraph with arbitrary arc weights without negative cycles in timeO(nm). So,
based on Corollary 2.2.2, one can solve the kSSP problem in digraphs with arbitrary arc weights
without negative cycles within Yen’s framework by replacing Dijkstra’s algorithm by Bellman-
Ford-Moore’s (BFM) algorithm. This gives a polynomial time algorithm, called Y-BFM, with
worst-case time complexity in O(kn(nm)) = O(kn2m).

2.7.1 Yen-Ball-String (Y-BS) algorithms

Now, let us show that the kSSP problem on arbitrary weighted digraphs with no negative cycles
can also be solved in timeO(kn(m+n logn)). For this purpose, we use two building blocks. First,
we use the shortest path tree update algorithm described in [90] to show that a second shortest path
can be computed in time O(n(m+n logn)). Then, we generalize this result for each k > 0 based
on the fact that k shortest simple paths in a weighted digraph D can be computed in O(k) calls to
a second shortest path algorithm in subdigraphs of D [101]. We call this method Yen-Ball-String
algorithm (Y-BS).

Finding a second shortest simple paths LetD be an arbitrary weighted digraphs without nega-
tive cycles, let T be an SP in-branching ofD rooted at t, and suppose that an arc e inA is removed
form the digraph. If e ∈ T , then T is not a valid SP in-branching anymore. In order to get a valid
SP in-branching inD\{e}, a naive solution is to call the BFM algorithm from scratch. However, a
better solution is to use an algorithm for updating an SP in-branching after the addition or deletion
of an arc, such as the Ball String algorithm proposed in [95, 90].

Precisely, it has been proved in [90] that the Ball-String algorithm proposed in [95] for upda-
ting an SP in-branching after the addition or deletion of any arc is also correct for digraphs with
arbitrary arc weights but no negative cycles and that its time complexity remains inO(m+n logn).
Furthermore, we observe that the results of [90] are also valid for vertex deletion. In fact, it suf-
fices to consider the modified digraph in which each vertex u is split into two vertices uin and uout

connected by a zero weighted arc uinuout, and each arc uv ∈ A is replaced by an arc uoutvin with
same weight (i.e., `(uoutvin) = `(uv)). Then, the deletion of vertex u is equivalent to the deletion
of the arc uinuout in the modified digraph.

It follows that, given an SP in-branching T rooted at t and containing a shortest path P from
s to t, one can compute all the shortest simple detours of P following Yen’s framework using the
Ball-String update algorithm. Note that, at each iteration, at most one vertex and a single arc are
removed. So, the Ball-String algorithm is called at most O(n) times. Hence, finding a shortest
simple detour at each vertex v in P can be done in O(n(m+ n logn)).

Finally, the overall time complexity of finding a second shortest simple path is the sum of the
time needed to computes an SP in-branching i.e, O(nm) using BFM, and the time complexity of
computing a shortest simple detour at each vertex along the given shortest pathO(n(m+n logn)).
Therefore, a second shortest path can be found in time O(n(m+ n logn)).

Finding k ≥ 2 shortest simple paths To generalize this algorithm for each k ≥ 2, we use the
following result from [101].

Theorem 2.7.1 (L. Roddity, 2012 [101]). Let D = (V,A) be a weighted digraph, the problem
of computing k shortest simple paths between s and t can be solved by O(k) computations of a
second shortest simple path each time in a different sub-digraph of D.

64

2.7 – On arbitrarily weighted digraphs with no negative cycles 65

Thus, our algorithm computes a second shortest path by dynamically updating an SP in-
branching as described above. Then, it performs O(k) calls to a second shortest path algorithm
in order to extract k shortest simple paths using the reduction described in [101]. We conclude the
following.

Theorem 2.7.2. The kSSP problem can be solved in arbitrary weighted digraphs without negative
cycles in time O(kn(m+ n logn)).

Clearly, the cubic time complexity lower bound of the kSSP on digraphs with non-negative
weights provided by Williams and Williams [118] (described in Section 2.1 page 39) is also valid
in the case of arbitrary weighted digraphs without negative cycles. This means that improving this
bound, i.e. O(kn(m+ n logn)), seems unlikely at the moment.

2.7.2 Adaptation of some kSSP algorithms

As described above, several algorithm were proposed to improve the efficiency of the resolu-
tion of the kSSP problem in practice [67, 79, 111, 70, 59, 54, 83, 82, 10, 12]. However, none of
them deals with arbitrarily weighted digraphs. Here we consider solving, efficiently in practice,
the kSSP on arbitrarily weighted digraphs without negative cycles.

Similarly to what we described in Section 2.5, the main drawback of the Y-BFM algorithm
is its large number of calls to an SP algorithm (the number of BFM calls) which is expensive
in practice. Here, we adapt the Postponed Yen algorithm (PY) proposed in Section 2.5 and the
Postponed Node Classification algorithms (PNC) proposed in Section 2.6 to the case of arbritrary
weighted digraphs without negative cycles in order to end up with new algorithms called the
Postponed Yen Bellman-Ford-Moore (PY-BFM) and Postponed Node Classification BFM (PNC-
BFM) algorithm. These new algorithms improve the running time of Y-BFM either by avoiding
some SP calls, or by reducing the running time consumed by a BFM call using classical SP in-
branching updates.

Postponed Yen - Bellman-Ford-Moore (PY-BFM) algorithm The Postponed Yen - Bellman-
Ford-Moore algorithm is a straightforward adaptation of the PY algorithm described in Sec-
tion 2.5. Precisely, it replaces Dijkstra’s SP algorithm by the Bellmand-Ford-Moore algorithm.
The same pseudocode of PY algorithm (Algorithm 2.2) describe the PY-BFM algorithm, by using
BFM algorithm instead of Dijkstra’s algorithm to find a shortest path, (lines 4 and 21). In a worst
case scenario, a BFM call is needed to compute a shortest simple detour at each vertex of the itera-
ted path, i.e, PY-BFM has the same time complexity as Y-BFM, that is, in O(kn2m). Besides, our
experiments presented in Sectionı2.7.3 shows that PY-BFM is up to 50 times faster than Y-BFM
on road networks, and up to 10 times faster on complex networks.

Postponed Yen - Bellman-Ford-Moore (PNC-BFM) algorithm The Postponed Node Classi-
fication - Bellmand-Ford-Moore algorithm (PNC-BFM) is a special variant of the PY-BFM algo-
rithm leading to an important speed up on practice.

In fact, the PY-BFM algorithm computes a shortest simple detour (Algorithm 2.2) using a
BFM call (from scratch). Instead, the PNC-BFM computes a shortest path by updated the first
SP in-branching computed (T) using standard methods for updating shortest path tree [57]. This
reduces the computation to a smaller subdigraph (the invalid part) and leads to a significant speed
up.

65

66 CHAPITRE 2 — On finding k shortest simple paths in a graph

The PNC-BFM algorithm makes exactly the same number of BFM calls as the PY-BFM al-
gorithm. So, it has the same complexity bound i.e, O(kn2m). Besides, the computational results
presented in Section 2.7.3 show that this update procedure gives an average speed up, in practice,
by a factor 1.5 on road network and 1.1 on complex networks. So, the PNC-BFM is between one
and two orders of mangitude faster than Y-BFM in practice.

2.7.3 Experimental evaluation

In this section, we describe our experimental evaluation. First, we start by describing our im-
plementation and settings, then we discuss our experimental results on road and complex networks.

Experimental settings Here we specify the details of the implementation and the setting used
in our experiments.

We have implemented three algorithms presented in this section (Y-BFM, PY-BFM and PNC-
BFM) in C++ and our code is publicly available [14]. We did not implement the improved algo-
rithm described above (Y-BS), as it seems to be noncompetitive despite its appealing complexity
bound in O(kn(m + n logn)). First, since the SP in-branching updates procedure is not as per-
formant as a well engineered implementation of BFM, and it is called twice the number of BFM
calls in Y-BFM algorithm. Second, because it hides considerable constants in the generalisation
procedure (Theorem 2.7.1) of finding k shortest simple path using the described second shortest
simple path algorithm.

Our implementation of BFM algorithm follows the shortest path faster algorithm routine
(known as SPFA) [93]. Precisely, the vertices of the digraph are partitionned into two sets, a set of
relaxed vertices A initialized with {s}, and a set of the remaining vertices (vertices to be relaxed)
B = V \ A. Then, at each iteration, only the arcs with a tail in A and a head in B are relaxed,
finally the set A and B are swapped. This procedure is repeated n− 1 times.

Moreover, we have implemented a special copy operation that enables to update the in-
branching when a set of nodes is removed from the graph. This corresponds to the operations
performed when computing a shortest path by updating the first SP in-branching T computed in
PNC-BFM.

Networks setting We have evaluated the performances of our algorithms on some road networks
from the 9th DIMACS implementation challenge [44] and on several complex networks.

A road network of a city is the digraph modeling its roads, the characteristics of the chosen
networks are reported in Table 2.5.

On the other side, complex networks model different types of networks.
For instance, BTC-Otc is the who-trusts-whom network of people who trade using Bitcoin on

a platform called Bitcoin OTC. Since Bitcoin users are anonymous, there is a need to maintain
a record of users’ reputation to prevent transactions with fraudulent and risky users. Members of
Bitcoin OTC rate other members in a scale of -10 to +10 (total distrust to total trust) in steps of
1 [81]. Similarily, SOC-Epinions is who-trust-whom online social network of a general consumer
review site called Epinions [87]. Finally, the Slash-Zoo network contains friend/foe (+1/-1) links
between the users of Slashdot (a technology-related news website) [87].

In order to have negative arcs on road networks, the following preprocessing is applied before
conducting any experiment. For each of the road networks, a random vertex u is picked, and a shor-
test path out-branching T rooted at u is computed, then, the length of each arc of T is associated to

66

2.7 – On arbitrarily weighted digraphs with no negative cycles 67

Network n m Description
Quanzou 1 426 4 619 Road network of Quanzou [78]
ROME 3 353 8 870 Road network of Rome [44]
DC 9 559 29 682 Road network of Washington DC [44]
BitCoin-Otc 4 709 33 461 Bitcoin Otc web of trust network [81]
Slashdot-Zoo 27 222 342 747 Slashdot Zoo signed social network, 16/02/2009 [87]
Soc-sign-epinions 41 441 693 507 Who-trust-whom online social network [87]

Table 2.5 – Characteristics of the graphs used in kSSP experiments : number of nodes (n), number
of edges (m) and descriptions.

−1. Fortunately, no negative cycles arise in the three considered road networks after applying this
procedure. However, this was not enough for complex networks where a more involved procedure
is applied to ensure the absence of negative cycles. Precisely, for each of the considered complex
network, a vertex u with maximum degree is picked, a shortest path out-branching T rooted at u
is computed. Let dmax be the distance from u to the farthest vertex from u in the network, i.e,
dmax = Maxv∈V d(u, v). Moreover, let lmin be the length of an arc with minimum length in the
network, i.e, for each a ∈ A, `(a) ≥ lmin. Finally, the arcs of T are associated to−1∗lmin/(dmax).
Clearly, applying this procedure to a positive weighted digraph cannot create any negative cycle
as any cycle of the resulting digraph has length bigger than lmin + dmax ∗ (−1) ∗ lmin/(dmax),
which is non-negative. Note that, after applying the described procedures, the number of arcs with
negative weights of both road and complex networks is almost n.

In our experiments, we have randomly chosen 1000 queries (source-destination pairs of ver-
tices) for each network, and we have run each algorithm for each of these pairs for k = 100.

We have measured the execution time and the number of BFM calls. Note that the number of
BFM calls gives an indication of the running time that is independent of the implementation and
the architecture of the machine [77].

All reported computations have been performed on computers equipped with 48 12-core 2.20
GHz AMD Opteron(tm) Processor 6174 and 252 GB of RAM.

Experimental results We have measured the average and the median of the algorithms’ running
time in the considered networks. The data (the running time and the number of BFM calls) in
Tables 2.6 and 2.7, and in Figures 2.9 and 2.10, corresponds to the biggest experienced value of k
(k = 100). While the data in Figure 2.8 corresponds to their evolution with respect to the values
of k.

Quanzou Rome DC BTC-Otc Slash Soc

Y-BFM
avg 1275 14473 35948 1419 26157 55761
med 1114 6853 31821 1391 26082 55923

PY-BFM
avg 155 1305 622 142 2554 4964
med 135 589 319 131 2537 4021

PNC-BFM
avg 109 785 346 126 2274 4767
med 81 361 183 113 2416 4089

Table 2.6 – Average running time (ms) of the algorithms on road networks, (k = 100)

67

68 CHAPITRE 2 — On finding k shortest simple paths in a graph

Quanzou Rome DC BTC-Otc Slash Soc

Y-BFM
avg 986 1507 2657 464 718 615
med 849 1299 2288 456 717 612

PY-BFM
avg 151 193 50 69 110 73
med 122 178 24 64 113 62

Table 2.7 – number of BFM calls of Y-BFM and PY-BFM on road and complex networks (k =
100)

The average and median running times reported in Table 2.6 show that the PY-BFM algorithm
is significantly faster than the Y-PFM algorithm for every considered network (a speed up between
10 and 50 is achieved). Moreover, a refined comparison on Rome and Slash networks (Figures 2.9
and 2.10) show that PY-BFM is faster than Y-BFM for almost all queries. In addition, Figure 2.8
shows that this speed up remains significant even for small values of k (even for k = 2) for DC
and BTC networks.

Based on these remarks, we conclude that, in practice, PY-BFM is faster than Y-BFM for
almost every scenario (the value of k, the query specifications and the network structure).

Furthermore, Table 2.7 and Figures 2.8d, 2.8b, and 2.9d show that, on all the considered net-
works, the number of BFM calls is significantly reduced using PY-BFM. This ensures that a similar
speed up is guaranteed for any experimental settings [77].

As the obtained results are similar, we only displayed data obtained from experiments on
selected networks (Rome and Slash for Figure 2.9 and 2.10, and DC and BTC for Figure 2.8).
However, the results/plots corresponding to the remaining networks are very similar.

Now, let us compare PY-BFM and PNC-BFM. Table 2.6 and Figure 2.8 show that PNC-BFM
is almost always faster, on average, than PY-BFM (with a speed up up to 1.8 achieved on DC).
Moreover, a more refined plot in Figures 2.9c and 2.10c show that PNC-BFM is faster than PY-
BFM on the majority of the queries. In other words, PNC-BFM is faster, in practice, than PY-BFM.
This is surprising, as the original PNC algorithm (with Dijkstra’s algorithm) was outperformed by
PY (Section 2.6). This is justified by the fact that a BFM call is more time-consuming than a
Dijkstra’s call, and the cost (in terms of running time) of a coloring / re-initializing an SP tree is
compensated by the speed-up of a BFM call as it is long, while it is not the case with Dijkstra’s
algorithm as it is less time-consuming.

Conclusion To conclude, the PNC-BFM algorithm the fastest, kSSP algorithm in practice, wor-
king on arbitrarily weighted digraphs with no negative cycles. Several experiments on road and
complex networks show that the PNC-BFM algorithm is between one and two orders of magnitude
faster than the straightforward adaptation of the classical solution, i.e, Y-BFM algorithm.

2.8 Arbitrarily weighted digraphs

Finding a shortest path in arbitrarily weighted digraphs, also known as the shortest elementary
path (ESP) is known to be NP-Hard, as it can be reduced from the Hamiltonian path problem. So,
the kSP and the kSSP on arbitrarily weighted digraphs are NP-Hard too, as both require solving
the ESP for k = 1. However, as we are interested in practical solutions, we present in this section
several Mixed Integer linear Programming algorithms allowing to solve the kSSP on arbitrarily

68

2.8 – Arbitrarily weighted digraphs 69

(a) Average running time on DC (b) Average number of BFM calls on DC

(c) Average running time on BTC (d) Average number of BFM calls on BTC

Figure 2.8 – The running time of the kSSP algorithms on DC and BTC network with respect to
the values of k

weighted digraphs. Most of these models are inspired from models proposed to solve the ESP and
the Traveling Salesman problem (TSP).

Mixed Integer Linear Programming (MIP) formulations In this section, we present several
MIP formulations for solving the kSSP problem in arbitrary weighted digraphs (with or without
negative cycles). More precisely, we present in Section 2.8.2 a model enabling to compute the k
paths at once. Then, in Section 2.8.3 we present a model to compute a shortest path that is different
from a set of given paths. This model can then be used to compute the paths one after the other.
We start presenting in Section 2.8.1 a MIP formulation for computing a shortest s-t simple path in
directed graphs with arbitrary arc weights.

2.8.1 Finding a shortest simple path

In this section, we present two MIP formulations for solving the shortest simple path problem,
also known as the shortest elementary path (ESP) problem, in directed graphs with arbitrary arc
lengths and possibly negative length cycles. We choose to use first a formulation based on the
so-called Miller-Tucker-Zemlin (MTZ) subtour elimination constraints [92] that have been propo-
sed for solving the asymetric traveling salesman problem (ATSP) and that are valid for the ESP
problem. Other subtour elimination constraints have been proposed for ATSP and ESP, and are
based on cutset inequalities [40, 115, 49, 55], reformulations of the MTZ constraints [42], par-
tial orderings [73, 113], layered graphs [115, 41], and single [61] or multicommodity auxiliary
flows [122, 38]. Although formulations based on the MTZ constraints for the ESP problem are

69

70 CHAPITRE 2 — On finding k shortest simple paths in a graph

(a) Running time of Y-BFM and PY-BFM (b) Running time of Y-BFM and PNC-BFM

(c) Running time of PY-BFM and PNC-BFM
(d) Number of BFM calls of Y-BFM and PY-
BFM

Figure 2.9 – Comparison of the running time and the number of BFM calls on Rome network.
Each dot corresponds to one pair source/destination (k = 100).

