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We can train a model for classification using a regression loss such as the MSE
using a “one-hot vector” encoding: given a training set

(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N,

we would convert the labels into a tensor z ∈ RN×C , with

∀n, zn,m =

{
1 if m = yn
0 otherwise.

For instance, with N = 5 and C = 3, we would have
2
1
1
3
2

⇒


0 1 0
1 0 0
1 0 0
0 0 1
0 1 0

 .

Training can be achieved by matching the output of the model with these
binary values in a MSE sense.

François Fleuret EE-559 – Deep learning / 5.1. Cross-entropy loss 1 / 9



We can train a model for classification using a regression loss such as the MSE
using a “one-hot vector” encoding: given a training set

(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N,

we would convert the labels into a tensor z ∈ RN×C , with

∀n, zn,m =

{
1 if m = yn
0 otherwise.

For instance, with N = 5 and C = 3, we would have
2
1
1
3
2

⇒


0 1 0
1 0 0
1 0 0
0 0 1
0 1 0

 .

Training can be achieved by matching the output of the model with these
binary values in a MSE sense.

François Fleuret EE-559 – Deep learning / 5.1. Cross-entropy loss 1 / 9



We can train a model for classification using a regression loss such as the MSE
using a “one-hot vector” encoding: given a training set

(xn, yn) ∈ RD × {1, . . . ,C}, n = 1, . . . ,N,

we would convert the labels into a tensor z ∈ RN×C , with

∀n, zn,m =

{
1 if m = yn
0 otherwise.

For instance, with N = 5 and C = 3, we would have
2
1
1
3
2

⇒


0 1 0
1 0 0
1 0 0
0 0 1
0 1 0

 .

Training can be achieved by matching the output of the model with these
binary values in a MSE sense.

François Fleuret EE-559 – Deep learning / 5.1. Cross-entropy loss 1 / 9



However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side”.

For instance, if the correct class is 2, the outputs ŷ and ŷ ′ are as bad:

y ŷ ŷ ′
0
1
0
0



−1
2
−1
−1




1
0
1
1



The criterion of choice for classification is the cross-entropy.
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We can generalize the logistic regression to a multi-class setup with f1, . . . , fC
functionals that we interpret as “logits”

P(Y = y | X = x ,W = w) =
1

Z
exp fy (x ;w) =

exp fy (x ;w)∑
k exp fk (x ;w)

,

from which

logµW (w | D = d)

= log
µD (d |W = w)µW (w)

µD (d)

= log µD (d |W = w) + log µW (w)− log Z

=
∑
n

logµD (xn, yn |W = w) + log µW (w)− log Z

=
∑
n

log P(Y = yn | X = xn,W = w) + log µW (w)− log Z ′

=
∑
n

log

(
exp fyn (x ;w)∑
k exp fk (x ;w)

)
︸ ︷︷ ︸

Depends on the outputs

+ log µW (w)︸ ︷︷ ︸
Depends on w

− log Z ′.
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If we ignore the penalty on w , it makes sense to minimize the average

ℒ (w) = −
1

N

N∑
n=1

log

(
exp fyn (xn;w)∑
k exp fk (xn;w)

)
︸ ︷︷ ︸

P̂w (Y=yn|X=xn)

.

Given two distributions p and q, their cross-entropy is defined as

H(p, q) = −
∑
k

p(k) log q(k),

with the convention that 0 log 0 = 0. So we can re-write

− log

(
exp fyn (xn;w)∑
k exp fk (xn;w)

)
= − log P̂w (Y = yn | X = xn)

= −
∑
k

δyn (k) log P̂w (Y = k | X = xn)

= H
(
δyn , P̂w (Y = · | X = xn)

)
.

So ℒ above is the average of the cross-entropy between the deterministic “true”
posterior δyn and the estimated P̂w (Y = · | X = xn).
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This is precisely the value of torch.nn.CrossEntropyLoss.

>>> f = torch.tensor([[-1., -3., 4.], [-3., 3., -1.]])
>>> target = torch.tensor([0, 1])
>>> criterion = torch.nn.CrossEntropyLoss()
>>> criterion(f, target)
tensor(2.5141)

and indeed

−
1

2

(
log

e−1

e−1 + e−3 + e4
+ log

e3

e−3 + e3 + e−1

)
' 2.5141.

The range of values is 0 for perfectly classified samples, log(C) if the posterior
is uniform, and up to +∞ if the posterior distribution is “worse” than uniform.
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Let’s consider the loss for a single sample in a two-class problem, with a
predictor with two output values. The x axis here is the activation of the
correct output unit, and the y axis is the activation of the other one.

MSE

Cross-entropy
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ℒ = (x − 1)2 + (y + 1)2

ℒ = − log
(

ex

ex+ey

)

MSE incorrectly penalizes outputs which are perfectly valid for prediction,
contrary to cross-entropy.
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The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the [logit] scores into logs of probabilities

(α1, . . . , αC ) 7→
(

log
expα1∑
k expαk

, . . . , log
expαC∑
k expαk

)
,

which can be done with the torch.nn.LogSoftmax module

, and a read-out of
the normalized score of the correct class

ℒ (w) = −
1

N

N∑
n=1

fyn (xn;w),

which is implemented by the torch.nn.NLLLoss criterion.

>>> f = torch.tensor([[-1., -3., 4.], [-3., 3., -1.]])
>>> target = torch.tensor([0, 1])
>>> model = nn.LogSoftmax(dim = 1)
>>> criterion = torch.nn.NLLLoss()
>>> criterion(model(f), target)
tensor(2.5141)

Hence, if a network should compute log-probabilities, it may have a
torch.nn.LogSoftmax final layer, and be trained with torch.nn.NLLLoss.
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The mapping

(α1, . . . , αC ) 7→
(

expα1∑
k expαk

, . . . ,
expαC∑
k expαk

)
is called soft-max since it computes a “soft arg-max Boolean label.”

>>> y = torch.tensor([[-10., -10., 10., -5. ],
... [ 3., 0., 0., 0. ],
... [ 1., 2., 3., 4. ]])
>>> f = torch.nn.Softmax(1)
>>> f(y)
tensor([[ 2.0612e-09, 2.0612e-09, 1.0000e+00, 3.0590e-07],

[ 8.7005e-01, 4.3317e-02, 4.3317e-02, 4.3317e-02],
[ 3.2059e-02, 8.7144e-02, 2.3688e-01, 6.4391e-01]])
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PyTorch provides many other criteria, among which

• torch.nn.MSELoss

• torch.nn.CrossEntropyLoss

• torch.nn.NLLLoss

• torch.nn.L1Loss

• torch.nn.NLLLoss2d

• torch.nn.MultiMarginLoss
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The end


