
EE-559 – Deep learning

3.6. Back-propagation

François Fleuret

https://fleuret.org/ee559/

Mon Dec 23 16:20:34 UTC 2019

https://fleuret.org/ee559/

We want to train an MLP by minimizing a loss over the training set

ℒ (w , b) =
∑
n

l(f (xn;w , b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss ln = l(f (xn;w , b), yn) with respect to the parameters, e.g.

∂ln

∂w
(l)
i,j

and
∂ln

∂b
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 1 / 11

We want to train an MLP by minimizing a loss over the training set

ℒ (w , b) =
∑
n

l(f (xn;w , b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss ln = l(f (xn;w , b), yn) with respect to the parameters, e.g.

∂ln

∂w
(l)
i,j

and
∂ln

∂b
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 1 / 11

For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)

−−−−−→ s(1) σ−→ x(1) w (2),b(2)

−−−−−→ s(2) σ−→ . . .
w (L),b(L)

−−−−−→ s(L) σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 2 / 11

For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)

−−−−−→ s(1) σ−→ x(1) w (2),b(2)

−−−−−→ s(2) σ−→ . . .
w (L),b(L)

−−−−−→ s(L) σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 2 / 11

For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)

−−−−−→ s(1) σ−→ x(1) w (2),b(2)

−−−−−→ s(2) σ−→ . . .
w (L),b(L)

−−−−−→ s(L) σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 2 / 11

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(g ◦ f)′ = (g ′ ◦ f)f ′.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) = JFN (fN−1(. . . (x))) . . . Jf3 (f2(f1(x))) Jf2 (f1(x)) Jf1 (x)

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 3 / 11

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(g ◦ f)′ = (g ′ ◦ f)f ′.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) = JFN (fN−1(. . . (x))) . . . Jf3 (f2(f1(x))) Jf2 (f1(x)) Jf1 (x)

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 3 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l) σ−−−→ x(l)

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l) σ−−−→ x(l)

::::::::::

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l) σ−−−→ x(l)

::::::::::

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l) σ−−−→ x(l)

::::::::::

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l)

:::::::::::::

σ−−−→ x(l)

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l)

:::::::::::::

σ−−−→ x(l)

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l)

:::::::::::::

σ−−−→ x(l)

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l) σ−−−→ x(l)

Since s
(l)
i influences l only through x

(l)
i with

x
(l)
i = σ(s

(l)
i),

we have

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
,

And since x
(l−1)
j influences l only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂x
(l−1)
j

=
∑
j

∂l

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 4 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l)

:::::::::::::

σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences l only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j ,

∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 5 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l)

:::::::::::::

σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences l only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j ,

∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 5 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l)

:::::::::::::

σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences l only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j ,

∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 5 / 11

x(l−1) w (l), b(l)

−−−−−→ s(l) σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences l only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j ,

∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 5 / 11

To summarize: we can compute ∂l

∂x
(L)
i

from the definition of l, and recursively

propagate backward the derivatives of the loss w.r.t the activations with

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
and

∂l

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

And then compute the derivatives w.r.t the parameters with

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j ,

and
∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 6 / 11

To summarize: we can compute ∂l

∂x
(L)
i

from the definition of l, and recursively

propagate backward the derivatives of the loss w.r.t the activations with

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)
and

∂l

∂x
(l−1)
j

=
∑
i

∂l

∂s
(l)
i

w
(l)
i,j .

And then compute the derivatives w.r.t the parameters with

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j ,

and
∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 6 / 11

To write all this in tensorial form, if ψ : RN → RM , we will use the standard
Jacobian notation

[
∂ψ

∂x

]
=

∂ψ1
∂x1

. . . ∂ψ1
∂xN

...
. . .

...
∂ψM
∂x1

. . . ∂ψM
∂xN

 ,

and if ψ : RN×M → R, we will use the compact notation, also tensorial

[[
∂ψ

∂w

]]
=

∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ
∂wN,1

. . . ∂ψ
∂wN,M

 .

A standard notation (that we do not use here) is[
∂l

∂x(l)

]
= ∇x(l)l

[
∂l

∂s(l)

]
= ∇s(l)l

[
∂l

∂b(l)

]
= ∇b(l)l

[[
∂l

∂w (l)

]]
= ∇w (l)l.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 7 / 11

To write all this in tensorial form, if ψ : RN → RM , we will use the standard
Jacobian notation

[
∂ψ

∂x

]
=

∂ψ1
∂x1

. . . ∂ψ1
∂xN

...
. . .