70

2.8 – Arbitrarily weighted digraphs 71

(a) Running time of Y-BFM and PY-BFM (b) Running time of Y-BFM and PNC-BFM

(c) Running time of PY-BFM and PNC-BFM
(d) number of BFM calls of Y-BFM and PY-
BFM

Figure 2.10 – Comparison of the running time and the number of BFM calls on Slash network.
Each dot corresponds to one pair source/destination (k = 100).

71

72 CHAPITRE 2 — On finding k shortest simple paths in a graph

known to have a weak linear programming relaxation compared to other formulations [84, 65],
experiments shows that this approach is effective on small instances [42]. Hence, many improve-
ments have been proposed [45, 23, 103, 115, 42, 27] for solving the ATSP and ESP problems.

Formulation 1. Minimize Objective (2.1) subject to Constraints (2.2)-(2.8).

We use the following variables :
— xuv is a binary variable set to 1 if arc uv ∈ A is selected and 0 otherwise.
— pu ∈ R is a variable encoding the relative position of vertex u ∈ V .

Objective :

minimize
∑
uv∈A

`(uv)xuv (2.1)

Flow conservation constraints :

∑
v∈N−(u)

xvu −
∑

v∈N+(u)
xuv =

−1 if u = s

1 if u = t

0 else

∀u ∈ V (2.2)

∑
v∈N−(u)

xvu ≤ 1 ∀u ∈ V (2.3)

Subtour elimination constraints :

pu + 1 + n(xuv − 1) ≤ pv ∀uv ∈ A (2.4)

pu − pv + (n− 1)xuv + (n− 3)xvu ≤ n− 2 ∀uv ∈ A such that vu ∈ A (2.5)

ps + distBFS(s, u) ≤ pu ∀u ∈ V (2.6)

Domains of the variables :

xuv ∈ {0, 1} ∀uv ∈ A (2.7)

pu ∈ R ∀u ∈ V (2.8)

Constraints (2.2) are the flow conservation constraints ensuring the routing of one unit of
flow from s to t. Constraints (2.3) ensure that a vertex can be the head of at most one selected
arc. Constraints (2.4) are the Miller-Tucker-Zemlin (MTZ) subtour elimination constraints [92].
Roughly, suppose that arcs ab, bc and ca are selected. Then, by Constraints (2.4), we have pa+1 ≤
pb, pb+1 ≤ pc and pc+1 ≤ pa, that is pa+3 ≤ pa, a contradiction. Hence, the set of selected arcs
is acyclic. Constraints (2.5) are the so-called lifted MTZ constraints proposed in [45] to strengthen
Constraints (2.4). Constraints (2.6) further strengthen Constraints (2.4) by imposing a minimum
gap between the relative position of s and of any vertex u ∈ V based on the minimum number
distBFS(s, u) of arcs along any path from s to u (i.e., the unweighted distance from s to u in D).
Constraints (2.7) and (2.8) define the domains of the variables. Overall, this MIP has m binary
variables, n fractional variables, and O(n+m) constraints.

72

2.8 – Arbitrarily weighted digraphs 73

Another formulation for the ESP problem, that is also considered efficient in practice, is based
on the generalized cutset inequalities (GCS) that have been proposed in [55] to eliminate subtours.
The GCS constraints ensure that if a vertex v is the tail of an arc of the solution (i.e., if there is
a ∈ δ+(v) such that xa = 1, where δ+(v) denote the set of arcs going out from v), then any
cut induced by a subset S ⊂ V containing v is traversed by at least one outgoing arc. This is
formalized with Constraints (2.9) that ensure that the number of selected outgoing arcs of each
subset S is at least the number of selected outgoing arcs of each vertex in S. In Constraints (2.9),
δ+(S) denotes the set of arcs going out of the set S of vertices. Constraints (2.9) have been shown
to be a strengthen formulation of the Dantzig-Fulkerson-Johnson (DFJ) cutset inequalities [40] for
the ESP problem [115].

Formulation 2. Minimize Objective (2.1) subject to Constraints (2.2)-(2.3), (2.7), and (2.9).∑
a∈δ+(S)

xa ≥
∑

a∈δ+(v)
xa ∀S ⊂ V \ {s, t}, |S| ≥ 2, ∀v ∈ S (2.9)

Formulation 2 has m binary variables and O(n2n) constraints. However, in practice, these
constraints can be added incrementally, within a branch-and-cut framework, and only a few of
them will be added. More precisely, we start from an initial solution of formulation 2 without
Constraints (2.9). Then, for each subset S ⊂ V \{s, t} for which the inequality is violated, we add
the corresponding constraint and solve this improved MIP. The separation of violated inequalities
can be done using the minimum cuts or the strongly connected components of the digraph build
from D by keeping only the arcs for which xa = 1 (see for instance [49, 115] for more details).
This process ends when it is no longer possible to add constraints, that is, when no subset of
vertices violates the inequality. Formulation 2 is then optimally solved.

2.8.2 Compact MIP formulation for kSSP

In this section, we first present a compact MIP formulation for the kSSP problem. It is based
on a multi-commodity flow problem, each commodity corresponding to the routing of one unit of
flow from s to t along a unique path, with additional constraints ensuring the use of different paths
for each unit of flow.

Let I = {1, 2, . . . , k} and consider the following variables :
— xiuv is a binary variable set to 1 if arc uv ∈ A is selected for path Pi and 0 otherwise.
— yi,juv is a binary variable set to 1 if arc uv ∈ A is used for both paths Pi and Pj , and 0

otherwise.
— piu ∈ R is a variable used in the subtour elimination constraints related to the calculation

of path Pi. It encodes the relative position of vertex u ∈ V .
The MIP formulation is as follows.

Formulation 3. Minimize Objective (2.10) subject to Constraints (2.11)-(2.23).

Objective :

minimize
∑
uv∈A

`(uv)
∑
i∈I

xiuv (2.10)

73

74 CHAPITRE 2 — On finding k shortest simple paths in a graph

Flow conservation constraints :

∑
v∈N−(u)

xivu −
∑

v∈N+(u)
xiuv =

−1 if u = s

1 if u = t

0 else

∀i ∈ I, ∀u ∈ V (2.11)

∑
v∈N−(u)

xivu ≤ 1 ∀i ∈ I, ∀u ∈ V (2.12)

Subtour elimination constraints :

piu + 1 + n(xiuv − 1) ≤ piv ∀i ∈ I, ∀uv ∈ A (2.13)

piu − piv + (n− 1)xiuv + (n− 3)xivu ≤ n− 2 ∀i ∈ I, ∀uv ∈ A such that vu ∈ A (2.14)

pis + distBFS(s, u) ≤ piu ∀i ∈ I, ∀u ∈ V (2.15)

Constraints ensuring that selected paths are different :

yi,juv ≤ xiuv ∀i, j ∈ I, ∀uv ∈ A (2.16)

yi,juv ≤ xjuv ∀i, j ∈ I, ∀uv ∈ A (2.17)

xiuv + xiuv ≤ 1 + yi,juv ∀i, j ∈ I, ∀uv ∈ A (2.18)

1 +
∑
uv∈A

yi,juv ≤
∑
uv∈A

xiuv ∀i, j ∈ I (2.19)

1 +
∑
uv∈A

yi,juv ≤
∑
uv∈A

xjuv ∀i, j ∈ I (2.20)

Domains of the variables :

xiuv ∈ {0, 1} ∀i ∈ I, ∀uv ∈ A (2.21)

yi,juv ∈ {0, 1} ∀i, j ∈ I, ∀uv ∈ A (2.22)

piu ∈ R ∀i ∈ I, ∀u ∈ V (2.23)

Constraints (2.11)-(2.15) ensure the computation of k s-t simple paths. Constraints (2.16)-
(2.18) correspond to the linearization of the expression yi,juv = xiuvx

j
uv and ensure that variable yi,juv

is set to 1 if and only if xiuv = 1 and xjuv = 1. Constraints (2.19) and (2.20) ensure that paths Pi
and Pj differ by at least one arc. Observe that variables yi,juv and Constraints (2.16)-(2.20) can be
restricted to i < j. Finally, Constraints (2.21)-(2.23) define the domains of the variables.

Overall, this MIP formulation uses O(k2m) binary variables, O(kn) fractional variables, and
O(k2m) constraints.

As for the ESP problem, one can also use the GCS constraints to eliminate subtours. This
yields the following MIP formulation.

Formulation 4. Minimize Objective (2.10) subject to Constraints (2.11), (2.12), (2.16)-(2.22)
and (2.24).∑

a∈δ+(S)
xia ≥

∑
a∈δ+(v)

xia ∀i ∈ I, ∀S ⊂ V \ {s, t}, |S| ≥ 2, ∀v ∈ S (2.24)

74

2.9 – Conclusion 75

Observe that Formulations 3 and 4 do not ensure that `(Pi) ≤ `(Pi+1) for 1 ≤ i < k, but that
the k selected paths are distinct and are the k shortest. In order to get the paths in the right order,
one can either simply relabel the paths with the right ordering, or add constraints enforcing the
length of path Pi to be at most the length of path Pi+1, that is∑

uv∈A
`(uv)xiuv ≤

∑
uv∈A

`(uv)xi+1
uv ∀ 1 ≤ i < k (2.25)

2.8.3 MIP formulation for kSSP with constraints generation

A drawback of Formulation 3 is the large number of binary variables and constraints. Also, we
now present an incremental method for solving the kSSP problem using constraints generation.
Roughly, the idea is to first solve Formulation 1 to get a shortest s-t simple path P1, then add a
constraint preventing to find this path again and solve this extended MIP to get the shortest s-t
simple path P2 that is different from P1. We repeat this process until k paths are found (or no new
path can be found).

More precisely, let P be the set of paths that have already been computed (initially, P = ∅).
We use the following MIP formulation to find the next path P , and then add it to P .

Formulation 5. Minimize Objective (2.1) subject to Constraints (2.2)-(2.8) and (2.26).

1 +
∑

uv∈A(P)
xuv ≤ |A(P)| ∀P ∈ P (2.26)

In Formulation 5, Constraints (2.26) prevent from selecting the same sets of arcs than a pre-
viously found path. Overall, this MIP formulation uses m binary variables, n fractional variables,
and O(k + n + m) constraints. To get k paths, one has to solve this formulation k times, each
time with one constraint more than the previous time. So one has to solve k times a problem that
is roughly O(k4) smaller than Formulation 3.

The same approach can be used using other subtour elimination constraints. In particular, when
using the GCS constraints, we get

Formulation 6. Minimize Objective (2.1) subject to Constraints (2.2), (2.3), (2.7), (2.9)
and (2.26).

2.9 Conclusion

In this chapter, we studied the kSSP on different class of weighted digraphs. On non-negatively
weighted digraphs, we showed how to improve the state-of-the-art algorithms in terms of running
time / working memory in practice. Then, we adapted some of these methods to arbitrarily weigh-
ted digraphs with no negative cycles. The state-of-the-art algorithms and engineered ones proposed
in this chapter were implemented and evaluated experimentally on various road and complex net-
works. Finally, we proposed some MIP models to solve the kSSP on arbitrarily weighted digraphs.

The main questions asked after this chapter concern the design of a kSSP algorithm with
a preprocessing routing, enabling to drastically decrease the running time in practice. Another
interesting question concerns the practical performance of the MIP models for arbitrarily weighted
digraphs, and the design of hybrid methods allowing to use the fast kSSP algorithm of arbitrarily
weighted digraphs with no negative cycles as a subroutine for arbitrarily weighted digraphs with
small number of negative cycles.

75

On finding k (shortest)
dissimilar paths in a

graph

The similarity between two paths can be measured according to the proportion of arcs
they share. We study the complexity of several variants of the problem of computing
“dissimilar" paths (whose measure of similarity does not exceed a certain threshold)
between two given vertices of a weighted directed graph. For four of the most studied
measures in the literature, we give a unified and simple proof of the fact that finding k
shortest dissimilar paths is NP-COMPLETE.
We then consider the problem of finding an alternative to one or more given paths. We
show that finding a path that is dissimilar to another given path can be done in poly-
nomial time for one of the four considered measures while it is NP-COMPLETE for the
three remaining measures. In addition, we show that if k = 2 paths are given, finding
a new path that is dissimilar to the given ones is NP-COMPLETE even on DAGs for the
four considered measures. Moreover, for the four considered measures, we show that
if a path P is given, finding a shortest path among those that are dissimilar to P is
NP-COMPLETE in DAGs.
Finally, we present an alternative pseudo polynomial time algorithm allowing to find k
shortest dissimilar paths for two similarity measures in arbitrarily weighted digraphs
with no negative cycles.

3.1 Introduction . 79
3.2 Finding k shortest dissimilar paths 80
3.3 Finding a path dissimilar to several given paths 81

3.3.1 Finding a path dissimilar to another given path 81
3.3.2 Finding a path dissimilar to several given paths 83
3.3.3 Shortest path dissimilar to one given path 84

3.4 Algorithms for finding k (shortest) dissimilar paths 85
3.4.1 Pseudo Polynomial algorithm 85

3.5 Conclusion . 88

77

3.1 – Introduction 79

3.1 Introduction

As described in Chapter 2, the k shortest simple paths problem aims at finding a shortest path,
a second shortest path, etc., a kth shortest simple paths between a pair of source and destination
node in a digraph. This problem has numerous applications in various kinds of networks (road
and transportation networks, communications networks, social networks, etc.) and is also used as
a building block for solving many optimization problems. Let D = (V,A) be a digraph, an s-t
path is a sequence (s = v0, v1, · · · , vl = t) of vertices starting with s and ending with t, such that
(vi, vi+1) ∈ A for all 0 ≤ i < l. A path P is called simple if all of its vertices are distinct, i.e, for
every i 6= j, vi 6= vj .

Let ` : A → R+ be a length function over the arcs. For any path P , its length `(P) =∑
e∈A(P) `(e) is the sum of the lengths of its arcs. The top-k shortest paths is therefore a set

containing a shortest s-t path, a second shortest s-t paths, etc. until a kth shortest s-t path.
However, the k shortest simple paths are often quite “similar”. Roughly, they often share a

“large” proportion of their arcs. This is undesirable in many applications. For instance, in transpor-
tation networks, users may expect to have several options offering more diversity : a user prefers
a shortest paths, another user wants to avoid a traffic jam, a third one prefers to travel along the
coast etc.

To deal with this issue, the problem of computing “dissimilar” (shortest) paths has been in-
vestigated. Several definitions of the similarity between two paths (including the Jaccard and the
Max measures defined below [34]) were first proposed by Erkut and Verter [53], motivated by
the transportation of hazardous materials where it is recommended to avoid residential areas and
crowded routes.

Akgün et al. [3] proposed and analyzed a first basic solution, consisting in computing a huge
set of shortest paths and then choosing a subset of these paths that are mutually dissimilar. In
their experiments, this method scaled only on small transportation networks (about 300 vertices).
The first scalable solutions were proposed by Abraham et al. [1] where a shortest path P is fixed,
and “locally shortest” paths with limited intersection with P are requested (this corresponds to
the Asymmetric measure defined below). However, except for the initial path P , this definition
does not guaranty any mutual dissimilarity between the computed paths. A noticeable heuristic
proposed in [1] is the penalty based approach. This heuristic adds a penalty on the arcs of the
already chosen paths in order to limit the chances of falling back on the same paths.

Chondrogiannis et al. [35] offer both theoretical and empirical study of the problem. They
formally proved that finding k shortest dissimilar paths is weakly NP-COMPLETE for both the
Asymmetric measure and a new dissimilarity measure that they define (referred to as Min measure
below). For these two measures, they proposed an exact pseudo-polynomial time algorithm, with
several pruning techniques, that allows to find 4 dissimilar paths in a road network with 3,000
vertices in less than one second. They also proposed advanced heuristics enabling to scale on a
road network with one million vertices while computing paths that are close to shortest ones in
practice.

In this chapter, we further study the computational complexity of computing (shortest) dissi-
milar paths for four of the main measures studied so far. More formally, let P, P ′ be two s-t simple
paths in D and let X =

∑
e∈A(P)∩A(P ′) `(e), i.e., the total length of the intersection of P and P ′.

The four considered measures are defined as follows.

79

80 CHAPITRE 3 — On finding k (shortest) dissimilar paths in a graph

s a b c

d e

t

Figure 3.1 – Two s-t paths, Q = (s, a, b, c, t) (dotted) and Q′ = (s, d, a, b, e, c, t) (thick). Every
arc have length 1.

Name (Z) Jaccard [53] Asymmetric [1] Min [34] Max [53]

SZ(P, P ′) = X
`(P∪P ′)

X
`(P)

X
Min{`(P),`(P ′)}

X
Max{`(P),`(P ′)}

[Fig. 3.1] SZ(Q,Q′)= 0.25 0.5 0.5 0.33

Let S = {Asy, Jaccard,Min,Max}. Given one of the measures Z ∈ S and a threshold
value 0 ≤ θ ≤ 1, two paths P and P ′ are said θ-dissimilar (or P ′ is said θ-dissimilar to P in the
case of Asymmetric similarity) for the measure Z if SZ(P, P ′) ≤ θ.

