
EE-559 – Deep learning

6.3. Dropout

François Fleuret

https://fleuret.org/ee559/

Tue Dec 24 12:50:12 UTC 2019

https://fleuret.org/ee559/

A first “deep” regularization technique is dropout (Srivastava et al., 2014). It
consists of removing units at random during the forward pass on each sample,
and putting them all back during test.Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

(Srivastava et al., 2014)

François Fleuret EE-559 – Deep learning / 6.3. Dropout 1 / 12

This method increases independence between units, and distributes the
representation. It generally improves performance.

“In a standard neural network, the derivative received by each parameter
tells it how it should change so the final loss function is reduced, given
what all other units are doing. Therefore, units may change in a way that
they fix up the mistakes of the other units. This may lead to complex co-
adaptations. This in turn leads to overfitting because these co-adaptations do
not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden
units unreliable. Therefore, a hidden unit cannot rely on other specific units
to correct its mistakes. It must perform well in a wide variety of different
contexts provided by the other hidden units.”

(Srivastava et al., 2014)

François Fleuret EE-559 – Deep learning / 6.3. Dropout 2 / 12

Dropout

Method Test Classification error %

L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

also see how the advantages obtained from dropout vary with the probability of retaining
units, size of the network and the size of the training set. These observations give some
insight into why dropout works so well.

7.1 Effect on Features

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

In a standard neural network, the derivative received by each parameter tells it how it
should change so the final loss function is reduced, given what all other units are doing.
Therefore, units may change in a way that they fix up the mistakes of the other units.
This may lead to complex co-adaptations. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden units unreliable.
Therefore, a hidden unit cannot rely on other specific units to correct its mistakes. It must
perform well in a wide variety of different contexts provided by the other hidden units. To
observe this effect directly, we look at the first level features learned by neural networks
trained on visual tasks with and without dropout.

1943

(Srivastava et al., 2014)

A network with dropout can be interpreted as an ensemble of 2N models with
heavy weight sharing (Goodfellow et al., 2013).

François Fleuret EE-559 – Deep learning / 6.3. Dropout 3 / 12

Dropout

Method Test Classification error %

L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

also see how the advantages obtained from dropout vary with the probability of retaining
units, size of the network and the size of the training set. These observations give some
insight into why dropout works so well.

7.1 Effect on Features

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

In a standard neural network, the derivative received by each parameter tells it how it
should change so the final loss function is reduced, given what all other units are doing.
Therefore, units may change in a way that they fix up the mistakes of the other units.
This may lead to complex co-adaptations. This in turn leads to overfitting because these
co-adaptations do not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden units unreliable.
Therefore, a hidden unit cannot rely on other specific units to correct its mistakes. It must
perform well in a wide variety of different contexts provided by the other hidden units. To
observe this effect directly, we look at the first level features learned by neural networks
trained on visual tasks with and without dropout.

1943

(Srivastava et al., 2014)

A network with dropout can be interpreted as an ensemble of 2N models with
heavy weight sharing (Goodfellow et al., 2013).

François Fleuret EE-559 – Deep learning / 6.3. Dropout 3 / 12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 − p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations
by 1

1−p
during train and keeps the network untouched during test.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 4 / 12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 − p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations
by 1

1−p
during train and keeps the network untouched during test.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 4 / 12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 − p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations
by 1

1−p
during train and keeps the network untouched during test.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 4 / 12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 − p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations
by 1

1−p
during train and keeps the network untouched during test.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 4 / 12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

. . . Φ Φ . . .

x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)dropout

François Fleuret EE-559 – Deep learning / 6.3. Dropout 5 / 12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

. . . Φ Φ . . .x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)dropout

François Fleuret EE-559 – Deep learning / 6.3. Dropout 5 / 12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

. . . Φ Φ . . .

x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)dropout

François Fleuret EE-559 – Deep learning / 6.3. Dropout 5 / 12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

. . . Φ Φ . . .

x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)dropout

François Fleuret EE-559 – Deep learning / 6.3. Dropout 5 / 12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

. . . Φ Φ . . .

