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To minimize a loss of the form

ℒ (w) =
N∑

n=1

l(f (xn;w), yn)︸ ︷︷ ︸
ln(w)

the standard gradient-descent algorithm update has the form

wt+1 = wt − η∇ℒ (wt).
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A straight-forward implementation would be

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

However, the memory footprint is proportional to the full set size. This can be
mitigated by summing the gradient through “mini-batches”:

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad
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While it makes sense in principle to compute the gradient exactly, in practice:

• It takes time to compute (more exactly all our time!).

• It is an empirical estimation of an hidden quantity, and any partial sum is
also an unbiased estimate, although of greater variance.

• It is computed incrementally

∇ℒ (wt) =
N∑

n=1

∇ln(wt),

and when we compute ln, we have already computed l1, . . . , ln−1, and
we could have a better estimate of w∗ than wt .
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To illustrate how partial sums are good estimates, consider an ideal case where
the training set is the same set of M � N samples replicated K times.

Then

ℒ (w) =
N∑

n=1

l(f (xn;w), yn)

=
K∑

k=1

M∑
m=1

l(f (xm;w), ym)

= K
M∑

m=1

l(f (xm;w), ym).

So instead of summing over all the samples and moving by η, we can visit only
M = N/K samples and move by Kη, which would cut the computation by K .

Although this is an ideal case, there is redundancy in practice that results in
similar behaviors.
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The stochastic gradient descent consists of updating the parameters wt after
every sample

wt+1 = wt − η∇ln(t)(wt).

However this does not benefit from the speed-up of batch-processing.

The mini-batch stochastic gradient descent is the standard procedure for deep
learning. It consists of visiting the samples in “mini-batches”, each of a few
tens of samples, and updating the parameters each time.

wt+1 = wt − η
B∑

b=1

∇ln(t,b)(wt).

The order n(t, b) to visit the samples can either be sequential, or uniform
sampling, usually without replacement.

The stochastic behavior of this procedure helps evade local minima.
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So our exact gradient descent with mini-batches

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

can be modified into the mini-batch stochastic gradient descent as follows:

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad
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Limitation of the gradient descent
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The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
same step size makes sense in all directions.
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The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
same step size makes sense in all directions.
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The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
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Some optimization methods leverage higher-order moments, in particular second
order to use a more accurate local model of the functional to optimize.

However for a fixed computational budget, the complexity of these methods
reduces the total number of iterations, and the eventual optimization is worse.

Deep-learning generally relies on a smarter use of the gradient, using statistics
over its past values to make a “smarter step” with the current one.
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Momentum and moment estimation
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The “vanilla” mini-batch stochastic gradient descent (SGD) consists of

wt+1 = wt − ηgt ,

where

gt =
B∑

b=1

∇ln(t,b)(wt)

is the gradient summed over a mini-batch.
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The first improvement is the use of a “momentum” to add inertia in the choice
of the step direction

ut = γut−1 + ηgt

wt+1 = wt − ut .

(Rumelhart et al., 1986)

With γ = 0, this is the same as vanilla SGD.

With γ > 0, this update has three nice properties:

• it can “go through” local barriers,

• it accelerates if the gradient does not change much:

(u = γu + ηg)⇒
(
u =

η

1− γ
g

)
,

• it dampens oscillations in narrow valleys.
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η = 5.0e − 2, γ = 0
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η = 5.0e − 2, γ = 0.5
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Another class of methods exploits the statistics over the previous steps to
compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and its square to
rescale each coordinate separately.

The update rule is, on each coordinate separately

mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− βt
1

vt = β2vt−1 + (1− β2)g2
t

v̂t =
vt

1− βt
2

wt+1 = wt −
η

√
v̂t + ε

m̂t

(Kingma and Ba, 2014)

This can be seen as a combination of momentum, with m̂t , and a
per-coordinate re-scaling with v̂t .
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η = 5.0e − 2
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Adam, β1 = 0.9, β2 = 0.999, ε = 1e − 8, η = 1.0e − 1
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These two core strategies have been used in multiple incarnations:

• Nesterov’s accelerated gradient,

• Adagrad,

• Adadelta,

• RMSprop,

• AdaMax,

• Nadam ...
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The end
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