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We want to train an MLP by minimizing a loss over the training set

Z(w, b) = Z C(f(xn; w, b), yn).
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We want to train an MLP by minimizing a loss over the training set

Zf (xn; W, b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss ¢, = ¢(f(xn; w, b), yn) with respect to the parameters, e.g.
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For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.

@) p0) @) p(2) (L) p0)
£ = WO ) o ) WO (2) o W s 25 D) = f(x: w, b).
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For clarity, we consider a single training sample x, and introduce s, ... s(
as the summations before activation functions.
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Formally we set x(0) = X,
s() = wx(I=1) 1 p(N)
vi=1,...,L,
x) =& (5(/)) ,

and we set the output of the network as f(x; w, b) = x(L).
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For clarity, we consider a single training sample x, and introduce s, ... s(
as the summations before activation functions.
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Formally we set x(0) = X,
s() = wx(I=1) 1 p(N)
vi=1,...,L,
x) =& (5(/)) ,
L)_

and we set the output of the network as f(x; w, b) = x(
This is the forward pass.
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The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.
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Francois Fleuret

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

Iyoty_1o--of (X) = Jry (v—1(- - (x))) - - - I (R(A(x))) I (f1(x)) I (%)

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.
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Since s:’ influences ¢ only through xl./ with
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Since s; "’ influences ¢ only through x;’ with
I /
A0 = o (s,
we have
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950 axD 95D~ g T\ )
And since xj(’_l) influences # only through the 5,'(/) with

o _ 0y _(I-1 )
st = w0 4,
j
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Since s; "’ influences ¢ only through x;’ with
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To summarize: we can compute oD from the definition of #, and recursively
X

i
propagate backward the derivatives of the loss w.r.t the activations with
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To summarize: we can compute 66) from the definition of #, and recursively
Ox;

i
propagate backward the derivatives of the loss w.r.t the activations with

o _ o¢ U,<S_(/))
s ax  \T
and
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And then compute the derivatives w.r.t the parameters with
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To write all this in tensorial form, if v : RN — RM we will use the standard
Jacobian notation

APy oY1

. Ox1 T Oxy

oyl . ) .

ox : K : ’
Yy Yy
Ox1 Oxy

and if ¢ : RNXM _s R we will use the compact notation, also tensorial

oy oy
Owip T Owm
oY
ow : . :
oy oy
Owy1 7T Owny
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To write all this in tensorial form, if v : RN — RM we will use the standard

Jacobian notation
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A standard notation (that we do not use here) is

o or
{Tx(’)} =Vt {85(’)} =Vt {
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Forward pass

Compute the activations.

xO =x wvi=1,...,L,
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Forward pass

Compute the activations.

xO =x vi=1,...

Backward pass

Compute the derivatives of the loss wrt the activations.

[%} from the definition of 7 ¢ ¢ .- (5(’)>
- o Os( dx(/)
it <L, [)xm] = (wl*) [asum]
Compute the derivatives of the loss wrt the parameters.
e R L N - R P
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Forward pass
Compute the activations.

0)

xO =x vi=1,...

Backward pass

Compute the derivatives of the loss wrt the activations.

[%} from the definition of 7 ¢ ¢
o (5(/)>
T or as(l) dx(/)
it <L, [) (/J] = (wl*) [asum]
Compute the derivatives of the loss wrt the parameters.

Y 00 1 T {BK}:[E)K]
[{aw“)ﬂ - {asm] (X( )) ab(h) s

Gradient step

Update the parameters.
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In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Francois Fleuret EE-550 — Deep learning / 3.6. Back-propagation 10 /11



Regarding computation, since the costly operation for the forward pass is

s — (=1 4 )

and for the backward

or T[ o
_ (I+1)
{ax(l)} - (W ) {as(m)}

ot ot T
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the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and
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The end