Our contributions. In Section 3.2, we study the problem of finding k shortest pairwise dissimilar
paths. We give a unified and simple proof of the NP-completeness of this problem for each of the
four similarity measures defined above. Then, in section 3.3, we study the problem of finding a
(shortest) path that is dissimilar to a given set of paths. In particular, we show that if only one path
P is initially given, computing a second path that is dissimilar to P for the Asymmetric measure
can be done in polynomial time while it is NP-COMPLETE for the remaining measures (Min,
Max and Jaccard). Then, we prove that finding a path dissimilar (for each of the considered four
measures) to a given set of k ≥ 2 paths is NP-COMPLETE on DAGs. In addition, for each of these
four measures, we show that computing a shortest path among those dissimilar to a given path is
NP-COMPLETE on DAGs. Finally, we propose an alternative pseudo polynomial time algorithm
allowing to find k shortest dissimilar paths for the Asy and Min measure in arbitrarily weighted
digraphs with no negative cycles.

3.2 Finding k shortest dissimilar paths

In this section, we show that the problem of finding k shortest dissimilar paths is NP-
COMPLETE for all the considered similarity measures.

More formally, given a digraph D = (V,A) with length function ` : A → R+, a pair of ver-
tices (s, t) ∈ V × V , an integer k ≥ 2, a threshold value 0 ≤ θ ≤ 1, k constants L1, L2, · · · , Lk
and a similarity measure Z ∈ S, the problem k-SHORTESTDISS(Z) of finding k shortest dissimi-
lar paths asks to decide whether there exists k paths from s to t that are mutually θ-dissimilar with
respect to Z and such that `(Pi) ≤ Li for 1 ≤ i ≤ k.

Note that, for the extreme case where θ = 0, the problem of finding k dissimilar paths (not
necessarily the shortest) is the problem of finding k arc-disjoint paths, and it can be solved in
polynomial time using any min cost flow algorithm.

Finding k shortest dissimilar paths has already been proved NP-COMPLETE for the Asymetric
and Min measures [35]. Here we propose a simple and unified proof (for all considered measures).

80

3.3 – Finding a path dissimilar to several given paths 81

Theorem 3.2.1. For every k ≥ 2 and Z ∈ S, the k-SHORTESTDISS(Z) problem is NP-
COMPLETE in the class of DAGs with a single source and a single sink.

Proof. Let us first consider the case k = 2.
For every Z ∈ S, the problem is clearly in NP. We prove the NP-hardness by a reduction from

the MIN-MINDP problem. Given a graph G = (V,E) with length function ` : E → R+, two
terminals s, t ∈ V and a real number δ ∈ R+ as inputs, the MIN-MINDP problem asks whether
there exists two edge disjoint paths P and P ′ with `(P) ≤ δ. This problem is NP-COMPLETE [66].

Let I = (D = (V,A), `, s, t, δ) be an instance of the MIN-MINDP problem and let
I ′ = (D, s, t, k = 2, θ = 0, `, L1 = δ, L2 = n · maxe∈A `(e)) be an instance of the k-
SHORTESTDISS(Z) problem.

— If I is a positive MIN-MINDP instance, it means that there are two arc disjoint s-t paths P
and P ′ such that `(P) ≤ δ. Let P1 = P and P2 = P ′. For every similarity measure Z ∈ S,
we have SZ(P1, P2) = 0 since A(P1) ∩ A(P2) = ∅, and so

∑
e∈A(P1)∩A(P2) `(e) = 0. In

addition, `(P1) ≤ δ = L1 and `(P2) ≤ L2. So, I ′ is a positive k-SHORTESTDISS(Z)
instance

— If I ′ is a positive k-SHORTESTDISS(Z) instance, it means that there are two s-t paths P1
and P2 such that `(P1) ≤ L1 and SZ(P1, P2) = 0 for every similarity measure Z ∈ S ,
In another word, P1 and P2 are arc-disjoint. Let P = P1 and P ′ = P2. P and P ′ are two
arc-disjoint s-t paths. In addition `(P) ≤ L1 = δ, so I is a positive MIN-MINDP instance.

We conclude that the 2-SHORTESTDISS(Z) problem is NP-HARD.
To extend the result to any k ≥ 2, it is sufficient to add, to the digraphD in I ′, k−2 arc-disjoint

s-t paths P3, · · · , Pk, each with length L2 and to set L2 = Li for all 2 ≤ i ≤ k. �

3.3 Finding a path dissimilar to several given paths

In this section, we present our main results. First, we show that the problem of finding a path
dissimilar to another given path can be solved in polynomial time for the Asymmetric measure.
Then, we prove that the problem of finding a path dissimilar to two given paths is NP-COMPLETE.
Finally, we show that finding a shortest path dissimilar to one given path is also NP-COMPLETE.

3.3.1 Finding a path dissimilar to another given path

First, let us start with the easiest variant of the problem that is the problem of finding a path
dissimilar to another for the Asymmetrical measure. Given a digraph D = (V,A) with ` : A →
R+, two vertices s, t ∈ V , a threshold value 0 ≤ θ ≤ 1, a s-t simple path P and a similarity
measure Z ∈ S, DISS(1, Z) is the problem of finding a s-t path Q that is θ-dissimilar to P using
the measure Z.

Proposition 3.3.1. DISS(1, Asy) can be solved in same time as any shortest-path algorithm.

Proof. Let `′ : A → R+ be defined such that, for every e ∈ A, `′(e) = `(e) if e ∈ A(P),
and `′(e) = 0 otherwise. Hence, a shortest s-t simple path Q is a solution of the DISS(1, Asy)
problem if and only if `′(Q) =

∑
e∈A(P)∩A(Q) `(e) ≤ θ · `(P). �

Theorem 3.3.2. DISS(1, Z) is NP-COMPLETE for all Z ∈ {Jaccard,Min,Max}

81

82 CHAPITRE 3 — On finding k (shortest) dissimilar paths in a graph

s′ u

s t

t′

D

1− L `′(ut′)

0 0

Figure 3.2 – Digraph D′ defined from D (Theorem 3.3.2) with `′(ut′) = 1 for the Min measure
and `′(ut′) = 0 for the Max and Jaccard measures.

Proof. For every Z ∈ {Jaccard,Min,Max}, the problem is clearly in NP, so we only prove
the NP-hardness by a reduction from the LONG-PATH problem. Given a digraph D = (V,A)
with length function ` : A → R+, two terminals s, t ∈ V and a real number L ∈ R+ as inputs,
the LONG-PATH problem asks whether there exists an s-t simple path Q with `(Q) ≥ L. This
problem is NP-COMPLETE [105]. Moreover, it remains NP-COMPLETE when L ≤ 1 (by dividing
the length of each arc by M =

∑
a∈Aw(a)).

Let I = (D = (V,A), `, s, t, L) be a LONG-PATH instance with 0 < L ≤ 1. Let D′ =
(V ∪{s′, u, t′}, A∪{s′u, ut′, us, tt′}) with lengths `′(a) = `(a) for every a ∈ A, `′(s′u) = 1−L,
the value of `′(u, t′) depends on the considered measure and will be specified later, `′(us) = 0
and `′(tt′) = 0 (see Figure 3.2). Let also I ′ = (D′, `′, P, θ = 1 − L), with P = {s′, u, t′}, be an
instance of the DISS(1, Z) problem.

First, let us consider the Min measure and let `′(ut′) = L.
— If I is a positive LONG-PATH instance, then there is an s-t path R = (s, · · · , t) of length

at least L in D. Let Q = (s′, u, s, · · · , t, t′) be the concatenation of s′, u, R and t′. Note
that `′(P) = 1 and `′(Q) ≥ 1. We have SMin(P,Q) = `′(s′u)

min{`′(P),`′(Q)} = 1−L
1 = θ, and

so I ′ is a positive DISS(1,Min) instance.
— If I ′ is a positive DISS(1,Min) instance, then there is an s-t path Q s.t. SMin(P,Q) =

`′(P∩Q)
min{`′(P),`′(Q)} ≤ θ. Since `′(P ∩ Q) = `′(s′u) = 1 − L = θ, we have
min{`′(P), `′(Q)} ≥ 1 and so `′(Q) ≥ 1 (since `′(P) = 1). Let R be the subpath of Q
starting from s and ending at t, i.e.,R = (s, · · · , t) and `(R) = `′(R) = `′(Q)−(1−L) ≥
L (since R is a simple path and `′(Q) ≥ 1). Therefore, I is a positive LONG-PATH ins-
tance.

We conclude that DISS(1,Min) is NP-Hard.
Using a similar construction, the NP-hardness of DISS(1,Max) and DISS(1, Jaccard) can

be proved.
Precisely, for both the Jaccard and Max measure, it is sufficient to keep the same reduction

as before but setting `′(ut′) = 0.
— If I is a positive LONG-PATH instance, then there is an s-t path R = (s, · · · , t) of length

at least L in D. Let Q = (s′, u, s, · · · , t, t′) be the concatenation of s′, u, R and t′. Note
that `′(P) = 1− L and `′(Q) ≥ 1.
In the case of the Max measure, we get that SMax(P,Q) = `′(P∩Q)

max{`′(P),`′(Q)} ≤
1−L

1 = θ,
and so I ′ is a positive DISS(1,Max) instance.
In the case of the Jaccard measure, we get that SJaccard(P,Q) = `(P∩Q)

`(P∪Q) = 1−L
1−L+`(R) ≥

1− L = θ (since `(R) ≥ L), and so I ′ is a positive DISS(1, Jaccard) instance.

82

3.3 – Finding a path dissimilar to several given paths 83

s v1 v2 vn−1 t...

e1

f1

e2

f2

e3

f3

en−1

fn−1

en

fn

Figure 3.3 – DigraphDS = (V,A) defined from S = {x1, · · · , xn}. For all 1 ≤ i ≤ n, `(ei) = xi.
For all 1 ≤ i ≤ n, we have `(fi) = xi in the proof of Theorem 3.3.3 and `(fi) = M · xi with
M > 1 in the proof of Theorem 3.3.4.

— If I ′ is a positive DISS(1,Max) instance, then there is an s-t path Q s.t. SMax(P,Q) =
`′(P∩Q)

max{`′(P),`′(Q)} ≤ θ. Since `′(ut′) = 0, we have that `′(P) = `′(su) = `′(P ∩ Q) =
1−L = θ and `′(Q) ≥ `′(P). Since SMax(P,Q) ≤ θ, `′(Q) ≥ 1. Let R be the subpath of
Q starting from s and ending at t, i.e., R = (s, · · · , t) and `(R) = `′(R) = `′(Q)− (1−
L) ≥ L (since Q is a simple path). Therefore, there is a path from s to t in D of length at
least L and I is a positive LONG-PATH instance.

— If I ′ is a positive DISS(1, Jaccard) instance, then there is an s-t path Q s.t.
SJaccard(P,Q) = `′(P∩Q)

`′(P∪Q) ≤ θ. By construction, `′(P ∪ Q) = `′(Q). Since, moreover
`′(P ∩Q) = `′(s′u) = 1−L = θ, then `′(Q) ≥ 1. LetR be the subpath ofQ starting from
s and ending at t, i.e., R = (s, · · · , t) and `(R) = `′(R) = `′(Q)− θ ≥ 1− (1− L) = L
(since Q is a simple path). Therefore, there is a path from s to t in D of length at least L
and I is a positive LONG-PATH instance.

We conclude that DISS(1,Max) and DISS(1, Jaccard) are NP-Hard. �

3.3.2 Finding a path dissimilar to several given paths

Given a digraph D = (V,A) with ` : A → R+, two vertices s, t ∈ V , a threshold value
0 ≤ θ ≤ 1, k s-t simple paths P1, · · · , Pk and a similarity measure Z ∈ S, DISS(k, Z) is the
problem of finding a s-t path Q that is θ-dissimilar to Pi for all i ≤ k using the measure Z.

Theorem 3.3.3. For every k ≥ 2 and Z ∈ S, the DISS(k, Z) problem is NP-COMPLETE even if
D is a Directed Acyclic Graph (DAG) with a single source and a single sink.

Proof. Let Z ∈ S . Let us first consider the case k = 2. We use a reduction from the PARTI-
TION problem. Recall that the PARTITION problem takes as input a multiset S = {x1, ..., xn}
of positive integers and asks whether there exists a partition (X,Y) of S such that

∑
x∈X x =∑

x∈Y x = h where 2h =
∑
x∈S x (so

∑
x∈S x is even). The PARTITION problem is weakly

NP-COMPLETE [60].
Let DS = (V,A) be the DAG defined such that V = {s = v0, v1, · · · , vn−1, vn = t} and, for

every 1 ≤ i ≤ n, let us add arcs ei = vi−1vi and fi = vi−1vi with length `(ei) = `(fi) = xi (see
Figure 3.3). Let P1 be induced by {ei | 1 ≤ i ≤ n}, P2 be induced by {fi | 1 ≤ i ≤ n} (note that
`(P1) = `(P2) = 2h) and let θ = 1/2.

Note that there is a one-to-one mapping between the s-t simple paths and the bipartitions of
{1, · · · , n}. Indeed, let P be any such path. Then, for every 1 ≤ i ≤ n, path P goes through
exactly one of ei or fi. Let XP = {1 ≤ i < n | ei ∈ A(P)} and YP = {1 ≤ i < n | fi ∈
A(P)}. Clearly, (XP , YP) is a partition of {1, · · · , n}. Reciprocally, let (X,Y) be any partition

83

84 CHAPITRE 3 — On finding k (shortest) dissimilar paths in a graph

of {1, · · · , n}. Then, let PXY be the path induced by {ei | i ∈ X} ∪ {fi | i ∈ Y }. Clearly, PXY
is a s-t simple path.

First, we consider only the three similarity measures Asy, Min and Max. Note that every
s-t simple path has length 2h and therefore, for every s-t simple paths P and R, SAsy(P,R) =
SAsy(R,P) = SMin(P,R) = SMax(P,R). Hence, all similarity measures in {Asy,Min,Max}
are equivalent.

By construction, for every bipartition (X,Y) of {1, · · · , n} (equivalently, for every s-t simple
path PXY), `(P1 ∩ PXY) =

∑
i∈X xi and `(P2 ∩ PXY) =

∑
i∈Y xi. Since `(P1 ∩ PXY) =

SZ(P1, P) · 2h and `(P2 ∩ PXY) = SZ(P2, P) · 2h, it follows that (DS , `, s, t,
1
2 , P1, P2) admits

a s-t simple path P with SZ(P1, P) ≤ 1
2 and SZ(P2, P) ≤ 1

2 if and only if S admits a balanced
partition. So the DISS(2, Z) problem is NP-Hard for all Z ∈ {Asy, Min,Max}.

Concerning the Jaccard measure, i.e, the DISS(2, Jaccard) problem, using the same
construction proposed above but with θ = 1

3 one can prove that the described reduction is va-
lid.

Finally, to extend the result to any k ≥ 2, it is sufficient to add, to DS , k − 2 arc-disjoint s-t
paths P3, · · · , Pk with length = 2h. �

3.3.3 Shortest path dissimilar to one given path

We now study the problem of finding a path of bounded length that is dissimilar to a set of
k given paths. By Theorem 3.3.3, this problem is NP-COMPLETE (without bounding the length)
whenever k ≥ 2. So, let us study the case for k = 1. By Theorem 3.3.2, the problem is NP-
COMPLETE for Z ∈ {Min,Max, Jaccard}. So, the only remaining case is the Asy measure. In
contrast with Proposition 3.3.1, we prove that SDISS(1, Asy) is NP-COMPLETE. Moreover, this
result hold on DAGs and for every Z ∈ S.

Precisely, the SDISS(1, Z) problem takes as input a tuple (D, `, s, t, θ, L, P) where D =
(V,A) is a directed graph with ` : A→ R+, s, t ∈ V , 0 ≤ θ ≤ 1, L ∈ R+, and P is an s-t simple
path. It aims at deciding whether there exists an s-t simple path Q that is θ-dissimilar to P and
`(Q) ≤ L.

Theorem 3.3.4. Let Z ∈ S. The SDISS(1, Z) problem is NP-COMPLETE in the class of DAGs
with a single source and a single sink.

Proof. The problems is clearly in NP, so we prove its NP-hardness by a reduction from the
PARTITION problem.

Let S = {x1, ..., xn} be an instance of the PARTITION problem and 2h =
∑n
i=1 xi. Let

M > 1. Let DS = (V,A) be the DAG defined such that V = {s = v0, v1, · · · , vn−1, vn = t}
and, for every 1 ≤ i ≤ n, let us add arcs ei = vi−1vi and fi = vi−1vi with length `(ei) = xi and
`(fi) = M · xi respectively (see Figure 3.3). Note that, if we want to avoid parallel arcs, we can
simply subdivide each arc a ∈ A into two arcs with length `(a)/2 each.

Let P be the s-t simple path that consists of arcs e1, · · · , en and so `(P) = 2h. Note that,
since M > 1, `(P) ≤ `(P ′) for every s-t simple path P ′. Finally, let L = h(M + 1) and let
θ = 1/2 for Asy and Min measures, θ = 1

M+1 for the Max measure and θ = 1
M+2 for the

Jaccard measure.
As in the proof of Theorem 3.3.3, it can be shown that there is a s-t simple path Q with

`(Q) ≤ L and Q is θ-dissimilar from P if and only if S is a positive instance of the PARTITION

problem. �

84

3.4 – Algorithms for finding k (shortest) dissimilar paths 85

3.4 Algorithms for finding k (shortest) dissimilar paths

As described in the introduction of this chapter, several exact algorithms and heuristics were
proposed to find k shortest dissimilar paths in practice. The most recent algorithms were proposed
by Chond. et al. [35] where they presented two novel algorithms called MULTIPASS and ESX.
MULTIPASS is the first pseudo polynomial time algorithm allowing to find k shortest dissimilar
paths for the Min measure. MULTIPASS algorithm is similar to Dijkstra’s algorithm, i.e, it exa-
mines paths starting from s in increasing order of their length and expands every path from s to a
vertex v in V that satisfy some conditions (being dissimilar to each of the paths that have already
been added to the output and not “dominated” (see definition below) by other s-v path already
computed). The complexity of MULTIPASS algorithm is in O(kn2(θM)2k) where M is the sum
of the length of the arcs of the input digraph, M =

∑
a∈A `(a). Is is also shown experimentally

in [35] that MULTIPASS is the fastest exact algorithm of finding k shortest dissimilar paths in prac-
tice. Moreover, the ESX heuristic, is similar to the penalty based approach of Abraham et al. [1].
Precisely, it starts by computing a shortest s-t path P0. Then, it iteratively removes an arc a of P0
with minimum length, and computes a new shortest path P1 in the digraph after removing the arc
a. This process is repeated until a new shortest path P1 became dissimilar to P2. Then, the same
routine is applied on P2 until finding P3 that is dissimilar to P1 and P2, etc. until finding a kth

path Pk.

