
Constant tangential angle elected interest points

Ahmed REBAI
INRIA Rocquencourt

Ahmed.Rebai@inria.fr

Alexis JOLY
INRIA Rocquencourt

Alexis.Joly@inria.fr

Nozha BOUJEMAA
INRIA Rocquencourt

Nozha.Boujemaa@inria.fr

ABSTRACT
This paper presents a new interest points detector whose
goal is to better catch visual attention than standard de-
tectors. It is based on the generalization of Loy and Zelin-
sky transform [18] which was originally developed to detect
radial symmetry centers. The voting algorithm is here ex-
tended to a set of voting orientations which allows the con-
struction of a more complete analyze space. The specificity
of this detector is that it enables the detection of points
with different topological natures with the same detector.
Centers of geometric forms or curves as well as junctions or
vanishing points can be detected depending on the image
content. The paper describes and illustrates the principle
of this new algorithm and discusses some properties and
improvements. Preliminary experiments are also given and
shows that the detected points are stable under several typ-
ical transformations and that they are promising in terms
of objects generic subparts detection.

1. INTRODUCTION AND RELATED
WORK

To improve automatic processing, scientists are often in-
spired by natural principles. Like human visual system
which focus on some specific points more than others, re-
searchers have used interest points to solve various problems
in computer vision such as object recognition [17, 13], wide
baseline matching for stereo pairs [1], image retrieval [25],
etc. Many different interest points detectors exist in the lit-
erature : corners and junctions detectors [9, 10, 7], wavelet-
based detectors [2, 11], phase-based detectors [3], Difference
of Gaussian based detectors [22, 17], color based detectors
[8], etc. To improve the relevance of the detected points, in-
variance to view point changes has also been widely studied.
The scale-space theory [15, 6] has been prolific in the design
of scale-invariant detectors [19] and several affine-invariant
detectors have been recently compared in [19] and [20]. The
evaluation studies typically use two common criteria: re-
peatability and matching score under viewpoint changes or

image transformations [27, 20]. The repeatability means
that the points remain stable after changing the imaging
conditions or transforming the image and the matching score
gives a distinctiveness measure of a given local feature com-
puted around each interest point (it is thus more indicative
than quantitative).

These metrics are however not sufficient for several applica-
tions and particularly for generic objects recognition or ob-
ject class recognition methods based on local features [21, 5].
In such applications, generalization properties as well as in-
variance properties are required. That means that the points
should be detected at the same location in two different ob-
jects of the same category. Such a criterion is highly related
to the human interpretation of the detected points and is
thus more difficult to assess. The evaluation is thus classi-
cally performed after the learning selection of relevant local
features and is thus dependent on the features computed
around the interest points and on the learning strategy. It
is however well known that only a very few percentage of
the initial detected features are used in the final object class
model. This tends to prove that most of the initial detected
points are unsuitable for such tasks and this amount of un-
desirable points is problematic both in term of computation
time and efficiency. It is thus essential to reduce the input
of local features by improving their visual interpretability.

A number of context-free attentional operators have been
proposed in that way for automatically detecting points of
interest in images. These operators have tended to use local
radial symmetry as a measure of interest [18]. This corre-
lates well with psychophysical findings on fixation points of
the human visual system. It has been observed that visual
fixations tend to concentrate along lines of symmetry [16].
Sela and Levine [28] noted that some psychophysical find-
ings corroborated this, placing the mean eye fixation points
at the intersection of lines of symmetry on a number of sim-
ple 2D geometric figures. It has also been observed that
visual fixations are attracted to centers of mass of objects
and that these centers of mass are more readily determined
for objects with multiple symmetry axes [18]. Stark and
Pritevera [23] compared the responses of a number of arti-
ficial region of interest detectors, including Reisfeld’s gen-
eralized symmetry transform [24], with regions of interest
detected by human subjects. By using several different algo-
rithms in conjunction with a clustering procedure, they were
able to predict the locations of human-detected regions of
interest. The approach developed by Loy and Zelinsky was



inspired by these results, although the final method bares
more similarity to the work of Sela and Levine [28] and the
circular Hough transform [12]. It determines the contribu-
tion each pixel makes to the symmetry of pixels around it,
rather than considering the contribution of a local neigh-
borhood to a central pixel. Unlike previous techniques that
have used this approach [12, 28, 14], it does not require the
gradient to be quantized into angular bins, the contribution
of every orientation is computed in a single pass over the
image.

