
EE-559 – Deep learning

5.5. Parameter initialization

François Fleuret

https://fleuret.org/ee559/

Mon Dec 23 16:20:34 UTC 2019

https://fleuret.org/ee559/

Vanishing gradient

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 1 / 22

Consider the gradient estimation for a standard MLP:

Forward pass

∀n, x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)

Backward pass

[

∂l
∂x (L)

]
= ∇1l

(
x(L)

)
if l < L,

[
∂l
∂x (l)

]
=
(
w (l+1)

)T [∂l
∂s(l+1)

]
[
∂l

∂s(l)

]
=

[
∂l

∂x(l)

]
� σ′

(
s(l)
)

[[
∂l

∂w (l)

]]
=

[
∂l

∂s(l)

](
x(l−1)

)T [
∂l

∂b(l)

]
=

[
∂l

∂s(l)

]
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 2 / 22

Consider the gradient estimation for a standard MLP:

Forward pass

∀n, x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)

Backward pass

[

∂l
∂x (L)

]
= ∇1l

(
x(L)

)
if l < L,

[
∂l
∂x (l)

]
=
(
w (l+1)

)T [∂l
∂s(l+1)

]
[
∂l

∂s(l)

]
=

[
∂l

∂x(l)

]
� σ′

(
s(l)
)

[[
∂l

∂w (l)

]]
=

[
∂l

∂s(l)

](
x(l−1)

)T [
∂l

∂b(l)

]
=

[
∂l

∂s(l)

]
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 2 / 22

We have [
∂l

∂x(l)

]
=
(
w (l+1)

)T (
σ′
(
s(l)
)
�
[

∂l

∂x(l+1)

])
.

so the gradient “vanishes” exponentially with the depth if the ws are
ill-conditioned or the activations are in the saturating domain of σ.

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

(Glorot and Bengio, 2010)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 3 / 22

We have [
∂l

∂x(l)

]
=
(
w (l+1)

)T (
σ′
(
s(l)
)
�
[

∂l

∂x(l+1)

])
.

so the gradient “vanishes” exponentially with the depth if the ws are
ill-conditioned or the activations are in the saturating domain of σ.

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

(Glorot and Bengio, 2010)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 3 / 22

Weight initialization

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 4 / 22

The analysis for the weight initialization relies on controlling

V

 ∂l

∂w
(l)
i,j

 and V

(
∂l

∂b
(l)
i

)

where the parameters and inputs are randomized, so that weights evolve at the
same rate across layers during training, and no layer reaches a saturation
behavior before others.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 5 / 22

We will use that, if A and B are independent

V(AB) = V(A)V(B) +V(A)E (B)2 +V(B)E (A)2 .

Notation in the coming slides will drop indexes when variances are identical for
all activations or parameters in a layer.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 6 / 22

We will use that, if A and B are independent

V(AB) = V(A)V(B) +V(A)E (B)2 +V(B)E (A)2 .

Notation in the coming slides will drop indexes when variances are identical for
all activations or parameters in a layer.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 6 / 22

In a standard layer

x
(l)
i = σ

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

where Nl is the number of units in layer l , and σ is the activation function.

Assuming σ′(0) = 1, and we are in the linear regime

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i .

From which, if both the w (l)s and x(l−1)s are centered, and biases set to zero:

V
(
x

(l)
i

)
' V

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j

=

Nl−1∑
j=1

V
(
w

(l)
i,j

)
V
(
x

(l−1)
j

)
and the x(l)s are centered.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 7 / 22

In a standard layer

x
(l)
i = σ

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

where Nl is the number of units in layer l , and σ is the activation function.

Assuming σ′(0) = 1, and we are in the linear regime

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i .

From which, if both the w (l)s and x(l−1)s are centered, and biases set to zero:

V
(
x

(l)
i

)
' V

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j

=

Nl−1∑
j=1

V
(
w

(l)
i,j

)
V
(
x

(l−1)
j

)
and the x(l)s are centered.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 7 / 22

In a standard layer

x
(l)
i = σ

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

where Nl is the number of units in layer l , and σ is the activation function.

Assuming σ′(0) = 1, and we are in the linear regime

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i .

From which, if both the w (l)s and x(l−1)s are centered, and biases set to zero:

V
(
x

(l)
i

)
' V

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j

=

Nl−1∑
j=1

V
(
w

(l)
i,j

)
V
(
x

(l−1)
j

)
and the x(l)s are centered.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 7 / 22

So if the w
(l)
i,j are sampled i.i.d in each layer, then

V
(
x(l)
)
'

Nl−1∑
j=1

V
(
w (l)

)
V
(
x(l−1)

)
= Nl−1V

(
w (l)

)
V
(
x(l−1)

)
.

