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Abstract—Content-based copy detection (CBCD)
is one of the emerging multimedia applications for
which there is a need of a concerted effort from the
database community and the computer vision com-
munity. Recent methods based on interest points
and local fingerprints have been proposed to per-
form robust CBCD of images and video. They in-
clude two steps: the search of similar fingerprints
in the database and a voting strategy that merges
all the local results in order to perform a global de-
cision. In most image or video retrieval systems,
the search of similar features in the database is
performed by a geometrical query in a multidimen-
sional index structure. Recently, the paradigm of
approximate k-nearest neighbors query has shown
that trading quality for time can be widely prof-
itable in that context.
In this paper, we introduce a new approximate
search paradigm, called Statistical Similarity

Search (S3), dedicated to local fingerprints and we
describe the original indexing structure we have de-
velopped to compute efficiently the corresponding
queries. The key-point relates to the distribution
of the relevant fingerprints around a query. Since
a video query can result from (a combination of)
more or less transformations of an original one, we
modelize the distribution of the distorsion vector
between a referenced fingerprint and a candidate
one. Experimental results show that these statisti-
cal queries allow high performance gains compared
to classical ǫ-range queries. By studying the in-
fluence of this approximate search on a complete
CBCD scheme based on local video fingerprints, we
also show that trading quality for time during the
search does not degrade seriously the global robust-
ness of the system, even with very large databases
including more than 20,000 hours of video.

I. Introduction

Content-Based Copy Detection (CBCD) schemes
are an alternative to the watermarking approach for
persistent identification of images and video clips [1],

[2], [3], [4]. As opposed to watermarking, the CBCD
approach only uses a content-based comparison be-
tween the original and the candidate objects. For
storage and computational considerations, it gener-
ally consists in extracting as few features as possible
from the candidate objects and matching them with
a database (DB). Since the features must be discrim-
inant enough to identify an image or a video, the fea-
tures are often called fingerprints or signatures [4].
CBCD presents two major advantages. First, a video
clip which has already been delivered can be recog-
nized. Secondly, content-based features are intrinsi-
cally more robust than inserted watermarks because
they contain information that cannot be suppressed
without considerably corrupting the perceptual con-
tent itself.
Recently, robust CBCD schemes based on local fin-
gerprints have been proposed to deal with geometrical
transformations, such as resizing, shifting or inserting
[1], [3]. In these techniques, the detection includes
two steps: the search of similar local fingerprints in
the database and a voting strategy that merges all the
local results in order to decide which of these results
are some copies of the candidate object. The method
proposed in [1] is dedicated to static images and the
voting strategy is only based on the image identifiers
of the local fingerprints returned by the search. In [3],
we proposed a method dedicated to video (see section
III). The experimental results we present in this pa-
per were obtained in that context.

As for many content based retrieval systems, one
of the difficult task of a CBCD scheme is the cost
of the similarity search in the fingerprints reference
database, which can be very large. In its essence,
the similarity query paradigm is to find objects in the
database which are similar to a given query object
up to a given degree [5]. In order to assess the sim-



ilarity between two objects, a distance is generally
used to perform k-nearest neighbors queries or ǫ-range

queries.
To solve this problem, most multimedia retrieval sys-
tems use multidimensional index structures such as R-
tree family techniques ([6], [7], [8]). To overcome the
dimensionality curse phenomenom that occurs when
the dimension of the descriptors becomes very high,
other index structures have been proposed, e.g. the
pyramid tree [9] or dimension reduction techniques
[10]. Sometimes, improved sequential techniques such
as the V A-file are even more profitable than all other
structures [11]. However, the search time remains to
high for many of the emerging multimedia applica-
tions [12]. For the last few years, researchers are in-
terested in trading quality for time [13], [14], [15],
[16], [17] and the paradigm of approximate similar-

