EE-559 — Deep learning
6.3. Dropout

Francois Fleuret
https://fleuret.org/ee559/
Tue Dec 24 12:50:12 UTC 2019

N (w] = Tm) =PFL

https://fleuret.org/ee559/

A first “deep” regularization technique is dropout (Srivastava et al., 2014). It
consists of removing units at random during the forward pass on each sample,
and putting them all back during test.

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

(Srivastava et al., 2014)

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 1/12

This method increases independence between units, and distributes the
representation. It generally improves performance.

“In a standard neural network, the derivative received by each parameter
tells it how it should change so the final loss function is reduced, given
what all other units are doing. Therefore, units may change in a way that
they fix up the mistakes of the other units. This may lead to complex co-
adaptations. This in turn leads to overfitting because these co-adaptations do
not generalize to unseen data. We hypothesize that for each hidden unit,
dropout prevents co-adaptation by making the presence of other hidden
units unreliable. Therefore, a hidden unit cannot rely on other specific units
to correct its mistakes. It must perform well in a wide variety of different
contexts provided by the other hidden units.”

(Srivastava et al., 2014)

Francois Fleuret EE-550 — Deep learning / 6.3. Dropout 2/12

Francois Fleuret

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

(Srivastava et al., 2014)

EE-559 — Deep learning / 6.3. Dropout 3/12

(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

(Srivastava et al., 2014)

A network with dropout can be interpreted as an ensemble of 2V models with
heavy weight sharing (Goodfellow et al., 2013).

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout

3/12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 4/12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

Francois Fleuret EE-550 — Deep learning / 6.3. Dropout 4/12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 — p during test.

Francois Fleuret EE-550 — Deep learning / 6.3. Dropout 4/12

One has to decide on which units/layers to use dropout, and with what
probability p units are dropped.

During training, for each sample, as many Bernoulli variables as units are
sampled independently to select units to remove.

To keep the means of the inputs to layers unchanged, the initial version of
dropout was multiplying activations by 1 — p during test.

The standard variant in use is the “inverted dropout”. It multiplies activations
by l%p during train and keeps the network untouched during test.

Francois Fleuret EE-550 — Deep learning / 6.3. Dropout 4/12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 5/12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

© pON o — -

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 5/12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 5/12

Francois Fleuret

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

— Xﬁ@(l—p) —drd

— Xﬁ.@(l—p) > ulh

— xﬁ@u—p) N O]

1
— Xq@(l—p) —> uﬁl)

EE-559 — Deep learning / 6.3. Dropout

5/12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

dropout FOul o |— - .-

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 5/12

Dropout is not implemented by actually switching off units, but equivalently as
a module that drops activations at random on each sample.

3 dropout o |— - .-

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 5/12

dropout is implemented in PyTorch as nn.DropQOut, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the
tensor it gets as input, and zeroes entries accordingly.

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 6/12

dropout is implemented in PyTorch as nn.DropQOut, which is a torch.Module.

In the forward pass, it samples a Boolean variable for each component of the
tensor it gets as input, and zeroes entries accordingly.

Default probability to drop is p = 0.5, but other values can be specified.

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 6/12

>>> x = torch.full((3, 5), 1.0).requires_grad_()

>>> x

tensor([[1., 1., 1., 1., 1
1., 1., 1., 1., 1.
(1., 1., 1., 1., 1

>>> dropout = nn.Dropout(p = 0.7

>>> y = dropout (x)

>>> y

tensor([[0., 0., 4., 0. 4.]
[o., 4., 4., 4., 0.]
[0., 0., 4., O 0.]