So we have for the variance of the activations:

V
(
x(l)
)
' V

(
x(0)
) l∏

q=1

Nq−1V
(
w (q)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 8 / 22

So if the w
(l)
i,j are sampled i.i.d in each layer, then

V
(
x(l)
)
'

Nl−1∑
j=1

V
(
w (l)

)
V
(
x(l−1)

)
= Nl−1V

(
w (l)

)
V
(
x(l−1)

)
.

So we have for the variance of the activations:

V
(
x(l)
)
' V

(
x(0)
) l∏

q=1

Nq−1V
(
w (q)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 8 / 22

This leads to a first type of initialization

V
(
w (l)

)
=

1

Nl−1
.

In torch/nn/modules/linear.py

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:

self.bias.data.uniform_(-stdv, stdv)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 9 / 22

This leads to a first type of initialization

V
(
w (l)

)
=

1

Nl−1
.

In torch/nn/modules/linear.py

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:

self.bias.data.uniform_(-stdv, stdv)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 9 / 22

We can look at the variance of the gradient w.r.t. the activations. Since

∂l

∂x
(l)
i

'
Nl+1∑
h=1

∂l

∂x
(l+1)
h

w
(l+1)
h,i

we get

V

(
∂l

∂x(l)

)
' Nl+1V

(
∂l

∂x(l+1)

)
V
(
w (l+1)

)
.

So we have for the variance of the gradient w.r.t. the activations:

V

(
∂l

∂x(l)

)
' V

(
∂l

∂x(L)

) L∏
q=l+1

NqV
(
w (q)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 10 / 22

We can look at the variance of the gradient w.r.t. the activations. Since

∂l

∂x
(l)
i

'
Nl+1∑
h=1

∂l

∂x
(l+1)
h

w
(l+1)
h,i

we get

V

(
∂l

∂x(l)

)
' Nl+1V

(
∂l

∂x(l+1)

)
V
(
w (l+1)

)
.

So we have for the variance of the gradient w.r.t. the activations:

V

(
∂l

∂x(l)

)
' V

(
∂l

∂x(L)

) L∏
q=l+1

NqV
(
w (q)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 10 / 22

Since

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

we have

∂l

∂w
(l)
i,j

'
∂l

∂x
(l)
i

x
(l−1)
j

and we get the variance of the gradient w.r.t. the weights

V

(
∂l

∂w (l)

)
' V

(
∂l

∂x(l)

)
V
(
x(l−1)

)
= V

(
∂l

∂x(L)

) L∏
q=l+1

NqV
(
w (q)

)V(x(0)
) l∏

q=1

Nq−1V
(
w (q)

)
=

N0

Nl

 L∏
q=1

NqV
(
w (q)

)V(x(0)
)
V

(
∂l

∂x(L)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 11 / 22

Since

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

we have

∂l

∂w
(l)
i,j

'
∂l

∂x
(l)
i

x
(l−1)
j

and we get the variance of the gradient w.r.t. the weights

V

(
∂l

∂w (l)

)
' V

(
∂l

∂x(l)

)
V
(
x(l−1)

)
= V

(
∂l

∂x(L)

) L∏
q=l+1

NqV
(
w (q)

)V(x(0)
) l∏

q=1

Nq−1V
(
w (q)

)
=

N0

Nl

 L∏
q=1

NqV
(
w (q)

)V(x(0)
)
V

(
∂l

∂x(L)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 11 / 22

Similarly, since

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

we have

∂l

∂b
(l)
i

'
∂l

∂x
(l)
i

so we get the variance of the gradient w.r.t. the biases

V

(
∂l

∂b(l)

)
' V

(
∂l

∂x(l)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 12 / 22

Similarly, since

x
(l)
i '

Nl−1∑
j=1

w
(l)
i,j x

(l−1)
j + b

(l)
i

we have

∂l

∂b
(l)
i

'
∂l

∂x
(l)
i

so we get the variance of the gradient w.r.t. the biases

V

(
∂l

∂b(l)

)
' V

(
∂l

∂x(l)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 12 / 22

So finally, the variance of the gradient w.r.t. the weights is the same in all
layers.

To control the variance of activations, we need

V
(
w (l)

)
=

1

Nl−1
,

and to control the variance of the gradient w.r.t. activations, and through it the
variance of the gradient w.r.t. the biases

V
(
w (l)

)
=

1

Nl
.

From which we get as a compromise the “Xavier initialization”

V
(
w (l)

)
=

1
Nl−1+Nl

2

=
2

Nl−1 + Nl
.

(Glorot and Bengio, 2010)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 13 / 22

So finally, the variance of the gradient w.r.t. the weights is the same in all
layers.

To control the variance of activations, we need

V
(
w (l)

)
=

1

Nl−1
,

and to control the variance of the gradient w.r.t. activations, and through it the
variance of the gradient w.r.t. the biases

V
(
w (l)

)
=

1

Nl
.

From which we get as a compromise the “Xavier initialization”

V
(
w (l)

)
=

1
Nl−1+Nl

2

=
2

Nl−1 + Nl
.