x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)

dropout

François Fleuret EE-559 – Deep learning / 6.3. Dropout 5 / 12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

. . . Φ Φ . . .

x(l)

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

x
(l)
1

x
(l)
2

x
(l)
3

x
(l)
4

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

× 1
1−p

ℬ(1−p)

u
(l)
1

u
(l)
2

u
(l)
3

u
(l)
4

x(l) dropout u(l)

dropout

François Fleuret EE-559 – Deep learning / 6.3. Dropout 5 / 12

dropout is implemented in PyTorch as nn.DropOut, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the
tensor it gets as input, and zeroes entries accordingly.

Default probability to drop is p = 0.5, but other values can be specified.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 6 / 12

dropout is implemented in PyTorch as nn.DropOut, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the
tensor it gets as input, and zeroes entries accordingly.

Default probability to drop is p = 0.5, but other values can be specified.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 6 / 12

>>> x = torch.full((3, 5), 1.0).requires_grad_()
>>> x
tensor([[1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])

>>> dropout = nn.Dropout(p = 0.75)
>>> y = dropout(x)
>>> y
tensor([[0., 0., 4., 0., 4.],

[0., 4., 4., 4., 0.],
[0., 0., 4., 0., 0.]])

>>> l = y.norm(2, 1).sum()
>>> l.backward()
>>> x.grad
tensor([[0.0000, 0.0000, 2.8284, 0.0000, 2.8284],

[0.0000, 2.3094, 2.3094, 2.3094, 0.0000],
[0.0000, 0.0000, 4.0000, 0.0000, 0.0000]])

François Fleuret EE-559 – Deep learning / 6.3. Dropout 7 / 12

If we have a network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Linear(100, 50), nn.ReLU(),
nn.Linear(50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Dropout(),
nn.Linear(100, 50), nn.ReLU(),
nn.Dropout(),
nn.Linear(50, 2));

François Fleuret EE-559 – Deep learning / 6.3. Dropout 8 / 12

If we have a network

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Linear(100, 50), nn.ReLU(),
nn.Linear(50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Dropout(),
nn.Linear(100, 50), nn.ReLU(),
nn.Dropout(),
nn.Linear(50, 2));

François Fleuret EE-559 – Deep learning / 6.3. Dropout 8 / 12

B A model using dropout has to be set in “train” or “test” mode.

The method nn.Module.train(mode) recursively sets the flag training to all
sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3))
>>> dropout.training
True
>>> model.train(False)
Sequential (

(0): Linear (3 -> 10)
(1): Dropout (p = 0.5)
(2): Linear (10 -> 3)

)
>>> dropout.training
False

François Fleuret EE-559 – Deep learning / 6.3. Dropout 9 / 12

B A model using dropout has to be set in “train” or “test” mode.

The method nn.Module.train(mode) recursively sets the flag training to all
sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3))
>>> dropout.training
True
>>> model.train(False)
Sequential (

(0): Linear (3 -> 10)
(1): Dropout (p = 0.5)
(2): Linear (10 -> 3)

)
>>> dropout.training
False

François Fleuret EE-559 – Deep learning / 6.3. Dropout 9 / 12

As pointed out by Tompson et al. (2015), units in a 2d activation map are
generally locally correlated, and dropout has virtually no effect. They proposed
SpatialDropout, which drops channels instead of individual units.

>>> dropout2d = nn.Dropout2d()
>>> x = torch.full((2, 3, 2, 4), 1.)
>>> dropout2d(x)
tensor([[[[2., 2., 2., 2.],

[2., 2., 2., 2.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[2., 2., 2., 2.],
[2., 2., 2., 2.]]],

[[[2., 2., 2., 2.],
[2., 2., 2., 2.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]]]])

François Fleuret EE-559 – Deep learning / 6.3. Dropout 10 / 12

As pointed out by Tompson et al. (2015), units in a 2d activation map are
generally locally correlated, and dropout has virtually no effect. They proposed
SpatialDropout, which drops channels instead of individual units.

