
EE559

Practical Session 3

François Fleuret

https://fleuret.org/ee559/

January 26, 2020

Introduction

The objective of this session is to implement a multi-layer perceptron with one hidden layer from

scratch and test it on MNIST.

You can get information about the practical sessions and the provided helper functions on the course’s

website.

https://fleuret.org/ee559/

1 Activation function

Write the two functions

def sigma(x)

def dsigma(x)

that take as input a float tensor and returns a tensor of same size, obtained by applying component-wise

respectively tanh, and the first derivative of tanh.

Hint: The functions should have no python loop, and use in particular torch.tanh, torch.exp,

torch.mul, and torch.pow. My versions are 34 and 62 character long.

2 Loss

Write the two functions

def loss(v, t)

def dloss(v, t)

that take as input two float tensors of same dimensions with v the predicted tensor and t the target

one, and return respectively ‖t − v‖22, and a tensor of same size equal to the gradient of that quantity

as a function of v.

Hint: The functions should have no python loop, and use in particular torch.sum, torch.pow. My

versions are 48 and 40 character long.

1 of 2

https://fleuret.org/ee559/
https://fleuret.org/ee559/


3 Forward and backward passes

Write a function

def forward˙pass(w1, b1, w2, b2, x)

whose arguments correspond to an input vector to the network, and the weight and bias of the two

layers, and returns a tuple composed of the corresponding x (0), s(1), x (1), s(2), and x (2).

Write a function

def backward˙pass(w1, b1, w2, b2,

t,

x, s1, x1, s2, x2,

dl˙dw1, dl˙db1, dl˙dw2, dl˙db2)

whose arguments correspond to the network’s parameters, the target vector, the quantities computed

by the forward pass, and the tensors used to store the cumulated sums of the gradient on individual

samples, and updates the latters according to the formula of the backward pass.

Hint: The functions should have no python loop, and use in particular torch.t, torch.mv, torch.mm,

and torch.view, and the functions previously written. The main difficulty is to deal properly with the

tensor size and transpose. My versions are 165 and 436 character long.

4 Training the network

Write the code to train and test a MLP with one hidden layer of 50 units. This network should have an

input dimension of 784, which is the dimension of the MNIST training set, and an output dimension

of 10, which is the number of classes.

You code should:

1. Load the data using the provided prologue.load˙data function, with one-hot label vectors

and normalized inputs. Multiply the target label vectors by ζ = 0.9 (so that they are strictly in

the value range of tanh).

2. Create the four weight and bias tensors, and fill them with random values sampled according to

N (0, ε) with ε = 1e − 6.

3. Create the four tensors to sum up the gradients on individual samples, with respect to the

weights and biases.

4. Perform 1, 000 gradient steps with a step size η equal to 0.1 divided by the number of training

samples.

Each of these steps requires to reset to zero the tensors for summing up the gradients, and

doing a forward and a backward pass for each training example.

Compute and print the training loss, training error and test error after every step using the class

of maximum response as the predicted one.

Hint: My solution is 1987 character long and achieves 3.6% training error and 15.70% test error with

50 hidden units. It takes 1min40s to finish on a Intel i7 with no GPU, using the default small sets of

prologue.load˙data.

2 of 2


	Activation function
	Loss
	Forward and backward passes
	Training the network