Our contribution We propose an alternative pseudo polynomial time algorithm allowing to find
k shortest dissimilar paths for the Asy and Min measures ∗. The advantage of our algorithm is
that it remains valid for arbitrarily weighted digraphs with no negative cycles.

3.4.1 Pseudo Polynomial algorithm

In this section, we describe our Pseudo Polynomial time algorithm of finding k shortest dis-
similar paths for the Asy and Min measures. Recall that our algorithm takes as input a weighted
digraph with unitary length function ` : A −→ Z with no negative cycles, two vertices s and
t and finds k shortest θ dissimilar s-t paths. For the sake of simplicity, we show how the algo-
rithms works for the Asy measure, and we describe later why the same algorithm works for the
Min measure. Also, we first consider the problem of finding a shortest path dissimilar to a gi-
ven set of δ paths (SDISS(δ, Z)), i.e, it takes as input a weighted digraph with unitary length
function ` : A −→ Z with no negative cycles, two vertices s and t, a constant L and a set
P = {P1, P2, ..., Pδ} of s-t paths, and asks whether there is an s-t P of length `(P) ≤ L such that
P is dissimilar for the measure Z (in what follows, we mainly consider Z = Asy) to each path in
P .

The algorithm Let P = {P1, P2, ..., Pδ} be a set of s-t paths and let P and P ′ be two s-t
paths, we say that P dominates P ′ (P 4 P ′) if and only if `(P) ≤ `(P ′) and SAsy(Pi, P) ≤
SAsy(Pi, P ′) for every path Pi ∈ P . Note that, the following properties are valid :

— Reflexivity : P 4 P
— Stability under concatenation : if P 4 P ′ then P.(u, v) 4 P ′.(u, v) for each v ∈ V \ P
— Transitivity : P 4 P ′ and P ′ 4 P ′′ then P 4 P ′′

∗. In fact, we designed our pseudo polynomial algorithm before noticing that MULTIPASS had already been publi-
shed.

85

86 CHAPITRE 3 — On finding k (shortest) dissimilar paths in a graph

Moreover, for each vertex v in V , an s-v path P is called good if and only if `(P) ≤ L and
SAsy(Pi, P) ≤ θ for every Pi ∈ P .

Our pseudo-polynomial algorithm, whose pseudocode presented in Algorithm 3.1, is similar
to Bellmand-Ford-Moore’s shortest path algorithm. It relaxes n times all the arcs of the digraph,
except that instead of keeping the distance from s to v for every vertex v, it keeps a table T (v)
containing a set of good s-v paths. The relaxation procedure consists of replacing a path P by
another P ′ only if P is dominated by P ′ (P ′ 4 P).

1: Input A digraph D = (V,A), s, t ∈ V , P = {P1, P2, ..., Pδ} , a similarity threshold 0 ≤ θ ≤
1 and a constant L

2: Output an s-t good path if any
3: for every v ∈ V do . Initialization
4: T (v) = []
5: T (s) = [((s), 0, SAsy(P1, (s)) = 0, · · · , SAsy(Pδ, (s)) = 0)] . . Each element of T (u)

consists of a path P from s to u, its length and its similarity with respect to each path in P
6: for i = 1 to n do
7: for every arc (u, v) ∈ A do
8: for every element e = (pref, `(pref), S1, · · · , Sδ) in T (u) do
9: pref∗ = pref.(u, v)

10: if pref∗ is good then
11: for every e′ = (pref ′, `(pref ′), S′1, · · · , S′δ) in T (v) do
12: if pref ′ 4 pref∗ then
13: break
14: if pref∗ 4 pref ′ then
15: delete e′ from T (v)
16: add (pref∗, `(pref∗), SAsy(P1, pref

∗), · · · , SAsy(Pδ, pref∗)) to T (v)
17: if T (t) is not empty then
18: return any element of T (t)

Algorithm 3.1 – PseudoPoly, a pseudo polynomial time algorithm to find a shortest path dissimilar
to a set of given paths

Correcteness of the algorithm

Claim 3.4.1. If SDiss(k,Asy) has a solution then it has a simple solution.

Claim 3.4.1 can be proved by observing that removing the cycles from a path won’t increase
its length, neither its similarity with the given paths. So, if a non-simple path is good, removing its
cycles keeps it good.

Theorem 3.4.2. Pseudo-Poly returns a good path if any.

Proof. The proof of correctness of our pseudo polynomial algorithm is similar to the proof of
correctness of Bellmand-Ford-Moore’s algorithm for finding a shortest path.

Let v ∈ V and let Ti(v) be the table T (v) after the ith iteration. By induction on i, we will
prove that there is an s-v path P that is good and it uses less than i arcs if and only if Ti(v) contains
an s-v path P ′ s.t. P ′ 4 P .

86

3.4 – Algorithms for finding k (shortest) dissimilar paths 87

Base case : for i = 0, there is only one good path using 0 arcs, that is P = {s} and it is in
T0(s) so the result holds. And for every vertex v 6= s there is no good paths using 0 edges, and
T0(v) is empty for every v 6= s. So the claim is satisfied for i = 0.

Inductive step : Suppose that for every vertex u ∈ V , there is an s-u path Q that is good and
uses at most i− 1 arcs if and only if there is an s-u path Q′ ∈ Ti−1(u) s.t. Q′ 4 Q.

We distinguish two cases :
— Case 1 : There is a good s-v path P that uses at most i arcs.

Let u be the vertex just before v on P , and let Q be the subpath of P going from s to
u, i.e., P = Q.v. Then Q uses at most i − 1 arcs and Q is good (as P is good). By the
induction hypothesis, Ti−1(u) contains an s-u path Q′ s.t. Q′ 4 Q. By the stability under
concatenation of 4, P ′ = Q′.(u, v) 4 Q.(u, v) = P .
At iteration i, the algorithm either will add P ′ to Ti(v) (line 16) and the claim is satisfied
as P ′ 4 P or P ′ won’t be added because Ti−1(v) has a path P ′′ s.t. P ′′ 4 P ′ (line 12-13).
In this case, T (v) has a path P ′′ s.t. P ′′ 4 P (by transitivity of 4).

— Case 2 : There is no good s-v path that uses at most i arcs.
In this case, no good s-v path using less than i− 1 arcs exists (otherwise we are in case 1).
So, by the induction hypothesis Ti−1(v) does not contain any good s-v path. And since the
algorithm only adds good paths to the tables (line 10). We deduce that Ti−1(v) is empty.
Let N−(v) be the set of in-neighborhoods of v and let u ∈ N−(v). At iteration i the
algorithm iterates over all arc (u, v).
— If there is no good s-u path using less than i − 1 arcs, then Ti−1(u) is empty. So, no

paths are added to Ti(v) after considering the arc (u, v).
— There is a good s-u path using ≤ i − 1 arcs, so Ti−1(u) contains a good s-u path P .

but after iterating the arc (u, v) the path P.(u, v) is not good anymore (otherwise we
are in case 1), so it won’t be added to Ti(v). Therefore Ti(v) remains empty.

So, if no good s-v path using ≤ i arcs exists, Ti(v) is empty.
Therefore the claim is satisfied after the ith iteration. Then the claim holds for each i ∈ N.

Claim 3.4.1 ensures that if there is no simple good path, then no good path exists. The longest
path we can find has at most n − 1 arcs. Therefore we only need to iterate n − 1 times to ensure
the correctness of the algorithm.

Note that, no restriction of the length of the arcs are required in this proof,(except of being
integers). In other words, the pseudo polynomial algorithm is also valid on arbitrarily weighted
digraphs no negative cycles. �

The complexity of the algorithm

Claim 3.4.3. If the length function ` has integer values (` : A → N) bounded by a constant C,
and P = {P1, · · · , Pδ} then, for each table Ti(v) of Algorithm 3.1, |Ti(v)| ≤ (n.C)δ+1 for each
v ∈ V and 1 ≤ i ≤ n

Proof. Let v ∈ V , and let P be an s-v path in Ti(v) of length 0 ≤ `(P) ≤ n.C where C is the
length of the longest arc in A, i.e, `(a) ≤ C for a ∈ A.

Following the fact that PseudoPoly agorithm (Algorithm 3.1) does not keep two paths in Ti(v)
if one of them dominates the second (lines 11-16). Then, each two entry e and e′ in Ti(v) have
either different length, of different similarity of one of the paths in P = {P1, · · · , Pδ}. So, for

87

88 CHAPITRE 3 — On finding k (shortest) dissimilar paths in a graph

each length value 0 ≤ l ≤ n.C, there is at most (n.C)δ corresponding elements in Ti(v) for
0 ≤ i ≤ n. Therefore, |Ti(v)| ≤ n.C(nC)δ = (nC)δ+1. �

Theorem 3.4.4. If the length function ` has integer values, (` : A → N) bounded by a constant
C. The PseudoPoly algorithm solves SDiss(δ, Asy) in O(n2δ+5 · C2δ+2)

Proof. The algorithm has four main loops, the first has n iteration multiplied by the number of
arcs that ism. Both are multiplied by the square of the number of entries of the biggest table among
Ti(v) for 1 ≤ n and v ∈ V , that is, by Claim 3.4.3, bounded by (nC)δ+1. Therefore the complexity
of Pseudo-Poly-Diss algorithm is bounded by O(nm((nC)δ+1)2) = O(n2δ+5 · C2δ+2). �

Theorem 3.4.5. If the length function ` has integer values, (` : A→ N) bounded by a constant C
and all of the s-t paths have different lengths, a set of δ shortest dissimilar paths can be found in
O(δ · n2δ+5 · C2δ+2).

Proof. As all of the s-t path have different length, one can find the shortest s-t path, then apply
PseudoPoly algorithm to find the second shortest path which is dissimilar to the first, etc. until
finding the δth shortest path dissimilar to the set of δ−1 given paths. This giveO(δ ·n2δ+5 ·C2δ+2)
time complexity. �

Note that, all of the arguments of this section (correcteness and complexity) are also valid if we
replace theAsy measure by theMinmeasure (Note that the only difference is that in Claim 3.4.3,
the number of entries in the tables are bounded by (nC)2(δ+1), and the next bounds on complexity
are modified accordingly). As, following the definition of the k shortest paths, the output paths
will be extracted in a non-decreasing order. So, the similarity value of a path with respect to the
Min and Asy measures will be the same as it will be equal to the length of the intersection over
the shorter path among them (the path already added to the output).

3.5 Conclusion

In this chapter, we studied several versions of the problem of finding (shortest) dissimilar paths
in a digraph considering four similarity measures. We also reviewed the state of the art results and
algorithms and proposed an alternative pseudo polynomial algorithm allowing to find k shortest
dissimilar paths in an arbitrarily weighted digraphs. The results of this chapter are summarized in
Table 3.1.

An interesting question is whether there is a similarity measure for which the problem of
finding k dissimilar paths can be solved in polynomial time. Another interesting question regards
the accuracy of these similarity measures for real life applications.

88

3.5 – Conclusion 89

Problem Objective Complexity

k-SHORTESTDISS(Z) Finding k shortest dissimilar
paths

NP-COMPLETE for k ≥ 2
for all Z ∈ S

DISS(1,Z) Finding a path dissimilar to a
given path

Polynomial for Z = Asy
and NP-COMPLETE for

Z ∈ {jaccard,Min,Max}
DISS(k, Z) Finding a path dissimilar to

k given path
NP-COMPLETE for k ≥ 2 on

DAGs for all Z ∈ S
SDISS(k, Z) Finding a shortest path

dissimilar to k given path
NP-COMPLETE for k ≥ 1 on

DAGs for all Z ∈ S

Table 3.1 – The complexity of different variants of the problem of finding dissimilar paths, all the
paths of this table are s-t paths

89

On finding k earliest
arrival journeys in

public transit networks

Journey planning in (schedule-based) public transit networks has attracted interest from
researchers in the last decade. In particular, many algorithms aiming at efficiently ans-
wering queries of journey planning have been proposed. However, most of the proposed
methods give the user a single or a limited number of journeys in practice, which is
undesirable in a transportation context.
In this chapter, we consider the problem of finding k earliest arrival time journeys in
public transit networks from a given origin to a given destination, i.e, an earliest arrival
journey from the origin to the destination, a second earliest arrival journey, etc. until the
kth earliest arrival journey.
For this purpose, we propose an algorithm, denoted by Yen - Public Transit (Y-PT),
that extends to public transit networks the algorithm proposed by Yen to find the top-k
shortest simple paths in a graph. Moreover, we propose a more refined algorithm, called
Postponed Yen - Public Transit (PY-PT), enabling an important speed up in practice.
Our experiments on several public transit networks show that, in practice, PY-PT is
faster than Y-PT by an order of magnitude.
Keywords : Journey planning, shortest path, routing, timetables.

4.1 Introduction . 93
4.2 Preliminaries . 94

4.2.1 Timetable - definitions and notations 95
4.2.2 Connection Scan Algorithm 96
4.2.3 Profile Connection Scan Algorithm 96

4.3 Problem definition . 97
4.4 Public Transit Yen’s algorithm (Y-PT) 98
4.5 Public Transit Postponed Yen’s algorithm (PY-PT) 99

4.5.1 Experimental settings . 103
4.5.2 Experimental results . 104

4.6 Conclusion . 106

91

4.1 – Introduction 93

4.1 Introduction

In the context of multimodal transportation, journeys planning in (schedule-based) public
transit networks and accelerating queries for efficient journey planning is a long-standing pro-
blem [21]. In the last decade, many algorithms have been developed not only to answer efficiently
basic queries like a quickest or an earliest arrival journey, but also to optimize additional criteria
like the number of transfers, the cost of the trip, etc. or even to offer Pareto optimal solutions
combining several criteria [21, 43, 46].

A transit network is a set of stops (such as bus stops or trains stations), a set of routes (such
as bus, tramway, ferries, metro or train lines), and a set of trips. Trips correspond to individual
vehicles that visit the stops along a certain route at a specific time of the day. Trips can be further
subdivided into sequences of elementary connections, each given as a pair of (origin/destination)
stops and (departure/arrival) times between which the vehicle travels without stopping. In addition,
footpaths model walking transfers between nearby stops. A journey is a sequence of trips one can
take within a transit network (also referred to as a transportation network or a timetable).

As we have already seen, a road network can be modelled using a weighted directed graph
where crossroads are represented by vertices and routes by arcs with length corresponding to the
distances or the travel time between crossroads. So, finding k “best” (shortest, fastest or cheapest)
paths from a given origin to a given destination in a road network is straightforward using any
kSSP algorithm. Unfortunately, this problem becomes harder in public transit networks. First,
because public transit networks are time dependent, i.e., certain segments of the network can only
be traversed at specific times. Second, several additional optimization criteria are considered in
public transit network such as the arrival time, the departure time, the number of transfers, etc.

Journey planning queries in public transit networks As described in the Introduction of this
thesis (Section 1.6 page 29), various algorithms were designed to efficiently answer optimal jour-
neys queries in public transit networks. For instance, the Connection Scan Algorithm (CSA) [46] is
the fastest algorithm, without any preprocessing routine, enabling to find an earliest arrival journey
from o to d departing after t0 in a public transit network. With the help of a heavy preprocessing
routine, the Transfer Patterns algorithm [20] can achieve a tremendous speed up with respect to
the CSA. Besides, Round Based Public Transit Routing (RAPTOR) [43] is the fastest algorithm
(also without any preprocessing routine) enabling to compute a Pareto optimal set of journeys op-
timizing the arrival time and the number of transfers of a journey. A survey on journey planning
in public transit networks is published recently by Bast et al. [21].

Related work In [119], Vo et al. proposed a time dependent graph modeling a bus network and
they adapted Yen’s algorithm to find alternative journeys in this network model. Precisely, they
select a set of alternative journeys (journeys sharing only a limited part of their common edges)
among those given by Yen’s adaptation.

As described before, Yen’s algorithm uses Dijkstra’s algorithm as a basic brick to compute
shortest detours of a given path. Analogously, Vo et al. [119] used a standard time-dependent
shortest path (TDSP) algorithm [107] to compute earliest detours of a journey in a bus network.
They evaluated their method on a single network of around 4 000 stops and 8 000 connections, and
showed that their algorithm needs, on average, around 1 second to find 5 journeys.

On the other hand, Scano et al. [104] proposed a labelled directed graph modeling a transpor-
tation network where a label of an arc is an object composed of the transportation mode (foot, car,

93

94 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

bus, etc.) and a travel time. This model merges a road and a public transport network together.
Then, it is shown how the k shortest path algorithms can be adapted for this model. Specifi-
cally, they adapted Yen’s and Eppstein’s algorithm to work on their model. In both algorithms,
a Dijkstra-like algorithm called Dijkstra Regular Language Constraint (DRegLC) [19] is used to
answer earliest arrival journeys queries. Moreover, an Iterative Enumeration Algorithm (IEA) is
proposed to extract only simple journeys using Eppstein’s algorithm. i.e, using Eppstein’s k shor-
test paths algorithm as an iterator and then selecting the simple corresponding journeys (a journey
is simple if it does not visit a stop more than once).