In this paper, we propose a generalization of Loy and Zelin-
sky’s method. By adding an orientation parameter to the
voting vectors, we can construct a 3-dimensional voting
space in which the maxima are expected to be more stable
and more topologically diversified than the radial symmetry
centers initially detected. We also provide some improve-
ments by adding an alignment rejection criterion avoiding
unstable points on contours and a sub-pixel location esti-
mation at low-resolution to detect points corresponding to
large objects without strongly degrading the computation
time. Section 2 of this paper gives the description of the
proposed method and discusses the nature of the detected
points. Improvements of the method are presented in section
3. Section 4 relates some promising preliminary experiments
and section 5 discusses prospective works and upcoming full
experiments.

2. CONSTANT TANGENTIAL ANGLE
ELECTED INTEREST POINTS

2.1 Generalization of Loy and Zelinsky’s
transform

Loy and Zelinsky’s transform is computed over a set of radii
{1, · · · , rmax} where rmax is the maximum radius of the ra-
dially symmetric features to be detected. The value of the
transform at radius r ∈ {1, · · · , rmax} indicates the contri-
bution to radial symmetry of the gradients a distance r away
from each point. While the transform can be calculated for
a continuous set of radii, this is generally unnecessary as a
subset of radii is normally sufficient to yield a representative
result. At each range r, an orientation projection image Or
is formed. It is generated by examining the gradient g(p)
at each point p of the image from which two corresponding
pixels, located at distance r and pointed by the gradient di-
rection, are affected [18].
In our new generalized transform, the direction of this vote is
not systematically the gradient orientation and can be tuned
by a parameter θ defining the angle between the gradient
and the new voting vector gθ(p). An overview of the algo-
rithm is shown in Figure 2. At each radius r ∈ {1, · · · , rmax}
and each θ ∈ {θmin, · · · , θmax} , an orientation projection
image Or,θ is formed. It is generated by examining the gra-
dient g(p) at each point p of the image from which two
corresponding affected pixels are determined as shown in
Figure 1. These affected pixels are defined as that the vot-
ing vector gθ(p) is pointed to or away from, a distance r
away from p. The voting vector is defined as:

gθ(p) =

ţ
cosθ −sinθ
sinθ cosθ

ű
g(p) (1)

Figure 1: The locations of pixels p+ and p− affected
by the elector vector e(p) for a range of r = 3. The
dotted circle shows all the pixels which can be af-
fected by the gradient at p for a range r.

The coordinates of affected pixels p+ and p− are given by

p+ = p + round
ş
r · ą

cos(β + θ)x + sin(β + θ)y
ćť

(2)

p− = p − round
ş
r · ą

cos(β + θ)x + sin(β + θ)y
ćť

(3)

where round(.) rounds each vector element to the nearest
integer, x and y are the unit vectors according to the width
and the height of the image respectively:

x =

ţ
1
0

ű
y =

ţ
0
1

ű

and β = arctan
ş

g(p)·y
g(p)·x

ť
is the orientation of the gradient

vector.

The orientation image Or,θ is initially zero. Each affected
pixel in the orientation projection image is incremented by 1:

Or,θ(p
+) = Or,θ(p

+) + 1 (4)

Or,θ(p
−) = Or,θ(p

−) + 1 (5)

The contribution at a radius r and an orientation θ is then
defined as the convolution

Sr,θ = (Or,θ)
4 ∗Gr

where Gr is a two-dimensional Gaussian. The purpose of Gr
is to spread the influence of the affected pixels as a function
of radius r. Gr comes to correct the inaccuracy of the gradi-
ent direction made by calculation. More than the vote will
be further (r increase), more than the standard deviation
of the Gaussian kernel will be larger. The purpose of the
exponent 4 is to spread out the dynamics of the orientation
projection image.