>>> dropout2d = nn.Dropout2d()
>>> x = torch.full((2, 3, 2, 4), 1.)
>>> dropout2d(x)
tensor([[[[2., 2., 2., 2.],

[2., 2., 2., 2.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[2., 2., 2., 2.],
[2., 2., 2., 2.]]],

[[[2., 2., 2., 2.],
[2., 2., 2., 2.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.]]]])

François Fleuret EE-559 – Deep learning / 6.3. Dropout 10 / 12

Another variant is dropconnect, which drops connections instead of units.

Regularization of Neural Networks using DropConnect

DropConnect
weights

W (d x n)

b) DropConnect
mask M

 Features
v (n x 1)

u (d x 1)

a) Model Layout

Activation
 function

a(u)

Outputs
 r (d x 1)

Feature
extractor
g(x;Wg)

 Input
 x

Softmax
 layer

s(r;Ws)

Predictions
 o (k x 1)

c) Effective Dropout
mask M’

Previous layer mask

C
ur

re
nt

 la
ye

r o
ut

pu
t m

as
k

Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W . The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this layer’s output (green rows). Note the lack of structure in (b) compared to (c).

nected layer, we can write Eqn. 1 as:

r = m ? a(Wv) (2)

where ? denotes element wise product and m is a bi-
nary mask vector of size d with each element, j, drawn
independently from mj ∼ Bernoulli(p).
Many commonly used activation functions such as
tanh, centered sigmoid and relu (Nair and Hinton,
2010), have the property that a(0) = 0. Thus, Eqn. 2
could be re-written as, r = a(m?Wv), where Dropout
is applied at the inputs to the activation function.

2.2. DropConnect

DropConnect is the generalization of Dropout in which
each connection, rather than each output unit, can
be dropped with probability 1 − p. DropConnect is
similar to Dropout as it introduces dynamic sparsity
within the model, but differs in that the sparsity is
on the weights W , rather than the output vectors of a
layer. In other words, the fully connected layer with
DropConnect becomes a sparsely connected layer in
which the connections are chosen at random during
the training stage. Note that this is not equivalent to
setting W to be a fixed sparse matrix during training.

For a DropConnect layer, the output is given as:

r = a ((M ?W) v) (3)

where M is a binary matrix encoding the connection
information and Mij ∼ Bernoulli(p). Each element
of the mask M is drawn independently for each exam-
ple during training, essentially instantiating a differ-
ent connectivity for each example seen. Additionally,

the biases are also masked out during training. From
Eqn. 2 and Eqn. 3, it is evident that DropConnect is
the generalization of Dropout to the full connection
structure of a layer1.

The paper structure is as follows: we outline details on
training and running inference in a model using Drop-
Connect in section 3, followed by theoretical justifica-
tion for DropConnect in section 4, GPU implementa-
tion specifics in section 5, and experimental results in
section 6.

3. Model Description

We consider a standard model architecture composed
of four basic components (see Fig. 1a):

1. Feature Extractor: v = g(x;Wg) where v are the out-
put features, x is input data to the overall model,
and Wg are parameters for the feature extractor. We
choose g() to be a multi-layered convolutional neural
network (CNN) (LeCun et al., 1998), with Wg being
the convolutional filters (and biases) of the CNN.

2. DropConnect Layer: r = a(u) = a((M ? W)v) where
v is the output of the feature extractor, W is a fully
connected weight matrix, a is a non-linear activation
function and M is the binary mask matrix.

3. Softmax Classification Layer: o = s(r;Ws) takes as
input r and uses parameters Ws to map this to a k
dimensional output (k being the number of classes).

4. Cross Entropy Loss: A(y, o) = −∑k
i=1 yilog(oi) takes

probabilities o and the ground truth labels y as input.

1This holds when a(0) = 0, as is the case for tanh and
relu functions.

(Wan et al., 2013)

It cannot be implemented as a separate layer and is computationally intensive.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 11 / 12

Another variant is dropconnect, which drops connections instead of units.