Experimentally, Scano et al. showed that their IEA is faster than Yen’s straightforward adap-
tation on the transportation network of Toulouse (75 000 nodes, 500 000 road edges and 43 000
public transport edges). On this network, the average running time of Yen’s adaptation to find
100 journeys is 250 seconds while it is 0.6 seconds using their refined IEA. However, IEA is not
a polynomial-time algorithm, and its memory consumption is too high [104]. In addition, using
the labelled directed graph model described in [104] may cause a duplication of the public transit
part in practice, i.e, a large number of journeys given by the algorithms proposed in [104] may
only differ on the foot-path part while sharing the exact same public transit part. This is usually
undesirable as in most of the applications, diverse public transit journeys are requested.

Our contribution In this chapter, we aim at answering the k earliest arrival journeys queries
from a given origin to a given destination in a public transit network. For this purpose, we use the
timetable model of public transit networks, i.e, the well-known common model used in [21, 46,
43]. First, we propose a performant adaptation of Yen’s k shortest simple paths algorithm to public
transit networks (Yen - Public Transit, Y-PT algorithm). In contrast with [104, 119], we use the
Connection Scan Algorithm (CSA) to answer earliest arrival journey queries in our algorithm.

Our main contribution is a novel algorithm, called Postponed Yen’s algorithm for Public Tran-
sit networks (PY-PT). With the help of a lower bound on the arrival time of a detour journey (a
journey that may be one of the k earliest arrival journeys), PY-PT postpones the effective compu-
tation of such detour (and so the corresponding earliest arrival journey queries using CSA) with
the aim of skipping it.

Our experimental results on several train and public transit networks show that the running
time of our adaptation of Yen’s algorithm is acceptable in practice. Moreover, on the same dataset,
the PY-PT algorithm performs 10 to 30 times faster than the Y-PT algorithm on average.

Note that, the output journeys are not guaranteed to be dissimilar. However, this can be achie-
ved by filtering the output journeys and selecting a subset of (k′ ≤ k) journeys that are sufficiently
dissimilar. This work is motivated by adapting the k shortest simple path problem to a public tran-
sit context. So, an interesting superset of journeys will be proposed and one may filter it to obtain
satisfying solutions regarding the considered constraints (price, walking distance, accessibility,
dissimilarity, etc.)

4.2 Preliminaries

In this chapter, we use the same graph notations and definitions described in the Introduction
(see Section 16 page 16). In what follows, we formalize the inputs and describe algorithms related
to journeys planning in public transit networks.

94

4.2 – Preliminaries 95

4.2.1 Timetable - definitions and notations

In this section, we describe the data structures used by the CSA, with the same formalization
as in [46]. Then we will describe briefly the Connection Scan Algorithm and one of its variant
called the profile CSA (PCSA).

Timetable A timetable represents for one specific day the vehicles that exist (train, bus, tram,
ferry, ...), when they travel, where they travel and how a passenger can go from one vehicle to
another. Formally, a timetable is a quadruple T = (S, T, C, F) of stops S, trips T , connections C
and footpaths F :

— A stop is a position outside a vehicle where a passenger can wait. At a stop (and only at a
stop) a vehicle can halt and passengers can leave or get on.

— A trip is defined by a vehicle going through stops at fixed times. Precisely, a trip is a
scheduled vehicle, i.e, a journey done by a unique vehicle from a starting stop to a last stop
at a fixed time.

— A connection is a vehicle going from one stop to another with no intermediate stops. For-
mally, a connection c is a quintuple (cdep_stop, carr_stop, cdep_time, carr_time, ctrip) whose
attributes are the departure stop, the arrival stop, the departure time, the arrival time
and the trip of c, respectively. A connection must respect two conditions : (1) it can-
not be a self loop, i.e, cdep_stop 6= carr_stop and (2) it has a non-zero travel time, i.e,
cdep_time < carr_time.

— A footpath is used to model a transfer, i.e, how to get from one vehicle to another. For-
mally, a footpath f is a triple (fdep_stop, farr_stop, fdur) whose attributes are the departure
stop, the arrival stop and the duration of the footpath, respectively. Note that, footpaths are
neither trips, nor connections.

Note that, all the connections of a trip form a sequence c1, c2 . . . cφ, such that ciarr_stop =
ci+1
dep_stop and ciarr_time < ci+1

dep_time for all 0 ≤ i ≤ φ.
Going from a connection c to a connection c′ with ctrip 6= c′trip is possible if and only if there

is a footpath f t from carr_stop to c′dep_stop such that c′ is reachable via f t, i.e, f tdur ≤ c′dep_time −
carr_time. A loop is introduced on each stop to allow a passenger to get off at a stop and take
another trip going through this stop.

Journeys A journey describes how a passenger can travel through a public transit network. It is
made of legs that are sequences of connections of the same trip. Formally, a journey is a sequence
of alternating footpaths and legs J = (f0, l0, f1, l1 . . . f r−1, lr, f r), where li = (ci0, · · · , ciδi).
That is, a passenger takes the footpath f0 from f0

dep_stop to f0
arr_stop, then takes the connec-

tion c1
0, c1

1, · · · , c1
δ1

, proceeds to take the footpath f1 from f1
dep_stop to f1

arr_stop etc. until he
reaches f rarr_stop. A journey must start and end with a footpath, which can be a self loop. In
this chapter, we sometimes denote a journey as a sequence of footpaths and connection, i.e, J =
(f0, c0, c1, · · · , cα, f1, cα+1, · · · , f r−1, cγ+1, · · · cφ, f r) where c0 = c0

0, c
1 = c0

1, · · · , cφ = crδr .
Given two stops o and d in S, an o-d journey J is a journey (f0, c0, · · · , cφ, f r) such that f0

starts from o and f r ends at d. We define the departure time of a journey dept(J) as the departure
time of its first footpath, formally, dept(J) = c0

dep_time − f0
dur. Similarly, the arrival time of a

journey arrt(J) is the arrival time of its last footpath, i.e, arrt(J) = cφarr_time + f rdur.

95

96 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

A journey is called simple if it does not visit twice the same stop (except for self loop
footpaths). Formally, let J = (f0, l0 = (c0

0, · · · , c0
δ0

), · · · , f i, li = (ci0, · · · , ciδi), · · · , f
j , lj =

(cj0, · · · , c
j
δj

), · · · , lr = (cr0, · · · , crδr), f
r) be a journey. For all 0 ≤ i < j ≤ r, let cdep_stop be the

departure stop of ciα for 0 ≤ α ≤ δi. Similarly, for 0 ≤ β ≤ δj , let c′dep_stop be the departure stop of
cjβ and c′arr_stop be the arrival stop of cjβ . We have cdep_stop 6= c′dep_stop and cdep_stop 6= c′arr_stop.

∗

The concatenation of two journeys J = (f0, l0, · · · , lr, f r) and J ′ = (f ′0 =
f r, l′0, · · · , l′`, f ′`) such that f r = f ′0 and arrt(J) ≤ dept(J ′) is the journey starting by f0, fol-
lows J until f r, then it follows J ′ until f ′`. Formally, J ′′ = (f0, l0, · · · , f r = f ′0, · · · ,= l′`, f ′`)
(we denote J ′′ = J.J ′).

Given a journey J = (f0, c0, · · · ci, · · · , cφ, f r), a journeyQ = (f ′0, c′0, · · · , c′i, · · · , c′w, f ′`)
is called a detour of J at i if f ′0 = f0, c′0 = c0, · · · , c′i−1 = ci−1 but c′i 6= ci and
f ′`arr_stop = f rarr_stop. Moreover, if Q is simple, it is called a simple detour of J at i. Simi-
larly, Q is called an earliest arrival (simple) detour of J at i, if arrt(Q) ≤ arrt(Q′) for each
(simple) detour Q′ of J at i.

Two journeys are equal if and only if all of their attributes are the same.
We denote by J t0,tmaxo,d the set of o-d simple journeys starting from o after t0 and reaching d

before tmax, i.e, J t0,tmaxo,d = {J s.t. J is a simple o-d journey with dept(J) ≥ t0 and arrt(J) ≤
tmax}.

4.2.2 Connection Scan Algorithm

As already said in the Introduction of this thesis (Section 1.6.3 page 31), the Connection Scan
Algorithm (CSA) answers earliest arrival time journey queries from a given origin o to a given
destination d. That is, departing after a given time t0, how to get from o to d as soon as possible.

Similarly to Dijkstra’s algorithm, the CSA will store an earliest arrival time for each stop in
an array. A connection is considered reachable if a passenger can sit in the public transit vehicle
of the connection. However, the main difference between Dijkstra’s algorithm and the CSA is the
fact that the CSA does not use a priority queue. Instead, the CSA iterates over all the connections
sorted by their departure time (the same ordering is used for all queries). The CSA checks whe-
ther a connection is reachable or not. If so, it improves the arrival time at the arrival stop of the
connection. Once all the connections have been scanned, the earliest arrival time to a stop is the
current arrival time stored for the stop. The main advantage of avoiding the use of a priority queue
is that, while more connections are scanned, the amount of work per connections is significantly
reduced. Therefore, the CSA is significantly faster than Dijkstra’s algorithm in this context [46].

4.2.3 Profile Connection Scan Algorithm

The result of the Profile Connection Scan Algorithm (PCSA) is a mapping between a departure
time from a departure stop onto the earliest arrival time at the arrival stop. In other words, the
profile problem solves simultaneously the earliest arrival problem for all departure times.

Compared with the CSA, the PCSA iterates on the connections sorted decreasingly by de-
parture time, which leads to the fact that it solves the all-to-one problem. The PCSA constructs
journeys from late to early and exploits the fact that an early journey can only have later journeys

∗. We suppose that a leg cannot have a loop, as a user may get off and wait outside the corresponding vehicle.

96

4.3 – Problem definition 97

as subjourneys. It has been reported in [46] that the PCSA is one order of magnitude slower than
the CSA, which is acceptable considering the fact that it solves the all-to-one problem.

Note that, the PCSA offers, from each stop s to the arrival stop d, a single earliest arrival s-d
journey departing after t0 and reaching d before tmax.

Let M be the output of the PCSA, we denote by M t0,tmax
o,d an earliest arrival journey starting

from o and reaching d, departing after t0 and arriving before tmax.

4.3 Problem definition

In this section, we formalize the k Earliest Arrival Time problem definition.

k Earliest Arrival Time (kEAT) problem In this chapter, we aim at finding k earliest arrival
time (kEAT) simple journeys from a given origin to a given destination. Formally, the problem
takes as input a timetable T = (S, T, C, F), origin and destination stops o, d in S, a departure time
t0, a maximum arrival time tmax (often tmax = t0 + 24h or tmax = t0 + 48h) and an integer k. It
asks to find a set J ∗ = {J1, J2, · · · , Jk} of top-k earliest arrival o-d simple journeys i.e, Ji 6= Jj
for 0 ≤ i < j ≤ k, and for every J in J ∗, J ′ ∈ J t0,tmaxo,d , arrt(J) ≤ arrt(J ′).

o d

a

b

c

9h05→9h40

9h
55
→

10
h0

0

9h10→
9h15

10h05→
10h10

10h30→
11h00

9h35→9h409h45→9h50

9h
20
→

9h
30

9h
20
→

9h
30

Figure 4.1 – Toy network for k earliest arrival time journeys

Example In the example of Figure 4.1, we look for the four earliest arrival time journeys from
o to d departing after 9h00 :

The earliest arrival journey arrives at d at 9h30, starts with o and reaches d via b, the passenger
arrives at b at 9h15 and waits 5 minutes before boarding the connection going from b to d, J0 =
(o, d, b). The second journey arrives at 9h40 and goes directly from o to d, J1 = (o, d). The third
journey arrives at 10h10 and goes from o to b then a then d, the passenger arrives at b at 9h15, waits
10 minutes then boards the connection going from b to a, arrives at 9h30 and waits 35 minutes

97

98 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

before boarding the connection going from a to d, J2 = (o, b, a, d). The fourth journey arrives at
10h10 and goes from o to a then d, J3 = (o, a, d).

Note that the journey Jns = (o, b, a, c, o, a, d) arriving at 10h10 is not a part of the solution as
it is not simple (it visits the station o twice).

Indeed, there are other o-d journeys in this example, however they all have an arrival time
greater than 10h10, that is {J0, J1, J2, J3} are the four earliest arrival simple o-d journeys.

Each edge in the graph belongs to a specific trip, meaning that between each step in the
examples there is a self loop footpath.

4.4 Public Transit Yen’s algorithm (Y-PT)

In this section, we describe our adaption of Yen’s algorithm on public transit networks, called
Y-PT algorithm. As described before, Y-PT algorithm solves the kEAT problem. So, it takes
as input a timetable T = (S, T, C, F), origin and destination stops o, d in S, a departure time
t0, a maximum arrival time tmax (= t0 + 48h) and an integer k, and returns a set Output =
{J1, J2, · · · , Jk} of top-k earliest arrival o-d simple journeys in T .

Roughly, Y-PT algorithm starts by computing a first earliest arrival journey (using the CSA
algorithm), iterates over its connections in order to compute its earliest arrival simple detours and
adds their minimum (the detour with minimum arrival time) to the output. Then, Y-PT algorithm
repeats this process until k journeys are added to the output.

Now, let us give a precise and formal description of Y-PT algorithm whose pseudocode is pre-
sented in Algorithm 4.1. Analogously to Yen’s algorithm, Y-PT starts by computing an earliest
arrival journey J0 and adding it (with 0 as deviation index) to a set of candidate journeys called
Candidates. The journeys of the set Candidates are non-decreasingly sorted by their arrival
time. Also, the algorithm initializes the output set Output as an empty set. After this initializa-
tion phase, the algorithm extracts a minimum element from the set Candidates, i.e, a journey
J = (f0, c0, · · · , cφ, f r) with minimum arrival time among those in Candidates and adds it
to Output. Let CJ = (c0, c1, · · · , cφ) be the sequence of connections of J . The algorithm ite-
rates over the connections in CJ starting from the deviation index of J . Precisely, let j be the
deviation index of J , for each connection ci = (cidep_stop, c

i
arr_stop, c

i
dep_time, c

i
arr_time, c

i
trip) for

j ≤ i ≤ φ, the algorithm removes the prefix stations, i.e, each station visited by one of the connec-
tions c0, · · · , ci−1, (equivalent to the prefix path of Yen’s) from T . This is done to ensure that the
candidate journey is simple.

Moreover, in order to avoid duplications of journeys, for each journey J in
Output starting with the connections c0, c1, · · · , ci−1, c′, the connection c′ is remo-
ved from T . Then, using the CSA, the Y-PT algorithm computes an earliest arri-
val journey Q = (f0

Q, c
0
Q, · · · , cωQ, f `Q) from ci−1

arr_stop to d with ci−1
arr_time as departure

time †. Let Jnew be the concatenation of the prefix of J and Q, i.e, Jnew = (f0, c0,
· · · , ci−1, f0

Q, c
0
Q, · · · , cωQ, f `Q). The journey Jnew is added to Candidates with i as deviation

index.
Y-PT algorithm repeats this process until k journeys are added to Output.

†. If the element right before ci is a footpath, i.e, J = (f0, · · · , fλ, ci, · · · , fr). It is possible to have journeys
with two consecutive footpaths. In order to avoid such scenario, the CSA call is forced to compute a journey starting
with a self loop footpath.

98

4.5 – Public Transit Postponed Yen’s algorithm (PY-PT) 99

1: Input A timetable T = (S, T, C, F), an origin and a destination stops (o and d), departure
and maximum arrival time tdep, tmax and an integer k

2: Output a set of top-k earliest arrival journeys from o to d departing after tdep
3: J0 ← CSA(T , o, d, tdep, tmax)
4: Candidates← {(J0, 0)}
5: Output← ∅
6: while | Output |< k and Candidate 6= ∅ do
7: ε = (J, j)← extractmin(Candidates)
8: let J = (f0, c0, · · · , cφ, f r), j)
9: add J to Output

10: for each connection ci with j ≤ i ≤ φ in J do
11: carr_stop ←the arrival stop of ci−1

12: carr_time ←the arrival time of ci−1

13: π = (f0, c0, · · · , ci−1)
14: Sπ ← the set of stations visited by one of the connections (c0, · · · , ci−1)
15: Cdev ← {c′ s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, c′)}
16: T ′ = (S \ Sπ, T, C \ Cdev, F)
17: Q← CSA(T ′, carr_stop, d, carr_time, tmax)
18: Jnew ← π.Q
19: add (Jnew, i) to Candidates
20: Return Output

Algorithm 4.1 – Public Transit - Yen’s algorithm (PT-Y)

4.5 Public Transit Postponed Yen’s algorithm (PY-PT)

Here we explain Postponed Yen algorithm for public transit (PY-PT algorithm) whose pseudo-
code is presented in Algorithm 4.2. This algorithm is inspired from the Postponed Node Classifi-
cation algorithm (PNC) for the kSSP described in Chapter 2 (Section 2.5 page 49).

PY-PT algorithm has the same input as Y-PT algorithm, and it also returns a set of top-k
earliest arrival simple journeys from the origin to the destination in a timetable. However, the
journeys given by Y-PT are not necessarily the same as those given by PY-PT, i.e, the order of
extraction of journeys is not necessarily the same. This may occur in scenarios where several
journeys from the origin to the destination have the same arrival time.