ity search has emerged [18]. Some of the proposed
solutions are simply early stopping approaches [15],
[14]. The search is stopped when a fixed number of
the most relevant bounding regions have been visited.
The precision of the search is therefore not controlled.
Other techniques, e.g. [19], are based on geometrical
approximations during the filtering rules of the search
algorithm. They guarantee a priori the maximum the
distance between the approximate results and the ex-
act k nearest neighbors. More recent techniques are
based on a probabilistic selection of the bounding re-
gions used in the indexing structure [16], [17]. They
allow to control directly the expected percentage of
the real k-nearest neighbors.
The previous approximate search techniques are ded-
icated only to k-nearest neighbor queries. Range
queries are rarely used because the results of the sim-
ilarity search are almost always directly linked to the
results that are provided to the user, for whom it is
useful to get always the same number of results. We
think that a k-nearest neighbor search is not appro-
priate to copy detection and especially for techniques
that include a voting strategy after the search. The
main reason is that the number of relevant fingerprints
for a given query is highly variable. In a large TV
archives database, several video clips can be dupli-
cated 600 times, whereas other video clips are unique.
Furthermore, inside a single video sequence, points of
the background are detected many times whereas oth-
ers corresponding to moving objects are unique.
The basic idea of the Statistical Similarity Search (S3)
technique we propose is to extend the approximate
search paradigm to ǫ-range queries, leading to the
statistical query paradigm. It is introduced in sec-

tion II. In section III, we describe the content-based
video copy detection scheme based on local finger-
prints. The index structure we have developped to
compute the statistical queries is presented in section
IV and experimental results showing its efficiency are
provided in section V. Concluding remarks and some
perspectives of this work are given in section VI.

II. Statistical query

By excluding several regions of an hyper-spherical
query, having a too small intersection with the bound-
ing regions of the index structure, it is indeed pos-
sible to obtain high speed-up with very small losses
in the results. However, it is not possible to take
the volume percentage as an error measure because
it would be equivalent to consider that the relevant
similar fingerprints are uniformly distributed inside an
hypersphere. When the dimension increases, the fin-
gerprints following such a distribution become closer
and closer to the surface of the hyper-sphere but this
is not true in reality, as illustrated on figure 1. The
solid curve (left) is the real distribution of the dis-
tance between referenced and distorted fingerprints
issued from a transformed version of the referenced
video sequences for the same interest points. In this
example, the transformation was a resize of factor
wscale = 0.8, but we observed the same kind of dis-
tributions for all studied transformations, including
colorimetric distorsions and noise addition. The two
other dotted curves represent the estimated probabil-
ity density function for two probabilistic models: an
uniform spherical distribution (right) that would be
obtained if we took the volume percentage as an error
measure and a zero mean normal distribution (center)
under components independence assumption. The fig-
ure shows that a simple independent normal distribu-
tion is much closer to the real distribution than the
uniform one.

The proposed statistical query paradigm relies on the
distribution of the relevant similar fingerprints. Let
the distorsion vector ∆S be defined by:

∆S = S (m) − S (t(m)) , t ∈ T

where S (m) is the fingerprint of a referenced pattern
m, S (t(m)) is the distorted fingerprint, i.e the finger-
print of the transformed pattern t(m) and T is the
set of transformations that can be applied between a
referenced sequence and a copy of it. We defined the
statistical query of expectation α as the search of all



the fingerprints contained in a region Vα of the feature
space satisfying:

∫

Vα

p∆S (X − Q) dX ≥ α (1)

where Q is a candidate fingerprint and p∆S (.) is the
probability density function of the distorsion.
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Fig. 1. Distribution of the distance between a fingerprint
and its distorted version after resizing of a video sequence
(wscale = 0.8)

In practice, the first step of a search in a multidi-
mensional indexing structure is a set of geometric fil-
tering rules that quickly exclude most of the bounding
regions. To process the statistical queries in an in-
dexing structure, we propose to replace the geometric
rules by probabilistic rules, according the distortion
model. The main advantage is that a statistical query
has no intrinsic shape constraint. Thus, the region Vα

that makes equal the probability to find a relevant
fingerprint to α is naturally adapted to the shape of
the bounding regions used by an indexing structure.

III. Video local fingerprints and voting

strategy

In this section, we briefly remind the main steps of
the video CBCD scheme proposed in [3]. In order to
be robust to inserting and shifting, which are frequent
operations in the TV context, the method is based on
local descriptors as suggested in [20] or [21]. The lo-
cal fingerprints extraction includes the three following
steps:
• a key-frame detection, based on the mean of the
frames difference also called intensity of motion. A
gaussian filter is applied to it and the key-frames are
selected at the extrema positions of the resulting sig-
nal.