Regularization of Neural Networks using DropConnect

DropConnect
weights

W (d x n)

b) DropConnect
mask M

 Features
v (n x 1)

u (d x 1)

a) Model Layout

Activation
 function

a(u)

Outputs
 r (d x 1)

Feature
extractor
g(x;Wg)

 Input
 x

Softmax
 layer

s(r;Ws)

Predictions
 o (k x 1)

c) Effective Dropout
mask M’

Previous layer mask

C
ur

re
nt

 la
ye

r o
ut

pu
t m

as
k

Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W . The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this layer’s output (green rows). Note the lack of structure in (b) compared to (c).

nected layer, we can write Eqn. 1 as:

r = m ? a(Wv) (2)

where ? denotes element wise product and m is a bi-
nary mask vector of size d with each element, j, drawn
independently from mj ∼ Bernoulli(p).
Many commonly used activation functions such as
tanh, centered sigmoid and relu (Nair and Hinton,
2010), have the property that a(0) = 0. Thus, Eqn. 2
could be re-written as, r = a(m?Wv), where Dropout
is applied at the inputs to the activation function.

2.2. DropConnect

DropConnect is the generalization of Dropout in which
each connection, rather than each output unit, can
be dropped with probability 1 − p. DropConnect is
similar to Dropout as it introduces dynamic sparsity
within the model, but differs in that the sparsity is
on the weights W , rather than the output vectors of a
layer. In other words, the fully connected layer with
DropConnect becomes a sparsely connected layer in
which the connections are chosen at random during
the training stage. Note that this is not equivalent to
setting W to be a fixed sparse matrix during training.

For a DropConnect layer, the output is given as:

r = a ((M ?W) v) (3)

where M is a binary matrix encoding the connection
information and Mij ∼ Bernoulli(p). Each element
of the mask M is drawn independently for each exam-
ple during training, essentially instantiating a differ-
ent connectivity for each example seen. Additionally,

the biases are also masked out during training. From
Eqn. 2 and Eqn. 3, it is evident that DropConnect is
the generalization of Dropout to the full connection
structure of a layer1.

The paper structure is as follows: we outline details on
training and running inference in a model using Drop-
Connect in section 3, followed by theoretical justifica-
tion for DropConnect in section 4, GPU implementa-
tion specifics in section 5, and experimental results in
section 6.

3. Model Description

We consider a standard model architecture composed
of four basic components (see Fig. 1a):

1. Feature Extractor: v = g(x;Wg) where v are the out-
put features, x is input data to the overall model,
and Wg are parameters for the feature extractor. We
choose g() to be a multi-layered convolutional neural
network (CNN) (LeCun et al., 1998), with Wg being
the convolutional filters (and biases) of the CNN.

2. DropConnect Layer: r = a(u) = a((M ? W)v) where
v is the output of the feature extractor, W is a fully
connected weight matrix, a is a non-linear activation
function and M is the binary mask matrix.

3. Softmax Classification Layer: o = s(r;Ws) takes as
input r and uses parameters Ws to map this to a k
dimensional output (k being the number of classes).

4. Cross Entropy Loss: A(y, o) = −∑k
i=1 yilog(oi) takes

probabilities o and the ground truth labels y as input.

1This holds when a(0) = 0, as is the case for tanh and
relu functions.

(Wan et al., 2013)

It cannot be implemented as a separate layer and is computationally intensive.

François Fleuret EE-559 – Deep learning / 6.3. Dropout 11 / 12

Regularization of Neural Networks using DropConnect

200 400 800 1600
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Hidden Units

%
 T

es
t E

rro
r

No−Drop
Dropout
DropConnect

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.2

1.4

1.6

1.8

2

2.2

2.4

% of Elements Kept

%
 T

es
t E

rro
r

Dropout (mean)
DropConnect (mean)
Dropout (sampling)
DropConnect (sampling)

100 200 300 400 500 600 700 800 900
10−3

10−2

Epoch

C
ro

ss
 E

nt
ro

py

No−Drop Train
No−Drop Test
Dropout Train
Dropout Test
DropConnect Train
DropConnect Test