The final contribution at a given orientation θ is then defined
as the sum of the contributions over all the considered radii:

Sθ =

rmaxX
r=1

Sr,θ (6)

2.2 Points detection and analysis
At this stage, we have to notice that the transform could
be theoretically defined for a continuous set of orientations
θ although this is in practice unnecessary as a subset of
orientations is normally sufficient to yield a representative



Figure 2: The algorithm process.

result. The definition of this 3-dimensional continuous space
(that we call θ-space) is however very interesting since it can
be compared to a scale-space although we did not attend to
verify the diffusion equation for the moment ( δS

dθ
= ∆S).

Sampled images of such a θ-space are presented in Figure 4.

Given the set of contribution images {Sθ}, interest points
could be detected by searching for 2D local maxima in each
of the Sθ images, as in the original version of Loy and al.,
for which the points were detected as local maxima in the
unique contribution image S0. This would effectively detect
interesting points of different topological natures but would
also lead to a lot of correlated interest points. One given
visually interesting point can indeed correspond to a local
maximum at several θ due to the blurring equation 2.1. We
thus propose to keep as interest points {pi}, only the points
presenting a 3-dimensional local maximum in the θ-space,
as usually done in scale-space theory. We can hope these
points to be more stables and less correlated. In practice,
to speed up the process, the 3D maxima are selected among
all the 2D maxima detected in the contribution images Sθ
(θ ∈ {θmin, · · · , θmax}).

The orientation θd at which an interest point is detected is
an important information about the geometric distribution
of its voters. We thus define the characteristic tangential
angle ψd of an interest point as:

ψd =
π

2
− θd (7)

This angle is meaningfull since it determines the constant
tangential angle of all the voters that have contributed to
a given interest point. It is important to notice that the
mathematical object defined by a constant polar tangential
angle is a logarithmic spiral whose polar equation is:

ρ(α) = k · ecot(ψ)·α (8)

We can thus expect as interest points, centers of logarithmic
spirals, or centers of portions of logarithmic spirals, as well
as intersections of such curves. When a point is detected
with a characteristic tangential angle ψd = π

2
, the tangent

at the voting points is expected to be perpendicular to the
interest point direction and the optimal detected shape will
be a circle. When a point is detected with a characteristic
tangential angle ψd ≡ 0 [π], tangent at the voting points
are expected to point toward the interest point, and we can
expect convergent contours, such as junctions or vanishing

Figure 3: Detection of junctions or vanishing points

points (see Figure 3).

Figure 4 shows sampled images of the θ-space of two real
images, illustrating the different nature of the points when
the characteristic tangential angle changes. One can easily
note the smooth displacement of the 2D local maxima in
the θ-space and the energy concentration at θd (θd = 0
in the left image and θd = π

2
in the right image). The

interest point with the highest response is also displayed on
Figure 4 for each image and corresponds well to the main
visual attraction centers of these images although they are
topologically very different. Main elected points detected in
other images and at other characteristic tangential angles
are displayed on Figure 5 to illustrate other typical detected
features.

2.3 Robustness to occlusion
Figure 6 illustrates another interesting property of the pro-
posed interest points, that is their robustness to occlusions.
We see that the vanishing point is detected as the main
elected interest point even after the insertion of a hidding
object. This property is due to the fact that most of the vot-
ing vectors are not necessary in the direct neighborhood of
the interest point. This is quite original compared to usual
interest points which mainly focus on the local content it-
self. In our case, interest points are selected according to
how they are seen by other points in the image more than
according to their local neighborhood.
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Figure 4: (a): Original images and best elected in-
terest point (b): θ-space sampled images (from top
to bottom: θ ∈ [π

2
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, π
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, π
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Figure 6: Best elected point detected without and
with occlusion.