• an interest point detection in each key-frame, pro-
cessed by an improved version of the Harris detector
[21].
• a local characterisation computed around each in-
terest point, leading to the following D = 20-
dimensional fingerprint S:

S =

(
s1

‖s1‖
,

s2

‖s2‖
,

s3

‖s3‖
,

s4

‖s4‖

)

where the si are 5-dimensional sub-fingerprints com-
puted at four different spatio-temporal positions dis-
tributed around the interest point. Each si is a differ-
ential decomposition of the graylevel 2D signal I(x, y)
until the second order:

si =

(
∂I

∂x
,

∂I

∂y
,

∂I

∂x∂y
,

∂2I

∂x2
,

∂2I

∂y2

)

The fingerprints are coded with one byte for each
component. Thus, all measures in the rest of the pa-
per refer to the space [0, 255]D=20.

In the indexing case, the fingerprints are simply in-
serted in the indexing structure with a video sequence
identifier Id and a time-code tc. In the detection case,
the statistical query returns for each candidate finger-
print Sj a set of Kj referenced fingerprints {Sjk}k∈Kj

with their identifiers {Idjk}k∈Kj
and their time-codes

{tcjk}k∈Kj
. These results are stored in a buffer for a

fixed number of key-frames in order to estimate the
best sequences. We note Ncand the number of candi-
date fingerprints contained in the corresponding time
interval (j ∈ [1,Ncand]).
The estimation is only based on the identifiers and
the time-codes and not on the fingerprint itself. For
each identifier id ∈ {Idjk} k∈Kj; j∈[1,Ncand], the corre-

sponding time-codes are used to estimate the unique
parameter b of the following temporal model:

tc′ = tc + b

, where tc′ represents a time-code of the candidate se-
quence and tc a time-code of a referenced sequence.
This simple estimation problem is solved by the fol-
lowing minimization equation:

b̂(id) = arg min
b




Ncand∑

j=1

min
k∈Kj

Idjk=id

ρ
(∣∣∣tc′j − (tcjk + b)

∣∣∣
)




(2)



where ρ(u) is a non-decreasing cost function al-
lowing to decrease the contribution of outliers. The
Tukey’s biweight M-estimator was chosen for ρ(u) (see
[22] for more details).
Once b̂(id) has been estimated, a similarity measure
nsim is computed for each identifier id represented in
the results by a voting strategy. It simply consists in
counting the number of candidate fingerprints (i.e the
number of interest points) that contribute to the solu-
tion b̂(id) according to a small tolerance interval. By
thresholding the value of nsim, we finally decide which
of the identifiers represented in the results correspond
effectively to a copy of the candidate sequence.

IV. Indexing Structure

The structure we use to index the fingerprints
and to perform the statistical queries is based on a
Hilbert’s space filling curve. Multidimensional index-
ing using Hilbert’s space filling curves was originally
suggested by Faloutsos [23] and fully developed by
Lawder [24]. The main advantage of such index struc-
tures is to convert the complex multidimensional ac-
cess problem to a simple 1-dimensional access prob-
lem. The principle of our index structure is quite sim-
ilar to Lawder’s approach: first, the query is mapped
to Hilbert’s curve coordinate and is converted into
several curve sections according the filtering rules of
the search. Then, a refinement step consists in scan-
ning the fingerprints belonging to these sections. The
Hilbert’s curve clustering property limits the number
and the dispersion of these sections reducing the num-
ber of memory accesses.
However the method we propose differs in several
main points. Lawder’s filtering step requires the use
of state diagrams to compute the mapping to the
Hilbert’s curve which limits the dimension to about 10
because of primary storage considerations. The pro-
posed method uses the so-called Butz algorithm [25]
for the mapping and requires little memory. Further-
more, only hyper-rectangular range queries are com-
putable with Lawder’s indexing technique. Spherical
range queries (ǫ-range queries) or statistical queries
are possible with our new structure.
The fingerprints database is physically ordered ac-
cording to the position of the fingerprints on the
Hilbert’s curve. That implies that the S3 system is
static: no dynamic insertion or deletion are possible.
For a given query, once the curve sections have been
identified by the statistical filtering rules (see subsec-
tion IV-A), the corresponding sets of successive fin-
gerprints in the database are localized by an simple

