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A first “deep” regularization technique is dropout (Srivastava et al., 2014). It
consists of removing units at random during the forward pass on each sample,
and putting them all back during test.

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

(Srivastava et al., 2014)
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This method increases independence between units, and distributes the
representation. It generally improves performance.

“In a standard neural network, the derivative received by each parameter
tells it how it should change so the final loss function is reduced, given
what all other units are doing. Therefore, units may change in a way that
they fix up the mistakes of the other units. This may lead to complex co-
adaptations. This in turn leads to overfitting because these co-adaptations do
not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden
units unreliable. Therefore, a hidden unit cannot rely on other specific units
to correct its mistakes. It must perform well in a wide variety of different
contexts provided by the other hidden units.”

(Srivastava et al., 2014)
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(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

(Srivastava et al., 2014)
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(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

(Srivastava et al., 2014)

A network with dropout can be interpreted as an ensemble of 2V models with
heavy weight sharing (Goodfellow et al., 2013).
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One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.
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One has to decide on which units/layers to use dropout, and with what
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During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.
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To keep the means of the inputs to layers unchanged, the initial version of
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One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 — p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations
by l%p during train and keeps the network untouched during test.
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Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.
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Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.
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a module that drops activations at random on each sample.
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dropout is implemented in PyTorch as nn.DropQOut, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the
tensor it gets as input, and zeroes entries accordingly.
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dropout is implemented in PyTorch as nn.DropQOut, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the
tensor it gets as input, and zeroes entries accordingly.

Default probability to drop is p = 0.5, but other values can be specified.
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>>> x = torch.full((3, 5), 1.0).requires_grad_()

>>> x

tensor([[ 1., 1., 1., 1., 1
1., 1., 1., 1., 1.
(1., 1., 1., 1., 1

>>> dropout = nn.Dropout(p = 0.7

>>> y = dropout (x)

>>> y

tensor([[ 0., 0., 4., 0. 4.]
[o., 4., 4., 4., 0.]
[0., 0., 4., O 0.]

>>> 1 = y.norm(2, 1).sum()

>>> 1.backward()

>>> x.grad

tensor([[ 0.0000, 0.0000, 2.8284, 0.0000, 2.8284],
[ 0.0000, 2.3094, 2.3094, 2.3094, 0.0000],
[ 0.0000, 0.0000, 4.0000, 0.0000, 0.00001])
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If we have a network
model = nn.Sequential(nn.Linear (10, 100), nn.ReLU(),

nn.Linear (100, 50), nn.ReLU(Q),
nn.Linear (50, 2));
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If we have a network

model = nn.Sequential(nn.Linear (10, 100), nn.ReLU(),
nn.Linear (100, 50), nn.ReLU(Q),
nn.Linear (50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLUQ),
nn.Dropout (),
nn.Linear (100, 50), nn.ReLUQ),
nn.Dropout (),
nn.Linear (50, 2));

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 8/12



A A model using dropout has to be set in “train” or “test” mode.
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A A model using dropout has to be set in “train” or “test” mode.

The method nn.Module.train(mode) recursively sets the flag training to all
sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3))
>>> dropout.training
True
>>> model.train(False)
Sequential (
(0): Linear (3 -> 10)
(1) : Dropout (p = 0.5)
(2): Linear (10 -> 3)
)
>>> dropout.training
False
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As pointed out by Tompson et al. (2015), units in a 2d activation map are
generally locally correlated, and dropout has virtually no effect. They proposed
SpatialDropout, which drops channels instead of individual units.
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As pointed out by Tompson et al. (2015), units in a 2d activation map are
generally locally correlated, and dropout has virtually no effect. They proposed
SpatialDropout, which drops channels instead of individual units.

>>> dropout2d = nn.Dropout2d()

>>> x = torch.full((2, 3, 2, 4), 1.)
>>> dropout2d(x)

tensor ([[[[ 2., 2., 2., 2.],

[2., 2., 2., 2.1,
[l 0., 0., 0., 0.1,
[o0., 0., 0., 0.11,

tto., o., o., 0.1,
fo., o., o., 0.1,
fco., o., o., 0.1,
[o., 0., 0., 0.111D
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Another variant is dropconnect, which drops connections instead of units.
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Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W. The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)

and this laver’s output (ereen rows). Note the lack of structure in (b) compared to (c).

(Wan et al., 2013)
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Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W. The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
e weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this laver’s output (ereen rows). Note the lack of structure in (b) compared to (c).

shows an effe

(Wan et al., 2013)

It cannot be implemented as a separate layer and is computationally intensive.
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crop | rotation | model error(%) voting
scaling 5 network | error(%)
no no No-Drop 0.774+0.051 | 0.67
Dropout 0.594+0.039 | 0.52
DropConnect| 0.6340.035 | 0.57
yes | no No-Drop 0.50£0.098 | 0.38
Dropout 0.39+£0.039 | 0.35
DropConnect| 0.394+0.047 | 0.32
yes | yes No-Drop 0.30+0.035 | 0.21
Dropout 0.2840.016 | 0.27
DropConnect| 0.2840.032 | 0.21

Table 3. MNIST classification error. Previous state of the
art is 0.47% (Zeiler and Fergus, 2013) for a single model
without elastic distortions and 0.23% with elastic distor-
tions and voting (Ciresan et al., 2012).
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The end
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