3. ALGORITHM IMPROVEMENTS
3.1 Ignoring small gradients and reducing the

number of convolutions
As suggested in [18], the detection process has been speed
up by two refinements:

1. Ignoring small gradients by thresholding the gradient
magnitude before voting in the contribution images

2. Reducing the number of convolutions (Equation 2.1)
by convolving directly partial sums over the different
radii

3.2 Low resolution detection and sub-pixel
precision

As explained before, the maximum size of the detected fea-
tures depends mainly on the maximum radius rmax. High
values for rmax are however not practicable since the compu-
tation time of the convolutions defined in Equ. 2.1 becomes
prohibitive. One way to detect large structures without de-
grading the computation time is to reduce the resolution
of the image before applying the transform. However, this
method will degrade the precision of the points location in
the original image. The distance between the wrong and
the right coordinates increases significantly when using very
small scales. To face this problem, we estimate the coordi-
nates with a sub-pixel approach. If (x, y) is a local maximum
in a contribution image Sθ then estimate the interest point
coordinate as the maximum of interpolation on the grey lev-
els values of neighboring pixels. We will consider two simple
quadratic interpolations. The first interpolation is between
the three pixels values we have in X-axis and the second one
is between the three pixels values we have in Y-axis. The
method used here is more developed in [4]. The question
is to find the x position corresponding to the maximum of
the parabola passing through the three points (x1, a), (x2, b)
and (x3, c) such as b ≥ a and b ≥ c. It can be easily seen
that x = x2 +m and m is given by

m =
a− c

2(a− 2b+ c)

3.3 Alignment rejection criterion
According to some carried out experiments, we notice, that
aside junctions, we detect undesirable points along contours
(mainly at θd = ±π

2
). In fact, local maxima are formed

along the contours’ lines in the orientation projection im-
age. This result is due to the fact that all pixels of lines
contribute to each other resulting in high scores all along
the line. Local maxima are then formed due to small varia-
tions or side effects. A solution consists in keeping only the
points whose voters are located at various orientations. To



Figure 5: Best elected points detected at different θd - from left to right: θd = 9◦, θd = 27◦, θd = 45◦, θd = 67◦

this end, we used central moments. The moments of an im-
age are very useful to describe the objects which it contains.
Moreover, these moments give a single characterization of
the signal. Given moments to all orders, we can correspond
only one image to these moments and conversely. For a two-
dimensional signal f , the moment of order (p+ q) is defined
by the following formula

Mpq =
X
x

X
y

xpyqf(x, y)

From image moments, we can define the central moments as
follows

µpq =
X
x

X
y

(x− x)p(y − y)qf(x, y)

where

x =
M10

M00
and y =

M01

M00

are the coordinates of the centroid. Information about ori-
entation of an object can be derived by only using the sec-
ond order central moments to construct a covariance matrix.
The eigenvectors of this matrix constitute the predominate
axes of the object, and orientation can thus be extracted
from the angle of the eigenvector associated with the largest
eigenvalue. The eigenvalues of the covariance matrix can
easily be shown to be

λi =
µ20 + µ02

2
±

q
4µ11

2 + (µ20 − µ02)
2

2

which are proportional to the squared length of the eigen-
vector axes.

In our case, we want to keep only the points whose voters
are distributed according to varied directions. Consequently,
we will eliminate all the points whose eigenvalues are very
distant one from the other (i.e. there is a predominant di-
rection for the object). To this aim, we chose a threshold
noted s. If |λ1

λ2
| < s or |λ2

λ1
| < s then the point is rejected.

The choice of s is strongly related to the visual significance
that we attach to a point.

Normally, central moments are computed after segmentation
process in order to retain scene’s objects. In our case, we

don’t need to use any segmentation. In fact, the centroid
(x, y) corresponds to the elected point. So, when applying
the transform, we have to compute three other images in
the same way we compute the orientation projection image.
The only difference lies in the manner of voting. In the first
image, we make votes using (x − x)2 value. In the second
image, votes are made using (y − y)2 value and finally, in
the third image, votes are made using (x− x)(y − y) value.
Thanks to these images, we can determine the eigenvalues
of the local maxima points detected in Sθ image. After that,
we apply the rejection criterion.