Fig. 2. Space partition induced by the Hilbert’s space
filling curve for D = 2 and K = 4 at different depths –
from left to right: p=3,4 and 5

index table. Then, the refinement step sequentially
scans each set of successive fingerprints like a classi-
cal sequential scan. The fingerprint database is stored
in a single file but it is entirely loaded in primary stor-
age at the start of the detection stage of our CBCD
system. When the DB exceeds primary storage size,
it is cyclically loaded in several memory size blocks
and several queries are searched together (see subsec-
tion IV-B). For computational efficiency, the main
assumption of the S3 system is that the D compo-
nents of the distorsion vector are independent:

p∆S =
D∏

j=1

p∆Sj

A. Statistical filtering step

The K-th order approximation of Hilbert space-
filling curve in a D-dimensional grid space HD

K is a

bijective mapping:
[
0, 2K − 1

]D
↔
[
0, 2KD − 1

]
. The

main property is that two neighboring intervals on
the curve always remain neighboring cells in the grid
space. The reciprocal property is generally not true
and the quality of a space filling curve can be eval-
uated by its ability to preserve a certain locality on
the curve. Some intermediate variables of the Butz
algorithm allow to easily define the space partition
corresponding to the regular partition of the curve in
2p intervals [26]. Parameter p ∈ [1,KD] is called the
depth of the partition by analogy to KD-trees. As il-
lustrated on Figure 2, the space partition is a set of
2p hyper-rectangular blocks (called p-blocks) of same
volume and shape but of different orientations.

For a p-partitioned space and a candidate finger-
print Q, the statistical query inequality (1), may be
satisfied by finding a set Bα of p-blocks such as:

card(Bα)∑

i=1

∫

bi

p(X − Q) dX ≥ α (3)

where Bα = {bi : i ∈ [1, card(Bα)]} and 0 ≤



card(Bα) ≤ 2p.

In practice, card(Bα) should be minimum to limit
the cost of the search. We refer to this particular so-
lution as Bmin

α . Its computation is not trivial because
sorting the 2p blocks according to their probability is
not affordable. Nevertheless, it is possible to identify
quickly the minimal set of blocks with a total proba-
bility greater than a fixed threshold t:

B(t) =

{
{bi} :

∫

bi

p(X − Q) dX > t

}

and the corresponding probability sum:

Psup(t) =

card(B(t))∑

i=1

∫

bi

p(X − Q) dX

Since card(B(t)) decreases with t, finding Bmin
α is

equivalent to finding tmax verifying:

{
Psup(tmax) ≥ α

∀t > tmax, Psup(tmax) < α
(4)

As Psup(t) also decreases with t, tmax can be eas-
ily approximated by a method inspired by Newton-
Raphson technique.

Parameter p is of major importance since it di-
rectly influences the response time of our approximate
method

T (p) = Tf (p) + Tr(p)

The filtering time Tf (p) is strictly increasing be-
cause the computation time of Bα and the number
of memory accesses increase with p. The refinement
time Tr(p) is decreasing because the selectivity of the
filtering step increases, i.e card(Sα) decreases with p.
The response time T (p) has generally only one min-
imum at pmin which can be learned at the start of
the retrieval stage in order to obtain the best average
response time.

B. Pseudo-disk strategy

When the fingerprints database exceeds memory
size, a fixed number Nsig of fingerprints are searched
together. At the start of the retrieval stage, the
Hilbert’s curve is split in 2r regular sections (0 ≤
r ≤ p), such that the most filled section fits in mem-
ory. The filtering step, which is independent of the
database, is processed for each fingerprint during a
first stage. Each of the 2r sections is then sequen-
tially loaded in main memory and the refinement step

is processed for the Nsig fingerprints. The average
total response time per query is given by:

T tot = T + (Tload/Nsig) (5)

where Tload is the loading time for the entire DB.
This additional time introduces a linear component
in the response time against DB size. However it
can be neglected in most cases by adjusting Nsig. In
our CBCD system, Nsig is automatically set to ob-
tain an average loading time that is sublinear with
the database size.