(Glorot and Bengio, 2010)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 13 / 22

In torch/nn/init.py

def xavier_normal_(tensor, gain = 1):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
with torch.no_grad():

return tensor.normal_(0, std)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 14 / 22

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

(Glorot and Bengio, 2010)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 15 / 22

The weights can also be scaled to account for the activation functions.

Remember that if A and B are independent, we have

V(AB) = V(A)V(B) +V(A)E (B)2 +V(B)E (A)2

= V(A)E
(
B2
)

+V(B)E (A)2 .

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 16 / 22

For the forward pass, if

s
(l)
i =

Nl−1∑
j=1

w
(l)
i,j σ

(
s

(l−1)
j

)
+ b

(l)
i

x
(l)
i = σ

(
s

(l)
i

)
,

and E
(
w (l)

)
= 0, s(l−1) is symmetric, and σ is ReLU, we have

V
(
s

(l)
i

)
= Nl−1V

(
w (l)σ

(
s(l−1)

))
= Nl−1V

(
w (l)

)
E

(
σ
(
s(l−1)

)2
)

= Nl−1V
(
w (l)

) 1

2
E

((
s(l−1)

)2
)

=
1

2
Nl−1V

(
w (l)

)
V
(
s(l−1)

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 17 / 22

For the backward

V

(
∂l

∂x
(l)
i

)
=

Nl+1∑
h=1

V
(
σ′
(
s

(l+1)
h

)
︸ ︷︷ ︸

0/1

∂l

∂x
(l+1)
h

w
(l+1)
h,i︸ ︷︷ ︸

E(.)=0, symmetric

)

=

Nl+1∑
h=1

E

σ′ (s(l+1)
h

)(∂l

∂x
(l+1)
h

w
(l+1)
h,i

)2

=

Nl+1∑
h=1

1

2
E

(∂l

∂x
(l+1)
h

w
(l+1)
h,i

)2

=
1

2

Nl+1∑
h=1

V

(
∂l

∂x
(l+1)
h

)
V
(
w

(l+1)
h,i

)
.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 18 / 22

So ReLU impacts the forward and backward pass as if the weights had half their
variances, which motivates multiplying them by a corrective gain of

√
2.

(He et al., 2015)

The same type of reasoning can be applied to other activation functions.

In torch/nn/init.py

def calculate_gain(nonlinearity, param=None):

linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d',
'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']

if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1

elif nonlinearity == 'tanh':
return 5.0 / 3

elif nonlinearity == 'relu':
return math.sqrt(2.0)

/.../

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 19 / 22

So ReLU impacts the forward and backward pass as if the weights had half their
variances, which motivates multiplying them by a corrective gain of

√
2.

(He et al., 2015)

The same type of reasoning can be applied to other activation functions.

In torch/nn/init.py

def calculate_gain(nonlinearity, param=None):

linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d',
'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']

if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1

elif nonlinearity == 'tanh':
return 5.0 / 3

elif nonlinearity == 'relu':
return math.sqrt(2.0)

/.../

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 19 / 22

Data normalization

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 20 / 22

The analysis for the weight initialization relies on keeping the activation
variance constant.

For this to be true, not only the variance has to remained unchanged through
layers, but it has to be correct for the input too.

V
(
x(0)
)

= 1.

This can be done in several ways. Under the assumption that all the input
components share the same statistics, we can do

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

Thanks to the magic of broadcasting we can normalize component-wise with

mu, std = train_input.mean(0), train_input.std(0)
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 21 / 22

The analysis for the weight initialization relies on keeping the activation
variance constant.

For this to be true, not only the variance has to remained unchanged through
layers, but it has to be correct for the input too.

V
(
x(0)
)

= 1.

This can be done in several ways. Under the assumption that all the input
components share the same statistics, we can do

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

Thanks to the magic of broadcasting we can normalize component-wise with

mu, std = train_input.mean(0), train_input.std(0)
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 21 / 22

The analysis for the weight initialization relies on keeping the activation
variance constant.

For this to be true, not only the variance has to remained unchanged through
layers, but it has to be correct for the input too.

V
(
x(0)
)

= 1.

This can be done in several ways. Under the assumption that all the input
components share the same statistics, we can do

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

Thanks to the magic of broadcasting we can normalize component-wise with

mu, std = train_input.mean(0), train_input.std(0)
train_input.sub_(mu).div_(std)
test_input.sub_(mu).div_(std)

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 21 / 22

To go one step further, some techniques initialize the weights explicitly so that
the empirical moments of the activations are as desired.

As such, they take into account the statistics of the network activation induced
by the statistics of the data.

François Fleuret EE-559 – Deep learning / 5.5. Parameter initialization 22 / 22

The end

References

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. CoRR, abs/1502.01852, 2015.

	Vanishing gradient
	Weight initialization
	Data normalization