Figure 7: Elected points detected with and without
alignment rejection criterion

4. PRELIMINARY EXPERIMENTS
We present in this section some preliminary experiments,
mainly qualitative results and quantitative control of
stability to image transformations. More exhaustive and



Figure 8: Detection examples

relevant experiments will be performed in next works and
are discussed in the last section of this paper. The images
used in these experiments come from ImagEval benchmark
(http //www.imageval.org/e presentation.html), a
french initiative related to the evaluation of technologies of
image filtering, content-based image retrieval and automatic
description of images in large-scale image databases.

4.1 Detection examples
We present here some images showing the qualitative re-
sults of the detector. We have used various symbols to
represent the points detected at different characteristic tan-
gential angles. Table 1 defines these symbols. The points
were detected at low resolution (30% of original size) with
rmax = 50 and with 19 values of θ varying from −90◦ to
80◦. Alignment rejection threshold s was set to s = 0.1.
Only the 20 best points are displayed for each image. The
average real number of 3D maxima, computed on 50 images
is equal to np = 34, 2.

Symbol θ values
© [−5◦, 5◦]
¤ [−45◦,−5◦[∪]5◦, 45◦]
× [−85◦,−45◦[∪]45◦, 85◦]
+ [−90◦,−85◦] ∪ [85◦, 90◦]

Table 1: Points symbols table

Observing these results, we can remark that the detected
points are not correlated and that the points detected at
different characteristic tangential angles are complementary
since they do not detect the same object parts. It is also

often possible to recognize the expected topological nature
of the detected features for each type of points. The red
crosses mainly fall on large line junctions whereas the red
crosses often correspond to curves junctions; green squares
are mainly located at centers of curved-based objects and the
blue circles correspond to circular object centers. Globally
the detected points correspond to visually attractive and
interpretable points of the images and we think that this
is promising for the fixed objective, that is detecting points
catching human visual attention.

4.2 Repeatability to transformations
The aim of this experiment is to test the stability of our
detector towards different image transformations. The im-
ages and their transformed versions used in this experiment
come from the first task of ImagEval benchmark whose
goal is to index and retrieve transformed images. The 10
transformations studied in this experiment include both
geometrical and chromatic transformations and five of them
are illustrated on Figure 9. Note that the parameters of
the transformations are randomly selected and two images
are not necessary attacked by the same transformations.
This experiment was carried out on 10 randomly selected
original images and we computed the Constant Tangential
Angle elected points (CTA points) on the 10 × 10 = 100
transformed images (and on the original images). The
points were detected at low resolution (40% of original size)
with rmax = 50 and with 19 values of θ varying from −90◦

to 80◦. Alignment rejection threshold s was set to s = 0.1.
The average number of interest points was np = 43, 7.
We made a comparison between CTA points and Harris
points [9] since the harris detector is known to be one of
the most point detector to such image transformations [26].



Figure 9: Some of the studied transformations for the repeatability measurements - from left to right:
Rotation, 3D Projection, Negative, Floyd-Steinbeck transform, Resize in a new image

To achieve better comparison, we computed the Harris
detector in the same low resolution image and kept only
the 50 best points. The scale parameter of the Harris filter
was set to σh = 1, 2 which is a typically used value.
We computed the commonly used ε-repeatability metric
between the original image and the transformed ones to
evaluate the stability to transformations. ε was fixed to 6
pixels, which is quite large compared to other evaluations,
but more appropriated to our low resolution detection that
leads to quite large detected features for both detectors
(ε = 6 in the original image corresponds to εl = 0.4×ε = 2.4
pixels in the low resolution image which is a more standard
value). Experiments’ results are presented in table 2.