C. Distortion model and assessment

The only necessary assumption for the distortion
probabilistic model is the independence of the com-
ponents. However, we use in practice a zero-mean
normal distribution with the same standard deviation
σ whatever the component:

p∆Sj(xj) = fN (0,σ)(xj)

For a given image transformation, the single param-
eter to be set σ can be estimated on a set of video se-
quences by simulating a perfect interest points detec-
tor, the points position in the transformed sequence
being computed according the position in the original
sequence. Let σj be the standard deviation of the jth

component of the distorsion vector. We use the mean
σ of the D standard deviation estimates σ̂j as an es-
timate for σ.
The relevance of this model is simply tested by the
observed retrieval rate R obtained using the S3 tech-
nique for different values of the query expectation α.
The transformation applied to the video sequences
was a combinaison of several transformations: resiz-
ing, gamma modification, noise addition and a simu-
lated imprecision in the position of the interest points
by shifting the theorical position by 1 pixel. The re-
sults are shown in Figure 3. Since the error does not
exceed 7%, we validate the model. A more sophis-
ticated model should certainly improve this precision
but we remind that we only aim at showing that statis-
tical queries are an alternative to a query geometrical
approximation which leads to an unreallistic model.
Furthermore, we will see in the experiments section
that the main asset of the statistical queries is that
the lost of quality during the search does not seriously
degrade the global robustness of the CBCD system.
Thus, a fine control of the precision of the search is
not an essential objective.
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Fig. 3. Retrieval rate R obtained using the S3 technique
vs. expectation α of the statistical query

In reality, the distribution of the relevant similar
fingerprints depends on the transformations distribu-
tion. However, the appearance frequency of a trans-
formation is generally not known and taking this dis-
tribution into account, would be equivalent to exclude
the most severe transformations. Thus, we consider
that the distortion model only concerns the distribu-
tion obtained for the most severe transformation. A
statistical query of expectation α for the most severe
transformation should guarantee a better expectation
for all other transformations.
We propose to take the value of σ as a severity crite-

rion. Table I reports some retrieval rate R obtained
for different transformations with decreasing severities
σ. The expectation α is 85% and the reference severity
is the one corresponding to the most severe transfor-
mation, i.e. σ = 23.43. The detection rate for this ref-
erence transformation is 80.74% and we verify that it
is always higher than this value for the other transfor-
mations. Except for last transformation, the retrieval
rate R increases when the severity of the transforma-
tion decreases. Note that, in practice, it is not neces-
sary to know exactly the most severe transformation.
Indeed, the value of σ allows to make a compromise
between the robustness of the CBCD and the search
time. However, there is a limit for which it becomes
useless to increase σ since the interest point detector
repeatability will be close to zero for transformations
that are too severe.

V. Experiments and results

Experiments were computed on a Pentium IV (CPU
2.5 GHz, cache size 512Kb, RAM 1.5 Gb). Response
times were obtained with unix getrusage() com-

transformation σ R

wscale = 0.84, δpix = 1 23.43 80.74

wscale = 1.26, δpix = 1 21.95 81.69

wscale = 0.91, δpix = 1 18.13 92.49

wscale = 0.98, δpix = 1 14.92 97.30

wgamma = 2.08, δpix = 1 12.17 98.52

wgamma = 0.82, δpix = 1 9.23 99.79

wnoise = 10.0, δpix = 0 6.60 99.65

TABLE I

Detection rate R for transformations of

decreasing severity - α = 85% and σ = 23.43

mand. The five kinds of transformations studied in
these experiments are illustrated in Figure 4.

All the databases contain real video local finger-
prints extracted by the method described in section
III. The referenced video sequences come from the so
called SNC database stored at the French Institut Na-

tional de l’Audiovisuel (INA), whose main missions in-
clude collecting and exploiting French television pro-
grams (200,000 hours of digitized television archives).
The SNC video sequences are stored in MPEG1 for-
mat with an image size of 352×288. They contain all
kinds of TV programs from the Fourties at our days:
news, sport, show, variety, films, reports, black&white
archives, advertissements, ... They unfortunately also
contain noise, black sequences, test cards which de-
grade a little some of our experimental evaluations.
During more than one year, we have computed the fin-
gerprints of randomly selected video sequences from
the SNC database resulting in about 75, 000 hours of
video fingerprints. The average number of local fin-
gerprints per hour of video is about 50, 000. Thus,
a database representing 10, 000 hours of video con-
tains about 500, 000, 000 fingerprints and the size of
the corresponding DB file is about 13 Gb (D = 20
dimensional fingerprints + identifiers + time codes).