The main drawback of Y-PT algorithm is its excessive number of calls of the CSA. Here, with
the help of lower bounds on the arrival time of simple detours, we propose to postpone these calls
in order to avoid some of them. We show that this can be done while preserving the correctness
of the algorithm. In contrast with Y-PT algorithm where all journeys in the set Candidates are
simple, the PY-PT algorithm may add non-simple journeys to the set Candidates. As shown
below, this corresponds to detours whose effective computation (and so their corresponding CSA
calls) are postponed.

Let us now describe PY-PT algorithm in details.
For a query from the origin o to the destination d starting at time t0, the PY-PT algorithm first

uses the Profile CSA (PCSA). LetM be the mapping output by PCSA. The mappingM associates
to each station s ∈ S and each departure time t ≥ t0 the earliest arrival s-d journey, providing

99

100 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

it is possible to reach d from s before tmax when starting at t (we let tmax = t0 + 48h in our
experiments).

Similarly to Y-PT algorithm, PY-PT algorithm starts by adding an earliest arrival time jour-
ney J0 to a set of candidate journeys called Candidates. An element ε in Candidates has
three attributes, the journey J , its deviation index i and a boolean flag ζ indicating whether J
is simple or not. So, the element ε0 = (J0, 0, 1) is added to Candidates. In contrast with Y-
PT algorithm where a CSA call is consumed to compute J0, PY-PT algorithm extract J0 from
the already computed mapping M . Precisely, J0 = M t0,tmax

o,d . Then, also like Y-PT algorithm,
the Output set is initialized with an empty set. After these initializations steps, the algorithms
starts by extracting an earliest arrival journey (J, j, ζ) among those in Candidates. Suppose
J = (f0, c0, · · · , cα, f1, cα+1, · · · , cβ, f2, · · · , cγ+1, · · · , cφ, f r). Two cases are distinguished :

— if ζ = 1 (J is simple) : J is added to the Output, then all the earliest arrival detours of
J are added to Candidates. This is done as follows, let CJ = (c0, c1, · · · , cφ) be the
sequence of connections of J , at each connection ci (for j ≤ i < φ) in CJ , an earliest
arrival detour Jnew of J at i is extracted. This is done with the help of M as described
below.
The journey Jnew may not be simple (also described below). However, Jnew will be added
to the set Candidate with i as deviation index and ζ = 1 if Q is simple (and ζ = 0
otherwise).

— if ζ = 0 (J is not simple) : Then J is “repaired”, i.e., it is replaced (if pos-
sible) by its corresponding earliest arrival simple journey. For this purpose, the al-
gorithm applies almost the same routine as Y-PT algorithm. Precisely, let cj =
(cjdep_stop, c

j
arr_stop, c

j
dep_time, c

j
arr_time, c

j
trip) be the connection at the deviation index,

the algorithm removes the prefix stations, i.e, each station visited by one of the connec-
tions c0, · · · , cj−1, from T . Also, for each journey J ′ in Output starting with the connec-
tions c0, c1, · · · , cj−1, c′, the connection c′ is removed from T . Then, using the CSA, PY-
PT algorithm computes an earliest arrival journey Q = (f0

Q, c
0
Q, · · · , f

`−1
Q , lφQ, f

`
Q) from

cj−1
arr_stop to d with cj−1

arr_time as departure time. Let Jnew be the concatenation of the prefix
of J and Q, i.e, Jnew = (f0, c0, · · · , cj−1, f0

Q, c
0
Q, · · · , f `Q). The journey Jnew is added to

the Candidates with j as deviation index and with ζ = 1 (as Jnew is simple).
The PY-PT algorithm repeats this process until k journeys are added to Output.
Now, let us explain how the journey Jnew is computed (in the case where ζ =

1). The pseudocode of this procedure is described in Algorithm 4.3. Let ci =
(cidep_stop, c

i
arr_stop, c

i
dep_time, c

i
arr_time, c

i
trip) be the ith connection of CJ (for j ≤ i < φ),

the following procedure is applied :
— First, the algorithm scans the connections starting with ciarr_stop after ciarr_time leading to

new journeys, i.e, different from those inOutput. Precisely, letCdev = {cold ∈ C s.t. there
is a journey in Output starting with the connections c0, · · · , ci−1, cold}, let CN = {c ∈ C
s.t. cdep_stop = cidep_stop, cdep_time ≥ cidep_time and c /∈ Cdev} be the set of new deviating
connections. The algorithm scans the connections of CN . Let cLB be a connection of CN

leading to an earliest arrival journey from cidep_stop to d using M . Formally, for each c in
CN , let Jc be the journey via c following M , i.e, let Jc = c.M

carr_time,tmax
carr_stop,d

, then cLB is a
connection in CN s.t. arrt(JcLB) ≤ arrt(Jc) for each c in CN ‡.

‡. If the element right before ci is a footpath, i.e, J = (f0, · · · , fλ, ci, · · · , fr). It is possible to have journeys with
two consecutive footpaths. In order to avoid such scenario, the footpaths starting with ciarr_stop will not be scanned.

100

4.5 – Public Transit Postponed Yen’s algorithm (PY-PT) 101

1: Input A timetable T , an origin and a destination stops (o and d), departure and maximum
arrival time (tdep and tmax), and an integer k

2: Output a set of top-k earliest arrival simple journeys from o to d departing after tdep
3: M ← PCSA(T , o, d, tdep, tmax)
4: J0 ←M

tdep,tmax
o,d

5: Candidate← {(J0, 0, ζ = 1)}
6: Output← ∅
7: while Candidate 6= ∅ and |Output| < k do
8: ε = (J, j, ζ)← extractmin(Candidates)
9: Let J = (f0, c0, · · · , cφ, f r)

10: if ζ = 1 (J is simple) then
11: add J to Output
12: for each vertex ci in (cj , · · · , cφ) do
13: Jnew ← EarliestArrivalDetour(J, i,M)
14: ζ ′ ← 0
15: if Jnew is simple then
16: ζ ′ ← 1
17: add (Jnew, i, ζ ′) to Candidate
18: else
19: Sπ ← the set of stations visited by one of the connections (c0, · · · , cj−1)
20: Cdev ← {c s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, c)}
21: T ′ = (S \ Sπ, T, C \ Cdev, F)
22: Q← CSA(T ′, carr_stop, d, carr_time, tmax)
23: if Q exists then
24: Jnew ← (f0, c0, · · · , cj , Q)
25: add (Jnew, j, ζ = 1) to Candidates
26: return Output

Algorithm 4.2 – Public Transit - Postponed Yen’s algorithm (PY-PT)

— Second, the algorithm scans the footpaths starting with cidep_stop leading to new journeys,
i.e, different from those in Output. Again, let Fdev = {fold s.t. there is a journey in
Output starting with the connections c0, · · · , ci−1 followed by fold}, let FN = {f ∈ F
s.t. fdep_stop = cidep_stop and f /∈ Fdev} be the set of the new deviating footpaths and let
fLB be a footpath of FN leading to an earliest arrival journey from cidep_stop to d using
M . Precisely, for each f in FN , let Jf be the journey via f following M , i.e, Jf =

f.M
cidep_time+fdur,tmax
farr_stop,d , then fLB is a footpath in FN s.t. arrt(JfLB) ≤ arrt(Jf) for each

f in FN .
Now let Qmin be the journey with minimum arrival time among JcLB and JfLB and let Jmin
be the journey formed by the concatenation of the prefix journey of J and Qmin, i.e, Jmin =
(f0, c0, · · · , ci−1,
Qmin). Note that, Jmin may not be simple as the sub-journey extracted from M may revisit

101

102 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

a station of one of the prefix connections. For instance, a station that is visited by c0 or c1, · · · , or
ci−1 may be visited again by JcLB (or by JLBf) §.

1: ci ← the ith connection of J
2: carr_stop ← the arrival stop of ci−1

3: carr_time ← the arrival time of ci−1

4: Cdev ← {c′ s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, c′)}
5: CN = {c′ ∈ C s.t. c′dep_stop = carr_stop, c′dep_time ≥ carr_time and c′ /∈ Cdev}
6: cLB ← a connection in CN leading to a minimum arrival time from carr_stop to d after
carr_time following M

7: Fdev ← {f s.t. there is a journey J ′ in Output starting with (c0, · · · , ci−1, f)}
8: FN = {f ∈ F s.t. fdep_stop = carr_stop and f /∈ Fdev}
9: fLB ← a footpath in FN leading to a minimum arrival time from carr_stop to d following M

10: JcLB ← cLB.M
cLBarr_time,tmax

cLBarr_stop,d

11: JfLB ← fLB.M
carr_time+fLBdur,tmax
fLBarr_stop,d

12: Jmin ← the earliest arrival journey among JcLB and JfLB
13: π = (f0, c0, · · · , ci−1)
14: Jnew ← π.Jmin
15: return Jnew

Algorithm 4.3 – EarliestArrivalDetour(J, i,M)

To conclude, in contrast with Y-PT algorithm where an earliest arrival simple detour is com-
puted at each index of an extracted journey using the CSA, PY-PT algorithm consider an earliest
arrival detour (not necessarily simple) given by the already computed PCSA at each index, and
two cases are distinguished : If the earliest arrival detour is simple, then a CSA call is saved and a
shortest simple detour is added to Candidates. If not, i.e, the earliest arrival detour is not simple,
PY-PT algorithm inserts this non-simple detour to the set of Candidates with a flag indicating
that it is not simple. Recall that journeys in Candidates are non-decreasingly stored by their arri-
val time. So, only when this non-simple detour is extracted from Candidates, its simple version
will be computed using the CSA. In other words, the actual computation of such simple detour is
“postponed”. Such postponement may end up saving some CSA calls, typically when k earliest
arrival journey are added to Output while none-simple journeys, whose actual computation is
postponed, are still in Candidates, i.e, their whole “repair” procedure is skipped.

Note that, despite these postponements, the order of extraction of simple journeys from
Candidates remains valid. This is because a journey J in Candidate is either inserted with
its real arrival time (the case where J is simple) or with a lower bound on its arrival time (the case
where J is non-simple, by Claim 4.5.1).

§. When scanning the connections starting with ciarr_stop after ciarr_time, the journey M
ci

arr_time,tmax

ci
arr_stop

,d
can start

either with a self loop footpath or a footpath. On the other hand, when scanning footpaths starting with cidep_stop the

journey M
ci

dep_time
+fdur,tmax

farr_stop,d cannot start with anything other than a self loop footpath, to do so the PCSA stores
journeys in two separate data structures, one for journeys starting with a self loop footpath and one for the other
journeys.

102

4.5 – Public Transit Postponed Yen’s algorithm (PY-PT) 103

Claim 4.5.1. Let J = (f0, c0, f1 · · · , cφ, f r) be an o-d journey with Jns an earliest arrival detour
of J at i and Js with an earliest simple arrival detour of J at i (where 0 ≤ i ≤ φ). Then,
arrt(Jns) ≤ arrt(Js)

Proof. The proof follows from the fact that an earliest arrival detour of J at i arrives earlier than
any detour of J at i. In particular, it arrives earlier than any earliest arrival simple detour of J at i.
�

4.5.1 Experimental settings

Here we describe the details of the implementation and the setting used in our experiments.
We have implemented Y-PT and PY-PT algorithms in Java and our code is publicly available

at [16].
Note that in our implementations the parameter k is not part of the input, this enables the use

of these methods as iterators, able to return a next earliest arrival itinerary as long as one exists.
Despite the fact that some additional optimizations could be added to the implementation if k is a
part of the input.

Networks setting We have evaluated the performances of our algorithms on two train networks
(Germany and Switzerland) and three public transit networks (Paris, Berlin and Stockholm). The
characteristics of these networks are presented in Table 4.1. This dataset is publicly available via a
GTFS feed (https://transitfeeds.com/), we downloaded this dataset in October 2019.

The public transit networks are more dense than the train networks, i.e. the connections to
stops ratio is smaller on train networks than public transit networks. This can be easily explained
because the train networks can only use trains whereas the public transit networks can use buses,
trains, ferries and many other means of transportation. Therefore, we will show the performances
of our algorithms on those two types of networks.

In our experiments, we have randomly chosen 1000 queries (source-destination pairs of stops)
for each public transit network, and we have run each algorithm for each of these pairs for k going
from 2 to 100.

We have considered the execution time and the number of CSA calls. Note that the number of
CSA calls is an indication of the running time which is independent of the implementation and the
architecture of the machine.

All reported computations have been performed on computers equipped with an Intel(R)
Core(TM) i7-1185G7 at 3.00GHz and 32 GB of RAM.

Network Stops Connections Lines Trips Footpaths
Germany 74 398 3 601 420 3 599 168 024 599 284
Switzerland 29 844 2 599 675 5 645 248 826 27 202
Paris 44 534 3 209 401 1 864 150 963 502 291
Berlin 28 651 1 379 755 1 296 63 569 62 456
Stockholm 14 258 703 326 664 34 799 22 138

Table 4.1 – Characteristics of the PT networks : number of stops, connections, lines, trips and
footpaths.

103

https://transitfeeds.com/

104 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

Germany Switzerland Paris Berlin Stockholm

Y-PT
avg 94.6 42.0 66 22.7 7.2
med 47.3 30.6 25.1 14 3.5

PY-PT
avg 3.6 1.9 5.4 0.8 0.2
med 1.7 1.4 3.8 0.5 0.1

Table 4.2 – Running time (s) of the algorithms on PT networks, (k = 100)

Germany Switzerland Paris Berlin Stockholm

Y-PT
avg 2132 2158 1355 1788 2072
med 1729 1749 1262 1604 1510

PY-PT
avg 32 77 39 7.6 8.3
med 12 56 26 7 2

Table 4.3 – Number of CSA calls using each of the algorithms on PT networks, (k = 100)

4.5.2 Experimental results

In this section, we describe and analyse our experimental results on public transit networks.
We have measured the average and the median of the algorithms’ running time in the consi-

dered networks. The data (the running time and the number of CSA calls) in Tables 4.2 and 4.3
and Figure 4.3 corresponds to the biggest experienced value of k (k = 100). While the data in
Figure 4.2 corresponds to their evolution with respect to the values of k.

The average and median running times reported in Table 4.2 show that the PY-PT algorithm is
significantly faster than the Y-PT algorithm for every considered network (the average speed up of
the running time is bigger than 10 for k = 100). Moreover, a refined comparison on Germany and
Paris networks (Figure 4.3) show that PY-PT is faster than Y-PT for almost all queries. In addition,
Figures 4.2a and 4.2b shows that this speed up remains important even for small values of k (even
for k = 2) for Stockholm and Switzerland networks. This means that the time consumed for the
PCSA computation routine is compensated by the extraction of simple detours, even for k = 2. In
addition, very similar results were obtained on the remaining networks. Based on these remarks,
we conclude that, in practice, PY-PT is faster than Y-PT for almost every scenario (the value of k,
the query specifications and the network structure).

Furthermore, on Stockholm and Switzerland networks, Table 4.3 and Figures 4.2c and 4.2d
show that the number of CSA calls is significantly reduced using PY-PT. This ensures that a
similar speed up is guaranteed for any experimental settings [77].

As the obtained results are similar, we only displayed data obtained from experiments on
selected networks (Stockolm and Switzerland for Figure 4.2, Paris and Germany for Figure 4.3).
However, the results/plots corresponding to the remaining networks are very similar.

To conclude, on average, PY-PT algorithm is more than 10 times faster than Y-PT algorithm,
it is also faster than Y-PT for almost every scenario.

104

4.6 – Public Transit Postponed Yen’s algorithm (PY-PT) 105

(a) Average running time on Stockholm (b) Average running time on Switzerland

(c) Average number of CSA calls on Stockholm (d) Average number of CSA calls on Switzerland

Figure 4.2 – The running time of the kEAT algorithms on Switzerland train network and Stock-
holm public transit network with respect to the values of k

105

106 CHAPITRE 4 — On finding k earliest arrival journeys in public transit networks

(a) Running time of Y-PT and PY-PT on Germany (b) Running time of Y-PT and PY-PT on Paris

Figure 4.3 – Comparison of the running time of Y-PT and PY-PT on a train network and a public
transit network

4.6 Conclusion

In this chapter, we have shed lights on a new style of journey planning in public transit net-
works, offering a vast set of interesting solutions. This is done by adapting the k shortest simple
paths problem to the public transit network context. We proposed a straightforward adaptation
of Yen’s algorithm and a more refined version answering the proposed problem in a reasonable
running time.

Interesting questions are asked about designing algorithms answering k earliest arrival jour-
neys query faster. Whether by improving / proposing faster methods than PY-PT algorithm, or
even with the help of a preprocessing routine. For instance, a more specific question is whether
one can use journey planning algorithms like Transfer Patterns algorithm [20] to answer k earliest
arrival journeys queries?

In addition, the approach proposed in this chapter does not guarantee any dissimilarity of
the proposed journeys, i.e, a large part of output journeys may overlap in some scenarios. So, an
interesting question is the study of finding journeys that are “dissimilar” in public transit networks,
as studied for shortest dissimilar paths finding in a graph [33, 15].

106

Conclusions and
Perspectives

In this chapter, we summarize the result obtained in this thesis. Then, we describe the research
perspectives of this thesis.

5.1 Conclusions

This thesis tackles different variants and aspect of the k shortest paths problem. We first stu-
died the original problem and showed how to improve / outperform the state-of-the-art algorithm
either by improving the running time in practice or by proposing interesting space-time trade-offs
and we studied the behavior of these algorithms on complex networks. Moreover, we initialized
the study of this problem on arbitrarily weighted digraphs. In addition, we added dissimilarity
constraints on the paths in order to increase their mutual diversity, where we proved that these
constraints makes the problem NP-COMPLETE for four of the most studied similarity measures.
Also, we reviewed the state-of-the art algorithms allowing to find k shortest dissimilar paths and
we reviewed an alternative pseudo-polynomial time algorithm allowing to solve the problem on
arbitrarily weighted digraph with no negative cycles. Finally, we showed how to adapt the k shor-
test simple paths problem to public transit networks, where we proposed algorithms allowing to
find a set of k earliest arrival time journeys from a departure stop to an arrival stop, departing after
a given departure time.