...
∂ψM
∂x1

. . . ∂ψM
∂xN

 ,

and if ψ : RN×M → R, we will use the compact notation, also tensorial

[[
∂ψ

∂w

]]
=

∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ
∂wN,1

. . . ∂ψ
∂wN,M

 .

A standard notation (that we do not use here) is[
∂l

∂x(l)

]
= ∇x(l)l

[
∂l

∂s(l)

]
= ∇s(l)l

[
∂l

∂b(l)

]
= ∇b(l)l

[[
∂l

∂w (l)

]]
= ∇w (l)l.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 7 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

]

[
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

∂l

∂s
(l)
i

=
∂l

∂x
(l)
i

σ′
(
s

(l)
i

)

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

∂l

∂x
(l−1)
j

=
∑
i

w
(l)
i,j

∂l

∂s
(l)
i

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

]

[[
∂l
∂w (l)

]]

× ·T

∂l

∂b
(l)
i

=
∂l

∂s
(l)
i

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

∂l

∂w
(l)
i,j

=
∂l

∂s
(l)
i

x
(l−1)
j

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

x(l−1) ×

w (l)

+

b(l)

s(l) σ x(l)

[
∂l
∂x(l)

][
∂l
∂s(l)

]
�

σ′

·T×
[

∂l
∂x(l−1)

]

[
∂l
∂b(l)

][[
∂l
∂w (l)

]]

× ·T

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 8 / 11

Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)

Backward pass

Compute the derivatives of the loss wrt the activations.
[
∂l
∂x (L)

]
from the definition of l

if l < L,
[
∂l
∂x (l)

]
=
(
w (l+1)

)T [∂l
∂s(l+1)

]
[
∂l

∂s(l)

]
=

[
∂l

∂x(l)

]
� σ′

(
s(l)
)

Compute the derivatives of the loss wrt the parameters.[[
∂l

∂w (l)

]]
=

[
∂l

∂s(l)

](
x(l−1)

)T [
∂l

∂b(l)

]
=

[
∂l

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂l

∂w (l)

]]
b(l) ← b(l) − η

[
∂l

∂b(l)

]

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 9 / 11

Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)

Backward pass

Compute the derivatives of the loss wrt the activations.
[
∂l
∂x (L)

]
from the definition of l

if l < L,
[
∂l
∂x (l)

]
=
(
w (l+1)

)T [∂l
∂s(l+1)

]
[
∂l

∂s(l)

]
=

[
∂l

∂x(l)

]
� σ′

(
s(l)
)

Compute the derivatives of the loss wrt the parameters.[[
∂l

∂w (l)

]]
=

[
∂l

∂s(l)

](
x(l−1)

)T [
∂l

∂b(l)

]
=

[
∂l

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂l

∂w (l)

]]
b(l) ← b(l) − η

[
∂l

∂b(l)

]

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 9 / 11

Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)
)

Backward pass

Compute the derivatives of the loss wrt the activations.
[
∂l
∂x (L)

]
from the definition of l

if l < L,
[
∂l
∂x (l)

]
=
(
w (l+1)

)T [∂l
∂s(l+1)

]
[
∂l

∂s(l)

]
=

[
∂l

∂x(l)

]
� σ′

(
s(l)
)

Compute the derivatives of the loss wrt the parameters.[[
∂l

∂w (l)

]]
=

[
∂l

∂s(l)

](
x(l−1)

)T [
∂l

∂b(l)

]
=

[
∂l

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂l

∂w (l)

]]
b(l) ← b(l) − η

[
∂l

∂b(l)

]
François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 9 / 11

In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 10 / 11

Regarding computation, since the costly operation for the forward pass is

s(l) = w (l)x(l−1) + b(l)

and for the backward [
∂l

∂x(l)

]
=
(
w (l+1)

)T [∂l

∂s(l+1)

]
and [[

∂l

∂w (l)

]]
=

[
∂l

∂s(l)

](
x(l−1)

)T
,

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

François Fleuret EE-559 – Deep learning / 3.6. Back-propagation 11 / 11

The end