A. Statistical query compared to exact range query

In this first experiment, we compare the search time
of a statistical query to those of a classical spherical
range query of radius ǫ (ǫ-range query). We do not
aim at testing the relevance of the distorsion model,
but at showing the advantage of a statistical query
compared to an exact range query when the distribu-
tion is perfectly known.
We randomly select 1000 real fingerprints S in the
database and construct 1000 queries Q = S + ∆S,
where the components of the distorsion vector ∆S are
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Fig. 4. The five kinds of transformations studied in the
experiments: resize, shift, contrast, gamma, noise addition

independently generated according a zero mean nor-
mal distribution p∆Sj(xj) = fN (0,σQ)(xj) with σQ =
18.0. These queries are then searched in the database
using the proposed index structure with both a sta-
tistical query and an ǫ-range query.
For different values of the query expectation α, we
measure, for both query types, the average time of a
single search (Figure 6) and the retrieval rate (Figure
5), i.e. the percentage of queries for which the orig-
inal fingerprint S belongs to the results returned by
the search. The radius ǫ of the range query was set
in order to have the same expectation α than the sta-
tistical query. It is indeed easy to show that for the
given distorsion model, the L2 norm of the distorsion
has the following probability density function:

p‖∆S‖(r) =
fN (0,σ)(r)

(2πσq)
D−1

2

π
D
2 D

Γ
(

D
2 + 1

)rD−1

where Γ is the gamma function and D is the dimension
of the feature space. By tabulating the values of the
corresponding cumulated density function, it is easy

to choose the value of the radius ǫ such as
∫ ǫ

0
p‖∆S‖(r) dr = α

The average search time curves of Figure 6 (dis-
played in logarithmic coordinates) show that the sta-
tistical query approach outperforms the classical ex-
act range query. Depending on α, it is from 17 to 132
times faster. This is due to the less number of p-blocks
intercepted by the statistical query. The geometrical
constraint of an exact ǫ-range query degrades seriously
the search time without improving the retrieval rate,
as shown in Figure 5. This result does not depend
on the index structure. Whatever the shapes of the
bounding regions are, it is indeed well known that the
number of intersections with an hypersphere becomes
very high when the dimension increases. The main as-
set of the statistical query is that it does not impose
any particular shape. It only uses the probability to
find a relevant fingerprint inside the bounding regions.
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B. Behavior when faced to a very large database

We aim at showing the performance of the proposed
scheme when the database size increases. The search
time is compared to those of a sequential scan, which
is a reference method. We implemented our own ver-
sion of the sequential scan so that the two methods are
comparable. About 200, 000 candidate fingerprints in
[0, 255]20 are extracted from a french television video
stream and searched in the DB using the S3 tech-
nique. Only 1000 of these fingerprints are searched
using the sequential scan method because it is too
much time-consuming. The parameters for the statis-
tical query approach are α = 80% and σ = 20.0. For
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the sequential scan, the range query parameter ǫ is
set to 93.6 so that both search methods are compara-
ble (same expectation). Thirteen DB of exponentially
growing sizes are used, the smallest containing 77, 131
fingerprints (about 1 hour of video) and the largest
containing 1, 543, 902, 419 fingerprints (about 30, 000
hours of video). The obtained average search times
are shown in Figure 7. Both the DB sizes and times
are displayed in logarithmic coordinates, thus the lin-
ear relationship between the average search time of
the sequential scan and the DB size still remains.
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Fig. 7. Average search time (ms) vs. database size

As expected, the proposed approach outperforms
the sequential one. One can observe that when the
DB size do not exceed 50 millions fingerprints, the
average search time of the S3 method is a sub-linear
functions of the DB size with a constant slope in loga-
rithmic coordinates. This means that the gain against
the sequential scan method increases exponentially.

For larger databases, the slope of the S3 curve in
logarithmic coordinates is increasing and reaches the
slope of the sequential scan method. This is because
of the main memory storage in the former case and the
pseudo-disk strategy in the latter case resulting to an
additional linear component. Thus, the obtained gain
tends to a constant. For the largest DB, the proposed
scheme is more than 2, 500 times faster.