Figure 2. Using the MNIST dataset, in a) we analyze the ability of Dropout and DropConnect to prevent overfitting
as the size of the 2 fully connected layers increase. b) Varying the drop-rate in a 400-400 network shows near optimal
performance around the p = 0.5 proposed by (Hinton et al., 2012). c) we show the convergence properties of the train/test
sets. See text for discussion.

learning rate of 0.01 with a 700-200-100 epoch sched-
ule, no momentum and preprocess by subtracting the
image mean.

crop rotation
scaling

model error(%)
5 network

voting
error(%)

no no No-Drop 0.77±0.051 0.67
Dropout 0.59±0.039 0.52
DropConnect 0.63±0.035 0.57

yes no No-Drop 0.50±0.098 0.38
Dropout 0.39±0.039 0.35
DropConnect 0.39±0.047 0.32

yes yes No-Drop 0.30±0.035 0.21
Dropout 0.28±0.016 0.27
DropConnect 0.28±0.032 0.21

Table 3. MNIST classification error. Previous state of the
art is 0 .47% (Zeiler and Fergus, 2013) for a single model
without elastic distortions and 0.23% with elastic distor-
tions and voting (Ciresan et al., 2012).

We note that our approach surpasses the state-of-the-
art result of 0.23% (Ciresan et al., 2012), achieving a
0.21% error rate, without the use of elastic distortions
(as used by (Ciresan et al., 2012)).

6.2. CIFAR-10

CIFAR-10 is a data set of natural 32x32 RGB images
(Krizhevsky, 2009) in 10-classes with 50, 000 images
for training and 10, 000 for testing. Before inputting
these images to our network, we subtract the per-pixel
mean computed over the training set from each image.

The first experiment on CIFAR-10 (summarized in
Table 4) uses the simple convolutional network fea-
ture extractor described in (Krizhevsky, 2012)(layers-
80sec.cfg) that is designed for rapid training rather
than optimal performance. On top of the 3-layer
feature extractor we have a 64 unit fully connected
layer which uses No-Drop, Dropout, or DropConnect.
No data augmentation is utilized for this experiment.

Since this experiment is not aimed at optimal perfor-
mance we report a single model’s performance with-
out voting. We train for 150-0-0 epochs with an ini-
tial learning rate of 0.001 and their default weight de-
cay. DropConnect prevents overfitting of the fully con-
nected layer better than Dropout in this experiment.

model error(%)
No-Drop 23.5
Dropout 19.7
DropConnect 18.7

Table 4. CIFAR-10 classification error using the simple
feature extractor described in (Krizhevsky, 2012)(layers-
80sec.cfg) and with no data augmentation.

Table 5 shows classification results of the network us-
ing a larger feature extractor with 2 convolutional
layers and 2 locally connected layers as described
in (Krizhevsky, 2012)(layers-conv-local-11pct.cfg). A
128 neuron fully connected layer with relu activations
is added between the softmax layer and feature extrac-
tor. Following (Krizhevsky, 2012), images are cropped
to 24x24 with horizontal flips and no rotation or scal-
ing is performed. We use an initial learning rate of
0.001 and train for 700-300-50 epochs with their de-
fault weight decay. Model voting significantly im-
proves performance when using Dropout or DropCon-
nect, the latter reaching an error rate of 9.41%. Ad-
ditionally, we trained a model with 12 networks with
DropConnect and achieved a state-of-the-art result of
9.32%, indicating the power of our approach.

6.3. SVHN

The Street View House Numbers (SVHN) dataset in-
cludes 604, 388 images (both training set and extra set)
and 26, 032 testing images (Netzer et al., 2011). Simi-
lar to MNIST, the goal is to classify the digit centered
in each 32x32 RGB image. Due to the large variety of
colors and brightness variations in the images, we pre-

(Wan et al., 2013)

François Fleuret EE-559 – Deep learning / 6.3. Dropout 12 / 12

The end

References

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In International Conference on Machine Learning (ICML), 2013.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research (JMLR), 15:1929–1958, 2014.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization
using convolutional networks. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural network
using dropconnect. In International Conference on Machine Learning (ICML), 2013.