Framework 5.1 summarizes and shows the link between the algorithms presented in this thesis.
As described in Chapter 4, finding k earliest arrival time journeys from a departure to an arrival
stop while departing after a given departure time can be seen as a straightforward adaptation of
the k shortest simple paths to public transit networks. It is also shown in Chapter 4 that Postponed
Yen - Public Transit (PY-PT) algorithm is the most efficient algorithm in practice, among the two
considered algorithms, allowing to solve this version of the problem within an acceptable running
time. Moreover, the k shortest problem on directed weighted digraph has different versions depen-
ding on the context or the use case. For instance, in a use case where dissimilarity between paths
is desired, then MULTIPASS algorithm proposed by Chondrogiannis et al. [35] and PSEUDOPOLY

algorithm proposed in Chapter 3 are recommended, depending on the sign of the arcs of the input
digraph. However, to solve the original k shortest path problem, as defined in the literature on no
negative weighted digraphs, we interrogate the structure of the digraph and we propose the frame-
work established, experimentally, in Section 2.6.3 of Chapter 2. Precisely, If the digraph models
a complex network, we recommend the PSB algorithm. In the case of road network, we propose
either the postponed Yen (PY) or the Sidetrack Based (SB*) algorithm of Kurz and Mutzel with
our improvement depending on the availability of the working memory. Finally, if the digraph has
negative weighted arcs, then we recommend the Postponed Node Classification algorithm with
Bellman Ford Moore (PNC-BFM) algorithm (proposed in Section 2.7 of Chapter 2) if the input
digraph has no negative cycles. Otherwise, (for arbitrarily weighted digraphs), we recommend to

107

108 CHAPITRE 5 — Conclusions and Perspectives

k shortest
simple paths

PY-PT Dissimilarity
constraints ?

Negative arc
weights ?

Negative arc
weights ?

PseudoPoly MULTIPASS

Negative
cycles?

Structure? PNC-BFM MIP

PSB Memory
consumption

PY SB*

Public transit networks Digraphs

No

Yes

NoYes, with no
negative cycles

No

Yes

No Yes

Complex networks Road networks

Yes No

Figure 5.1 – A framework of the appropriate kSSP algorithm with respect to the use case

simply use one of the Mixed Integer linear Programming models proposed in Section 2.8 of Chap-
ter 2. Note that, all of these MIP models can be adapted to find dissimilar constraints with a single
additive constraint to limit the intersection between the output paths.

5.2 Perspectives and questions

k shortest simple paths A straightforward question, is whether one can improve one of the three
algorithms (PSB, PY and SB*) in order to achieve a better space-time tradeoffs in practice. This is
probably achievable on complex networks, as studying their structures and properties may lead to
kSSP algorithms tailored for complex networks and outperforming the PSB algorithm ∗. Another

∗. In fact, the PSB algorithm was designed in order to establish space-time tradeoffs on road networks. However,
we discovered, experimentally, that it outperforms all the considered kSSP algorithms on complex networks.

108

5.2 – Perspectives and questions 109

interesting question is about the design of an algorithm with a preprocessing routine, enabling to
quickly answer a kSSP query with the help of an already computed and stored data structure. In
other words, achieving good trade-offs of preprocessing / query running time and working memory
would be desired. Such trade-offs may be designed by adapting one of the classical one-to-one
shortest path queries algorithm like CH and HL. Note that, such trade-offs is already achieved on
k shortest paths by Akiba et al. [4] as described in the introduction of this thesis (see Section 1.4.2
page 21). Moreover, in all the considered algorithms, we did not suppose that the value of k is a
part of the input. However, knowing in advance the number of the requested paths may lead to
various practical improvement. For instance, one may design an algorithm with different behavior
with respect to the number of paths already added to the output and the number of the remaining
paths to extract.

Even though, no major theoretical improvements are expected regarding the complexity bound
of the kSSP, there is room for possible improvements. Precisely, the algorithm with the best com-
plexity bound, i.e, O(n(m + n log logn)) proposed in [64] (for k = 2) is larger than the lower
bound of Williams and Williams [118], that is, O(n.m) on sparse digraphs. So, a natural question
is about the possibility of getting rid of the O(n logn) and the design of a kSSP algorithm with
O(knm) time complexity.

Finally, after testing and evaluating all the kSSP algorithms, we noticed that most of the time
is consumed in the process of finding a shortest path. Therefore, we try to ask a reversed question,
that is, suppose we have access to a limited (k′) number of shortest path queries (one-to-one or one-
to-all), what is the number of shortest simple paths one can extract. A more direct question is the
following : Can we find a second shortest simple path, using a single shortest path in-branching?

Another similar problems to the kSSP were discussed. Most of these variants are related to the
replacement path problem. The replacement path problem takes as input a digraph with an s-t path
P , and asks to find a shortest s-t path in the digraph after removing, separately, each of the arcs of
P . However, we are interested, in practical scenarios, by paths with short longest replacement path.
i.e, finding a “short” s-t path PL, such that, removing any arc of PL won’t severely increase the
distance from s to t. Another question is a natural combination of the kSSP and the replacement
path problem, let us call it the k replacement path problem. That is, with the same input as the
replacement path, we ask to find, for each arc a in P , k shortest s-t paths avoiding a.

k shortest dissimilar paths As most of the results presented in Chapter 2 were negative, i.e,
most of the proposed variant where NP-COMPLETE. We are wondering if an interesting variant of
the problem, or another meaningful similarity measure, can lead to a polynomial time algorithm for
finding k shortest dissimilar paths. Another interesting theoretical question is about the problem
of finding a non shortest path, i.e, an s-t path with length strictly higher than the distance from s to
t. Surprisingly, it has been proven that this problem is NP-COMPLETE on non-negative weighted
digraph. We are asking whether this problem is polynomial time solvable in positively weighted
digraph (with no zero weighted arcs).

Also, practical interesting questions interrogate the evaluation of the similarity in practice, and
whether better similarity measures could be designed with the help of geographical information,
area’s intersection or the type of the roads taken by the journey (highways, tunnels, etc.).

k earliest arrival time journeys The main issue of the proposed algorithms of finding k earliest
arrival time journeys, is that they do not ensure any dissimilarity between the journeys of the

109

110 CHAPITRE 5 — Conclusions and Perspectives

output. Indeed, one can use these algorithms to find a super set of journeys and filter them in
order to extract the journeys that are somehow dissimilar. However, this may be impractical in
some scenarios. Therefore, a natural question is about the design of k earliest arrival time journeys
with dissimilarity constraints with respect to a meaningful similarity measure in order to propose
diverse journeys.

Another interesting question concerns the update of the objective function. Precisely, the adap-
tation of the k earliest arrival time journeys to answer k latest departure time journeys, k cheapest
journeys, etc..

References

[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Alternative
routes in road networks. Journal of Experimental Algorithmics (JEA), 18 :1–3, 2013.

[2] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. Highway dimen-
sion, shortest paths, and provably efficient algorithms. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, pages 782–793. SIAM, 2010.

[3] Vedat Akgün, Erhan Erkut, and Rajan Batta. On finding dissimilar paths. European Journal
of Operational Research, 121(2) :232–246, 2000.

[4] Takuya Akiba, Takanori Hayashi, Nozomi Nori, Yoichi Iwata, and Yuichi Yoshida. Effi-
cient top-k shortest-path distance queries on large networks by pruned landmark labeling.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
page 2–8. AAAI Press, 2015.

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries
on large networks by pruned landmark labeling. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 349–360, 2013.

[6] Ali Al Zoobi, David Coudert, and Arthur Finkelstein. On finding k earliest arrival time
journeys in public transit networks. 2021.

[7] Ali Al Zoobi, David Coudert, and Nicolas Nisse. On the k shortest simple paths : A faster
algorithm with low memory consumption. Journées Graphes et Algorithmes I3S et INRIA,
Spohia Antipolis (en distanciel) 16–18 novembre 2020, page 25.

[8] Ali Al Zoobi, David Coudert, and Nicolas Nisse. Compromis espace-temps pour le pro-
blème de k plus courts chemins simples. In ALGOTEL 2020 – 22èmes Rencontres Fran-
cophones sur les Aspects Algorithmiques des Télécommunications, page 4, Lyon, France,
September 2020.

[9] Ali Al Zoobi, David Coudert, and Nicolas Nisse. On the top-k shortest paths with dissimi-
larity constraints. Technical report, 2020.

[10] Ali Al Zoobi, David Coudert, and Nicolas Nisse. Space and Time Trade-Off for the k
Shortest Simple Paths Problem. In 18th International Symposium on Experimental Algo-
rithms (SEA), volume 160 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 18 :1–18 :13. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

[11] Ali Al Zoobi, David Coudert, and Nicolas Nisse. De la difficulté de trouver des chemins
dissimilaires. In ALGOTEL 2021 - 23èmes Rencontres Francophones sur les Aspects Algo-
rithmiques des Télécommunications, La Rochelle, France, September 2021.

110

5.2 – Perspectives and questions 111

[12] Ali Al Zoobi, David Coudert, and Nicolas Nisse. Finding the k Shortest Simple Paths : Time
and Space trade-offs. Research report, Inria ; I3S, Université Côte d’Azur, April 2021.

[13] Ali Al Zoobi, David Coudert, and Nicolas Nisse. k shortest simple paths (Version 2.0), 2021.
https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths.

[14] Ali Al Zoobi, David Coudert, and Nicolas Nisse. k shortest simple paths with arbitrary
arc weights, 2021. https://gitlab.inria.fr/aalzoobi/kssp-negative-
weights.

[15] Ali Al Zoobi, David Coudert, and Nicolas Nisse. On the complexity of finding k shortest
dissimilar paths in a graph. Research report, Inria ; CNRS; I3S ; UCA, 2021.

[16] Ali Al Zoobi and Arthur Finkelstein. PT-KSSP Github repository, 2021. https:
//github.com/fink-arthur/PT-KSSP.

[17] Masanori Arita. Metabolic reconstruction using shortest paths. Simulation Practice and
Theory, 8(1-2) :109–125, 2000.

[18] Krishna Bala, Thomas E. Stern, and Kavita Bala. Algorithms for routing in a linear light-
wave network. In IEEE INFOCOM’91-Communications Societies Proceedings, pages 1–9.
IEEE Computer Society, 1991.

[19] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav Marathe, and Do-
rothea Wagner. Engineering label-constrained shortest-path algorithms. In International
conference on algorithmic applications in management, pages 27–37. Springer, 2008.

[20] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Algorithms - ESA 2010, 18th Annual European Symposium. Procee-
dings, Part I, pages 290–301, 2010.

[21] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. In Algorithm engineering, pages 19–80. Springer, 2016.

[22] Hannah Bast and Sabine Storandt. Frequency-based search for public transit. In Procee-
dings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 13–22, 2014.

[23] Tolga Bektaş and Luis Gouveia. Requiem for the Miller-Tucker-Zemlin subtour elimination
constraints ? European Journal of Operational Research, 236(3) :820 – 832, 2014. Vehicle
Routing and Distribution Logistics.

[24] Martin Betz and Hermann Hild. Language models for a spelled letter recognizer. In 1995
International Conference on Acoustics, Speech, and Signal Processing, volume 1, pages
856–859. IEEE, 1995.

[25] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and Dong-uk Hwang. Com-
plex networks : Structure and dynamics. Physics reports, 424(4-5) :175–308, 2006.

[26] Thomas H. Byers and Michael S. Waterman. Determining all optimal and near-optimal
solutions when solving shortest path problems by dynamic programming. Operations Re-
search, 32(6) :1381–1384, 1984.

[27] Giovanni Campuzano, Carlos Obreque, and Maichel M. Aguayo. Accelerating the Miller-
Tucker-Zemlin model for the asymmetric traveling salesman problem. Expert Systems with
Applications, 148 :1–9, 2020.

111

https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths
https://gitlab.inria.fr/aalzoobi/kssp-negative-weights
https://gitlab.inria.fr/aalzoobi/kssp-negative-weights
https://github.com/fink-arthur/PT-KSSP
https://github.com/fink-arthur/PT-KSSP

112 CHAPITRE 5 — Conclusions and Perspectives

[28] Domenico Cantone and Simone Faro. Fast shortest-paths algorithms in the presence of few
destinations of negative-weight arcs. Journal of Discrete Algorithms, 24 :12–25, 2014.

[29] Horng-Jinh Chang and Uei-Tseng Lai. Empirical comparison between two k-shortest path
methods for the generalized assignment problem. Journal of Information and Optimization
Sciences, 19(2) :151–171, 1998.

[30] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discrimina-
tive reranking. In Proceedings of the 43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 173–180, 2005.

[31] Jung-Kuei Chen and Frank K. Soong. An n-best candidates-based discriminative training
for speech recognition applications. IEEE Transactions on Speech and Audio Processing,
2(1) :206–216, 1994.

[32] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser. Alternative
routing : k-shortest paths with limited overlap. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, (SIGSPATIAL),
pages 68 :1–68 :4, Bellevue, WA, USA, November 2015. ACM.

[33] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser. Exact and
approximate algorithms for finding k-shortest paths with limited overlap. In Proceedings
of the 20th International Conference on Extending Database Technology, (EDBT), pages
414–425, Venice, Italy, March 2017. OpenProceedings.org.

[34] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and David B.
Blumenthal. Finding k-dissimilar paths with minimum collective length. In Proceedings of
the 26th ACM SIGSPATIAL, pages 404–407, 2018.

[35] Theodoros. Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and Da-
vid B. Blumenthal. Finding k-shortest paths with limited overlap. The VLDB Journal,
29(5) :1023–1047, 2020.

[36] Wu Chou, Tatsuo Matsuoka, Biing-Hwang Juang, and Chin-Hui Lee. An algorithm of high
resolution and efficient multiple string hypothesization for continuous speech recognition
using inter-word models. In Proceedings of ICASSP’94. IEEE International Conference on
Acoustics, Speech and Signal Processing, volume 2, pages II–153. IEEE, 1994.

[37] S. Clarke, A. Krikorian, and J. Rausen. Computing the n best loopless paths in a network.
Journal of the Society for Industrial and Applied Mathematics, 11(4) :1096–1102, 1963.

[38] A. Claus. A new formulation for the travelling salesman problem. SIAM Journal on Alge-
braic Discrete Methods, 5(1) :21–25, 1984.

[39] John R. Current, Charles S. Revelle, and Jared L. Cohon. The median shortest path pro-
blem : A multiobjective approach to analyze cost vs. accessibility in the design of transpor-
tation networks. Transportation Science, 21(3) :188–197, 1987.

[40] George Bernard Dantzig, Delbert Ray Fulkerson, and Selmer Martin Johnson. Solution of
a large-scale traveling-salesman problem. Journal of the Operations Research Society of
America, 2(4) :393–410, 1954.

[41] Rafael Castro de Andrade. New formulations for the elementary shortest-path problem
visiting a given set of nodes. European Journal of Operational Research, 254(3) :755–768,
2016.

112

5.2 – Perspectives and questions 113

[42] Rafael Castro de Andrade and Rommel Dias Saraiva. MTZ-primal-dual model, cutting-
plane, and combinatorial branch-and-bound for shortest paths avoiding negative cycles.
Annals of Operations Research volume, 286 :147–172, 2020.

[43] Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based public transit routing.
Transportation Science, 49(3) :591–604, 2015.

[44] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. 9th DIMACS implemen-
tation challenge - shortest paths, 2006.

[45] Martin Desrochers and Gilbert Laporte. Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Operations Research Letters, 10(1) :27 – 36, 1991.

[46] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection scan algo-
rithm. Journal of Experimental Algorithmics (JEA), 23 :1–56, 2018.

[47] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
Journal of Experimental Algorithmics (JEA), 21 :1–49, 2016.

[48] Bajis Dodin. Determining the k most critical paths in pert networks. Operations Research,
32(4) :859–877, 1984.

[49] Michael Drexl. A note on the separation of subtour elimination constraints in elementary
shortest path problems. European Journal of Operational Research, 229(3) :595 – 598,
2013.

[50] David Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2) :652–673,
1998.

[51] David Eppstein. Encyclopedia of Algorithms, chapter k-Best Enumeration, pages 1003–
1006. Springer New York, 2016.

[52] David Eppstein and Denis Kurz. K-best solutions of MSO problems on tree-decomposable
graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC
2017), volume 89, pages 16 :1–16 :13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[53] Erhan Erkut and Vedat Verter. Modeling of transport risk for hazardous materials. Opera-
tions Research, 46(5) :625–642, 1998.

[54] Gang Feng. Finding k shortest simple paths in directed graphs : A node classification
algorithm. Networks, 64(1) :6–17, 2014.

[55] Matteo Fischetti, Juan José Salazar González, and Paolo Toth. Solving the orienteering
problem through branch-and-cut. INFORMS Journal on Computing, 10(2) :133–148, 1998.

[56] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The
pairing heap : A new form of self-adjusting heap. Algorithmica, 1(1) :111–129, 1986.

[57] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic algo-
rithms for maintaining shortest paths trees. Journal of Algorithms, 34(2) :251–281, 2000.

[58] Liping Fu and Larry R. Rilett. Expected shortest paths in dynamic and stochastic traffic
networks. Transportation Research Part B : Methodological, 32(7) :499–516, 1998.