C. Robustness of the video CBCD system

The purpose of these last experiments is to study
the interaction between the S3 technique and the
global robustness of the video CBCD system. We ex-
tract randomly 100 video sequences of 10 seconds each
from the reference databases and apply to them the
five kinds of transformations presented in Figure 4:

• resize of factor wscale

• vertical shift of wshift % of the image
• gamma modification: I ′(x, y) = I(x, y)wgamma

• contrast modification: I ′(x, y) = wcontrastI(x, y)
• gaussian noise addition with standard deviation
wnoise

The 100 transformed sequences are submitted as
candidates to the video CBCD system and we measure
the good detection rate, a candidate video sequence
being well detected if at least one of its key images
is well identified with a tolerance of 2 frames and if
the similarity measure nsim is higher than a decision
threshold. This threshold is set so that in average
less than 1 false alarm occurs per hour when the sys-
tem is continuously monitoring a TV channel. The
parameter σ of the statistical query was set to 20.0.
Different DB sizes, different values of the expectation
α and different values of tranformations parameters
are used in these experiments. Results are presented
in Figure 8 and 9 in the form of abacuses of:

• the DB size (Figure 8) with α set to 80%
• α (Figure 9) using a DB containing about 3500
hours of video

for the five transformations. Two tables presenting
the average search time of one single fingerprint for
the different values of α and DB size are given at the
bottom of each figure.

Before discussing the obtained results, we bring the
following precision in connection with the detection
rates. Even when the transformation is light, the de-
tection rate does not exceed 90% mainly because of
the length of the candidate sequences (10 seconds).
They can reach 100% when extended to 30 seconds



length. Another reason is the databases themselves
that contain about 2% of irrelevant sequences like
black or noisy sequences whose discrimination is very
hard.

Subplots of Figure 8 show that the DB size does not
affect so much the detection rate whatever the trans-
formation is. The main reason is that the statistical
query guarantees the same expectation for the simi-
larity search whatever the DB size is. The increased
number of false retrieved fingerprints does not degrade
the final quality thanks to the voting strategy which is
highly discriminant (the temporal coherence of many
fingerprints is very rare). It is important to note that
it would not have not been the same if we had used a
k-nearest neighbor search. When the DB size is mul-
tiplied by 100, the higher the density of fingerprints,
the higher the chance to exclude relevant fingerprints
from the results.
Subplots of Figure 9 show that the detection rate re-
mains almost invariant for all transformations as the
expectation α decreases 95% downto 70% whereas the
search is 4 times faster. For the most severe transfor-
mations, it begins to fall down when α equals 50%.
The most important result of this experiment is that
an approximate search is particularly profitable when
a voting strategy is employed after the search. It is
indeed useless to retrieve the less distortion-invariant
fingerprints since they seriously degrade the search
time without really improving the robustness of the
video CBCD system.
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Fig.8. DB size abacuses
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Fig.9. α abacuses

D. TV monitoring system

For several months, a video CBCD system based
on the S3 technique and local fingerprints approach
described in this paper is continuously monitoring a
french TV channel with a reference DB including more
than 20, 000 hours of archives. The average monitor-
ing time is 2 times faster than real time. Some exam-
ples of detections illustrating that the CBCD system
is robust to studied transformation are shown in Fig-
ure 10.

Fig. 10. CBCD examples: TV candidate sequences cap-
tured in black and white (left) and identified sequences in
the DB (right)

VI. Conclusion and Perspectives

In this paper, we have proposed a new approximate
search paradigm based on statistical queries and we
have introduced the indexing structure to compute
them efficiently. The resulting technique, called Sta-

tistical Similarity Search (S3) technique, is based on



the distorsion vector modelization of the fingerprint.
Even if such distorsion vectors are more difficult to
interprete in the general framework of content-based
retrieval, they allow to take into account the more
or less strong transformations that a video query can
have undergone. It is therefore particularly adapted
to content-based copy detection.
We show that the geometrical constraint of a clas-
sical exact ǫ-range query can degrade seriously the
search time without systematically increase the re-
trieval rates. The use of a statistical filtering of the
bounding regions instead of an exact geometrical fil-
tering can lead to a 100 times faster search with com-
parable retrieval rates. The improvement is even more
important in case of large databases, for which we ob-
served that the S3 technique can be 2, 500 times faster
than a sequential scan. We studied the influence of the
proposed search strategy on our Content-Based Copy

Detection (CBCD) system based on local fingerprints
retrieval and a voting strategy. The system is rather
robust and allows us to conclude that trading quality
for time during the search is highly profitable, even
when the size of the database becomes very large.
Investigations in the statistical modeling of the dis-
tortion vector, including the component independence
assumption, should probably improve the efficiency
and the precision of the proposed statistical similarity
search. However, the main future works will concern
the voting strategy for two reasons. Firstly, when the
databases becomes very large, the number of retrieved
fingerprints by the CBCD system during the search in-
creases seriously and this step will probably become a
new bottleneck of the total search time. Secondly, we
would like to extend the estimation step to the spatial
positions of the interest points in order to improve the
discriminance of the fingerprints.