Repeatability Repeatability
of CTA of HarrisTransformation

points (%) detector (%)
Negative 83.3 83.2

Black and White 81.2 83.4
Gaussian blur 82.0 88.3
Desaturation 76.9 84.6

JPEG compression 66.3 69.2
Floyd-Steinbeck transform 60.7 63.4

Rotation 52.2 59.3
Random Noise 56.9 63.6
3D Projection 22.4 19.8

Resize in a new image 29.3 21.3

Table 2: Repeatability to several transformations
(ε=5).

We notice that the repeatability rate of the CTA points
is very good although it is worse than Harris one in all
chromatic transformations. It is however better in the two
stronger geometric transformations, that are: insertion in a
new image after resizing (between 40% and 70%) and 3D
projection on an inclined plane. Thus, CTA points seem
to be stable enough according to the fact the main expected
property is not a better repeatability to transformations but
a better adequacy to points catching visual attention.

4.3 Detections on a generic class of objects
One good way to evaluate the visual relevance of an inter-
est points detector would be to estimate its ability to detect
the same objects parts in a several images representing ob-
jects of a same class. Defining a correct metric for such a
task is not trivial and would necessitate the manual con-
struction of a ground truth or at least a manual analysis
of detected points. We will certainly address this problem
in future works and we relate here only a small qualita-
tive experiment. We computed our CTA points in images

representing objects of a same class labelled as sun glasses.
The used images come from the fourth task of ImagEval
benchmark whose goal is to recognized objects categories.
The interest points were detected at low resolution (50% of
original size) with rmax = 50 and with 19 values of θ varying
from −90◦ to 80◦. Alignment rejection threshold s was set
to s = 0.1.
The results are presented on Figure 10. They show the abil-
ity of our interest points detector to focus on the main sub-
ject of the images and also to detect similar objects part in
different instances of the object class, such as the bridge be-
tween the two glasses, the centroid(s) of the glasses themself
or the interface region between the nose and the glasses.

5. CONCLUSION AND FUTURE WORKS
This paper presents a new interest points detector whose
goal is to catch visual attention better than standard detec-
tors. It is based on a generalization of Loy and Zelinsky’s
transform [18]. This transform was originally developed to
detect radial symmetry centers, which are known to cor-
relate well with psychophysical findings on fixation points
of the human visual system. The initial voting algorithm is
here extended to a set of voting orientations which allow the
construction of a more reach analyze space. The proposed
interest points are then detected as 3-dimensional maxima
in this space and are expected to be more distinctive and
stable. The specificity of this detector is that it enables the
detection of points with different topological natures with
the same detector. Each point is detected at a specific tan-
gential angle which can be used as a topological character-
istic associated to each interest point. Experiments showed
that the detected points present a good stability to a lot of
image transformations and qualitative preliminary experi-
ments are very promising about their visual relevance.

Nevertheless, more reliable experiments on largest datasets
have to be carried out to confirm these results. This will be
the main topic of our future works. Visual relevance metrics
have to be designed either by comparing the detected points
to eye-tracking systems or by manually constructing ground
truth of attractive object parts.

The definition of descriptors based on these interest points
will be an other important task. Topological local descrip-
tors could be for example derived from several geometri-
cal moments computed on the voters locations. Invariance
to geometric transformations could be then easily obtained.
The definition of global image descriptor based on the dis-
tribution of the characteristic tangential angles is also a
prospect. It could be useful to characterize the global topol-
ogy of an image, and for example to distinguish images con-
taining a lot of circular and smoothed forms from those con-



Figure 10: Detection on the images of the ImagEval class labelled as SUN GLASSES

taining a lot of abrupt junctions.

Once the interest points will be associated to efficient de-
scriptors, the relevance of the resulting local features could
be evaluated thanks to a multiple instances boosting proce-
dure such as the one described in [21]. The main advantage
of such a learning procedure is that the learner selects clearly
the features being the more reliables for a given class and
that heterogeneous features can be learned at the same time.
It is thus possible to compare several local features by the
frequency at which they are selected by the learner.

A last prospective work is to study the links between
the scale-space theory and the 3-dimensional θ-space con-
structed by the proposed transform. If we show some com-
mon properties such as the diffusion equation, a lot of results
could be automatically applied.
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