[59] Jun Gao, Huida Qiu, Xiao Jiang, Tengjiao Wang, and Dongqing Yang. Fast top-k simple
shortest paths discovery in graphs. In Proceedings of the 19th ACM international confe-
rence on Information and knowledge management, pages 509–518, 2010.

113

114 CHAPITRE 5 — Conclusions and Perspectives

[60] Michael Randolph Garey and David Stifler Johnson. Computers and Intractability ; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[61] Bezalel Gavish and Stephen C Graves. The travelling salesman problem and related pro-
blems. Technical Report OR-078-78, Massachusetts Institute of Technology, Operations
Research Center, 1978.

[62] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs.
Journal of Algorithms, 53(1) :85–112, 2004.

[63] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path : A search meets
graph theory. In SODA, volume 5, pages 156–165. Citeseer, 2005.

[64] Zvi Gotthilf and Moshe Lewenstein. Improved algorithms for the k simple shortest paths
and the replacement paths problems. Information Processing Letters, 109(7) :352–355,
2009.

[65] Luis Gouveia and Jose Manuel Pires. The asymmetric travelling salesman problem and a
reformulation of the Miller-Tucker-Zemlin constraints. European Journal of Operational
Research, 112(1) :134–146, 1999.

[66] Longkun Guo and Hong Shen. On finding min-min disjoint paths. Algorithmica,
66(3) :641–653, 2013.

[67] Eleni Hadjiconstantinou and Nicos Christofides. An efficient implementation of an algo-
rithm for finding k shortest simple paths. Networks, 34(2) :88–101, 1999.

[68] Yijie Han and Tadao Takaoka. An O(n3 log logn/ log2 n) time algorithm for all pairs
shortest paths. Journal of Discrete Algorithms, 38 :9–19, 2016.

[69] Nicolas Hanusse, David Ilcinkas, and Antonin Lentz. Framing algorithms for approximate
multicriteria shortest paths. In 20th Symposium on Algorithmic Approaches for Transpor-
tation Modelling, Optimization, and Systems (ATMOS 2020), 2020.

[70] John Hershberger, Matthew Maxel, and Subhash Suri. Finding the k shortest simple paths :
A new algorithm and its implementation. ACM Transactions on Algorithms, 3(4) :45, 2007.

[71] G. J. Horne. Finding the k least cost paths in an acyclic activity network. Journal of the
Operational Research Society, 31(5) :443–448, 1980.

[72] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In
Column generation, pages 33–65. Springer, 2005.

[73] Adalat Jabrayilov and Petra Mutzel. A new Integer Linear Program for the Steiner Tree
Problem with Revenues, Budget and Hop Constraints, pages 107–116. SIAM, 2019.

[74] Zhanfeng Jia and Pravin Varaiya. Heuristic methods for delay constrained least cost routing
using/spl kappa/-shortest-paths. IEEE Transactions on Automatic Control, 51(4) :707–712,
2006.

[75] Víctor M. Jiménez and Andrés Marzal. A lazy version of eppstein’s k shortest paths al-
gorithm. In International Workshop on Experimental and Efficient Algorithms, pages 179–
191. Springer, 2003.

[76] Wen Jin, Shuiping Chen, and Hai Jiang. Finding the k shortest paths in a time-schedule
network with constraints on arcs. Computers & operations research, 40(12) :2975–2982,
2013.

114

5.2 – Perspectives and questions 115

[77] David S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. Data
structures, near neighbor searches, and methodology : fifth and sixth DIMACS implemen-
tation challenges, 59 :215–250, 2002.

[78] Alireza Karduni, Amirhassan Kermanshah, and Sybil Derrible. A protocol to convert spatial
polyline data to network formats and applications to world urban road networks. Scientific
data, 3(1) :1–7, 2016.

[79] Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. An efficient algorithm for k shortest
simple paths. Networks, 12(4) :411–427, 1982.

[80] Adrian Kosowski and Laurent Viennot. Beyond highway dimension : small distance labels
using tree skeletons. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1462–1478. SIAM, 2017.

[81] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Su-
brahmanian. Rev2 : Fraudulent user prediction in rating platforms. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, pages 333–341.
ACM, 2018.

[82] Denis Kurz. k-best enumeration - theory and application. Theses, Technischen Universität
Dortmund, March 2018.

[83] Denis Kurz and Petra Mutzel. A sidetrack-based algorithm for finding the k shortest simple
paths in a directed graph. In International Symposium on Algorithms and Computation
(ISAAC), volume 64 of LIPIcs, pages 49 :1–49 :13. Schloss Dagstuhl, 2016.

[84] André Langevin, François Soumis, and Jacques Desrosiers. Classification of travelling
salesman problem formulations. Operations Research Letters, 9(2) :127–132, March 1990.

[85] Mohsen Lashgari, Ata Allah Taleizadeh, and Abbas Ahmadi. Partial up-stream advanced
payment and partial down-stream delayed payment in a three-level supply chain. Annals of
Operations Research, 238(1-2) :329–354, 2016.

[86] Eugene L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management science, 18(7) :401–
405, 1972.

[87] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media.
In Proceedings of the SIGCHI conference on human factors in computing systems, pages
1361–1370, 2010.

[88] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution : Densification
and shrinking diameters. ACM transactions on Knowledge Discovery from Data (TKDD),
1(1) :2–42, 2007.

[89] Jure Leskovec and Andrej Krevl. SNAP Datasets : Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[90] Sanjiang Li and Yongming Li. Semi-dynamic shortest-path tree algorithms for directed
graphs with arbitrary weights. arXiv preprint arXiv :1903.01756, 2019.

[91] Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, and Saleh
Basalamah. A survey of shortest-path algorithms. arXiv preprint arXiv :1705.02044, 2017.

[92] Clair E. Miller, Albert William Tucker, and R. A. Zemlin. Integer programming formulation
of traveling salesman problems. Journal of the Association for Computing Machinery,
7(4) :326–329, October 1960.

115

http://snap.stanford.edu/data

116 CHAPITRE 5 — Conclusions and Perspectives

[93] Edward F. Moore. The shortest path through a maze. In International Symposium on the
Theory of Switching, page 285–292. Harvard University Press, 1959.

[94] Dalit Naor and Douglas L. Brutlag. On near-optimal alignments of biological sequences.
Journal of Computational Biology, 1(4) :349–366, 1994.

[95] Paolo Narvaez, Kai-Yeung Siu, and Hong-Yi Tzeng. New dynamic spt algorithm based on
a ball-and-string model. IEEE/ACM transactions on networking, 9(6) :706–718, 2001.

[96] Mari Ostendorf, Ashvin Kannan, Steve Austin, Owen Kimball, Richard Schwartz, and
J. Robin Rohlicek. Integration of diverse recognition methodologies through reevaluation of
n-best sentence hypotheses. In Speech and Natural Language : Proceedings of a Workshop
Held at Pacific Grove, California, February 19-22, 1991, 1991.

[97] Rose Oughtred, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher, Christie
Chang, Nadine Kolas, Lara O’Donnell, Genie Leung, Rochelle McAdam, et al. The biogrid
interaction database : 2019 update. Nucleic acids research, 47(D1) :D529–D541, 2019.

[98] Thomas Pajor. Multi-modal route planning. Master’s thesis, Universität Karlsruhe, 2009.

[99] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical
Computer Science, 312(1) :47–74, 2004.

[100] Duc-Minh Phan and Laurent Viennot. Fast public transit routing with unrestricted walking
through hub labeling. In International Symposium on Experimental Algorithms, pages 237–
247. Springer, 2019.

[101] Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. ACM Transactions on Algorithms (TALG), 8(4) :1–11, 2012.

[102] Lukasz Salwinski, Christopher S. Miller, Adam J. Smith, Frank K. Pettit, James U. Bowie,
and David Eisenberg. The database of interacting proteins : 2004 update. Nucleic acids
research, 32(suppl_1) :D449–D451, 2004.

[103] Tadeusz Sawik. A note on the Miller-Tucker-Zemlin model for the asymmetric traveling
salesman problem. Bulletin of the Polish Academy of Sciences, 2016.

[104] Grégoire Scano, Marie-José Huguet, and Sandra Ulrich Ngueveu. Adaptations of k-shortest
path algorithms for transportation networks. In 2015 International Conference on Industrial
Engineering and Systems Management (IESM), pages 663–669. IEEE, 2015.

[105] Alexander Schrijver. Combinatorial optimization : polyhedra and efficiency. Springer,
Berlin, 2003.

[106] Alexander Schrijver. On the history of the shortest path problem. Documenta Mathematica,
17(1) :155–167, 2012.

[107] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-line : An
empirical case study from public railroad transport. ACM Journal of Experimental Algo-
rithmics (JEA), 5 :12–es, 2000.

[108] Richard Schwartz and Steve Austin. A comparison of several approximate algorithms for
finding multiple (n-best) sentence hypotheses. In Acoustics, Speech, and Signal Processing,
IEEE International Conference on, pages 701–704. IEEE Computer Society, 1991.

[109] Robert Sedgewick. Algorithms in Java, Part 5 : Graph Algorithms, 3rd Edition. Addison-
Wesley Professional, 2013.

116

5.2 – Perspectives and questions 117

[110] Tetsuo Shibuya and Hiroshi Imai. New flexible approaches for multiple sequence align-
ment. Journal of Computational Biology, 4(3) :385–413, 1997.

[111] Douglas R. Shier. On algorithms for finding the k shortest paths in a network. Networks,
9(3) :195–214, 1979.

[112] Yu-Keng Shih and Srinivasan Parthasarathy. A single source k-shortest paths algorithm to
infer regulatory pathways in a gene network. Bioinformatics, 28(12) :i49–i58, 2012.

[113] Markus Sinnl and Ivana Ljubić. A node-based layered graph approach for the steiner tree
problem with revenues, budget and hop-constraints. Mathematical Programming Compu-
tation, 8 :461–490, 2016.

[114] Frank K Soong and Eng-Fong Huang. A tree. trellis based fast search for finding the n best
sentence hypotheses in continuous speech recognition. In Speech and Natural Language :
Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990, 1990.

[115] Leonardo Taccari. Integer programming formulations for the elementary shortest path pro-
blem. European Journal of Operational Research, 252(1) :122–130, 2016.

[116] The Cooperative Association for Internet Data Analysis (CAIDA). The CAIDA AS relation-
ships dataset. http://www.caida.org/data/active/as-relationships/,
2013.

[117] Donald M. Topkis. A k shortest path algorithm for adaptive routing in communications
networks. IEEE transactions on communications, 36(7) :855–859, 1988.

[118] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In IEEE 51st Annual Symposium on Foundations of Computer
Science (FOCS), pages 645–654. IEEE, 2010.

[119] Khoa D. Vo, Tran Vu Pham, Huynh Tuong Nguyen, Nghia Nguyen, and Tran Van Hoai. Fin-
ding alternative paths in city bus networks. In 2015 International Conference on Computer,
Control, Informatics and its Applications (IC3INA), pages 34–39. IEEE, 2015.

[120] Michael S. Waterman. Sequence alignments in the neighborhood of the optimum with
general application to dynamic programming. Proceedings of the National Academy of
Sciences, 80(10) :3123–3124, 1983.

[121] Mathias Weller. Optimal hub labeling is np-complete. CoRR, abs/1407.8373, 2014.

[122] Richard T. Wong. Integer programming formulations of the traveling salesman problem. In
IEEE International Conference on Circuits and Computers for Large Scale Systems, pages
149–152, 1980.

[123] Feng Xie and David Levinson. Measuring the structure of road networks. Geographical
analysis, 39(3) :336–356, 2007.

[124] Wangtu Xu, Shiwei He, Rui Song, and S. Choudhryb Chaudhry. Finding the k shortest paths
in a schedule-based transit network. Computers & Operations Research, 39(8) :1812–1826,
2012.

[125] Horacio Hideki Yanasse, Nei Yoshihiro Soma, and Nelson Maculan. An algorithm for
determining the k-best solutions of the one-dimensional knapsack problem. Pesquisa Ope-
racional, 20 :117–134, 2000.

[126] Jin Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11) :712–716, 1971.

117

http://www.caida.org/data/active/as-relationships/

Calcul pratique de chemins simples avec des contraintes de
longueur et de diversité dans des réseaux complexes et

multimodaux

Ali AL ZOOBI

Résumé

Le problème du plus court chemin est l’un des problèmes les plus étudiés en théorie des graphes
et en recherche opérationnelle. Une généralisation classique de ce problème est le problème de
trouver k plus courts chemins simples (kSSP). C’est-à-dire, le problème de trouver le plus
court, le deuxième plus court, etc. jusqu’au k-ième plus court chemin simple d’une source à
une destination dans un graphe orienté pondéré. Yen (1971) a proposé l’algorithme avec la
meilleure complexité théorique connue pour résoudre le kSSP dans un graphe orienté pondéré
à n sommets et m arcs, avec une complexité en O(kn(m + n logn)). Depuis, le problème a
été largement étudié du point de vue de l’ingénierie algorithmique.
Dans cette thèse, nous étudions également le problème kSSP sous cet angle, c’est-à-dire que
nous proposons des algorithmes exacts offrant de meilleures performances en pratique que
l’état de l’art, en termes de temps d’exécution, de consommation mémoire ou offrant de
meilleurs compromis espace-temps. Nous montrons aussi comment étendre nos algorithmes
au cas des graphes avec des poids arbitraires sans cycles négatifs.
De plus, nous étudions le problème de trouver k plus courts chemins simples qui sont mutuel-
lement dissimilaires. Plus précisément, nous étudions la complexité du problème en fonction
de quatre mesures de similarité différentes, et nous montrons dans quels cas le problème est
NP-Complet ou peut être résolu en temps polynomial.
Enfin, nous montrons comment adapter le problème kSSP à un modèle de réseau de transport
public multimodal. Nous adaptons certains de nos algorithmes pour le kSSP au problème de
trouver, dans un réseau de transport public multimodal, les k itinéraires d’une station source et
à une station destination arrivant au plus tôt.

Mots-clés : Théorie des graphs, plus court chemin, Ingénierie algorithmique.

Abstract

The shortest path problem is one of the most studied problem in graph theory and operations
research. A classic generalization of this problem is the problem of finding k shortest sim-
ple paths (kSSP for short). That is, the problem of finding a shortest, a second-shortest, etc.
until a k-th shortest simple path from a source to a destination in a directed weighted graph.
Yen (1971) proposed the state-of-the-art kSSP algorithm, with theoretical time complexity in
O(kn(m+ n logn)), where n is the number of vertices and m is the number of arcs of the in-
put digraph. Since then, the problem has been widely studied from an algorithmic engineering
perspective, that is designing exact algorithms offering better performances in practice.
In this thesis, we study the kSSP problem from an algorithm engineering perspective. More
precisely, we design new kSSP algorithms allowing to outperform the state-of-the-art algo-
rithms in terms of running time, memory consumption, or offering a better space-time trade-
off. We also show how to apply our algorithms in graphs with arbitrary arc weights without
negative cycles.
Then, we study the problem of finding paths respecting dissimilarity constraints. Precisely, we
study the complexity of the problem according to four different similarity measures, and we
show in which cases the problem is NP-Complete or polynomial time solvable.
Finally, we show how to adapt the kSSP problem to a multimodal public transportation network
model, i.e., combining metro, tram, buses, and walk. Precisely, we design some kSSP algo-
rithms to solve a related problem, which is, the problem of finding k earliest arrival journeys
from a source station to a destination station in a public multimodal transportation network.

Keywords: Graph theory, shortest path, algorithm engineering.

	Introduction
	Overview
	Model
	Definitions and Notation

	The shortest path problem
	One-to-all
	One-to-one query acceleration
	Multicriteria shortest paths

	The k shortest (simple) paths problem
	Motivations
	The k shortest paths kSP problem
	The k shortest simple paths problem (kSSP)
	On arbitrarily weighted graphs
	Contributions

	The k (shortest) dissimilar paths problem
	The k earliest arrival time journeys in public transit networks
	Public Transit models
	Problem Variants
	Earliest arrival journey planning
	k earliest arrival journeys query algorithms

	Techniques used
	Summary of the contributions
	Overview of the manuscript
	Publications

	On finding k shortest simple paths in a graph
	Introduction
	Preliminaries
	 Definition and Notation
	Yen's algorithm
	A Node Classification algorithm

	Sidetrack Based (SB) algorithm
	Compact representation of a path
	The SB algorithm
	The SB* algorithm

	Space - time tradeoffs
	The Parsimonious Sidetrack Based algorithm
	Special variants of PSB

	Postponing the detours's computation
	Experimental evaluation
	Experimental settings
	Experimental results
	Impact of the properties of the queries

	On arbitrarily weighted digraphs with no negative cycles
	Yen-Ball-String (Y-BS) algorithms
	Adaptation of some kSSP algorithms
	Experimental evaluation

	Arbitrarily weighted digraphs
	Finding a shortest simple path
	Compact MIP formulation for kSSP
	MIP formulation for kSSP with constraints generation

	Conclusion

	On finding k (shortest) dissimilar paths in a graph
	Introduction
	Finding k shortest dissimilar paths
	Finding a path dissimilar to several given paths
	Finding a path dissimilar to another given path
	Finding a path dissimilar to several given paths
	Shortest path dissimilar to one given path

	Algorithms for finding k (shortest) dissimilar paths
	Pseudo Polynomial algorithm

	Conclusion

	On finding k earliest arrival journeys in public transit networks
	Introduction
	Preliminaries
	Timetable - definitions and notations
	Connection Scan Algorithm
	Profile Connection Scan Algorithm

	Problem definition
	Public Transit Yen's algorithm (Y-PT)
	Public Transit Postponed Yen's algorithm (PY-PT)
	Experimental settings
	Experimental results

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives and questions