Notice: the technique described in this paper is be-
ing patented by INA, which has all commercial rights.
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[9] S. Berchtold, C. Böhm, and H. P. Kriegel, “The pyramid-
tree: breaking the curse of dimensionality,” in Proc. of

ACM SIGMOD Int. Conf. on Management of Data, 1998,
pp. 142–153.

[10] C. Faloutsos and K-I. Lin, “Fastmap: A fast algorithm
for indexing, data-mining and visualization of traditional
and multimedia datasets,” in Proc. of ACM SIGMOD Int.

Conf. on Management of Data, 1995, pp. 163–174.

[11] R. Weber and S. Blott, “An approximation based data
structure for similarity search,” Tech. report, ESPRIT
project HERMES (no. 9141), 1997.

[12] L. Amsaleg, P. Gros, and S-A. Berrani, “Robust object
recognition in images and the related database problems,”
Special issue of the Journal of Multimedia Tools and Ap-

plications, vol. 23, pp. 221–235, 2003.

[13] P. Ciaccia and M. Patella, “Pac nearest neighbor queries:
Approximate and controlled search in high-dimensional
and metric spaces,” in Proc. of Int. Conf. on Data En-

gineering, 2000, pp. 244–255.

[14] R. Weber and K. Böhm, “Trading quality for time with
nearest neighbor search,” in Proc. of Int. Conf. on Extend-

ing Database Technology, 2000, pp. 21–35.

[15] C. Li, E. Chang, M. Garcia-Molina, and G. Wieder-
hold, “Clustering for approximate similarity search in high-
dimensional spaces,” IEEE Trans. on Knowledge and Data

Engineering, vol. 14, no. 4, pp. 792–808, 2002.

[16] K. P. Bennett, U. Fayyad, and D. Geiger, “Density-based
indexing for approximate nearest-neighbor queries,” in
Proc. of Conf. on Knowledge Discovery in Data, 1999, pp.
233–243.

[17] S-A. Berrani, L. Amsaleg, and P. Gros, “Approximate
searches: k-neighbors + precision,” in Proc. of Int. Conf.

on Information and knowledge management, 2003, pp. 24–
31.

[18] P. Ciaccia and M. Patella, “Approximate similarity queries:
A survey,” Tech. report, University of Bologna: MultiMe-
dia DataBase Group, 2001.

[19] P. Ciaccia and M. Patella, “Pac nearest neighbor queries:
Approximate and controlled search in high-dimensional
and metric spaces,” in Proc. of Int. Conf. on Data En-

gineering, 2000, pp. 244–255.

[20] L. Amsaleg, P. Gros, and S-A. Berrani, “A robust tech-
nique to recognize objects in images, and the db problems



it raises,” in Proc. of Int. Workshop on Multimedia Infor-

mation Systems, 2001, pp. 1–10.
[21] C. Schmid and R. Mohr, “Local grayvalue invariants for

image retrieval,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 19, no. 5, pp. 530–535, 1997.
[22] M. J. Black and P. Anandan, “A framework for the ro-

bust estimation of optical flow,” in Proc. of Int. Conf. on

Computer Vision, 1993, pp. 231–236.
[23] C. Faloutsos and S. Roseman, “Fractals for secondary

key retrieval,” in Proc. of ACM Symp. on Principles of

database systems, 1989, pp. 247–252.
[24] J. K. Lawder and P. J. H. King, “Querying multi-

dimensional data indexed using the hilbert space-filling
surve,” SIGMOD Record, vol. 30, no. 1, pp. 19–24, 2001.

[25] A. R. Butz, “Alternative algorithm for hilbert’s space-
filling curve,” IEEE Trans. on Computers, vol. C, no. 2,
pp. 424–426, 1971.

[26] J. Lawder, “The application of space-filling curves to the
storage and retrieval of multi-dimensional data,” Phd the-
sis, University of London, 1999.