>>> 1 = y.norm(2, 1).sum()

>>> 1.backward()

>>> x.grad

tensor([[0.0000, 0.0000, 2.8284, 0.0000, 2.8284],
[0.0000, 2.3094, 2.3094, 2.3094, 0.0000],
[0.0000, 0.0000, 4.0000, 0.0000, 0.00001])

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 7/12

If we have a network
model = nn.Sequential(nn.Linear (10, 100), nn.ReLU(),

nn.Linear (100, 50), nn.ReLU(Q),
nn.Linear (50, 2));

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 8/12

If we have a network

model = nn.Sequential(nn.Linear (10, 100), nn.ReLU(),
nn.Linear (100, 50), nn.ReLU(Q),
nn.Linear (50, 2));

we can simply add dropout layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLUQ),
nn.Dropout (),
nn.Linear (100, 50), nn.ReLUQ),
nn.Dropout (),
nn.Linear (50, 2));

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 8/12

A A model using dropout has to be set in “train” or “test” mode.

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 9/12

A A model using dropout has to be set in “train” or “test” mode.

The method nn.Module.train(mode) recursively sets the flag training to all
sub-modules.

>>> dropout = nn.Dropout()
>>> model = nn.Sequential(nn.Linear(3, 10), dropout, nn.Linear(10, 3))
>>> dropout.training
True
>>> model.train(False)
Sequential (
(0): Linear (3 -> 10)
(1) : Dropout (p = 0.5)
(2): Linear (10 -> 3)
)
>>> dropout.training
False

Francois Fleuret EE-559 — Deep learning / 6.3. Dropout 9/12

As pointed out by Tompson et al. (2015), units in a 2d activation map are
generally locally correlated, and dropout has virtually no effect. They proposed
SpatialDropout, which drops channels instead of individual units.

Francois Fleuret EE-550 — Deep learning / 6.3. Dropout 10/ 12

Francois Fleuret

As pointed out by Tompson et al. (2015), units in a 2d activation map are
generally locally correlated, and dropout has virtually no effect. They proposed
SpatialDropout, which drops channels instead of individual units.

>>> dropout2d = nn.Dropout2d()

>>> x = torch.full((2, 3, 2, 4), 1.)
>>> dropout2d(x)

tensor ([[[[2., 2., 2., 2.],

[2., 2., 2., 2.1,
[l 0., 0., 0., 0.1,
[o0., 0., 0., 0.11,

tto., o., o., 0.1,
fo., o., o., 0.1,
fco., o., o., 0.1,
[o., 0., 0., 0.111D

EE-559 — Deep learning / 6.3. Dropout

10/ 12

Francois Fleuret

Another variant is dropconnect, which drops connections instead of units.

Outputs Previous layer mask
r(dx1) u(dx1l)
Input
Predictions K
otkx 1) Features
vinx 1) "
F]
g
Z
DropConnect &
weights 5
W (dxn) >
Softmax || Activation Feature z
layer function extractor £
S a(u) 20, 3
b
b) DropConnect ¢) Effective Dropout
) Model Layout mask M mask M’

Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W. The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)

and this laver’s output (ereen rows). Note the lack of structure in (b) compared to (c).

(Wan et al., 2013)

EE-550 — Deep learning / 6.3. Dropout 1/ 12

Francois Fleuret

Another variant is dropconnect, which drops connections instead of units.

Outputs Previous layer mask
rdx1l)y udxl)
Input
Predictions K
o(kx 1) Features
v(nx) =
Z
£
H
DropConnect B
weights 5
W(dxn) =z
Softmax || Activation Feature E
layer function extractor £
S W) a(u) g W) lir 9]
rul =
b) DropConnect ¢) Effective Dropout
a) Model Layout mask M mask M’

Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W. The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
e weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this laver’s output (ereen rows). Note the lack of structure in (b) compared to (c).

shows an effe

(Wan et al., 2013)

It cannot be implemented as a separate layer and is computationally intensive.

EE-559 — Deep learning / 6.3. Dropout

1/ 12

crop | rotation | model error(%) voting
scaling 5 network | error(%)
no no No-Drop 0.774+0.051 | 0.67
Dropout 0.594+0.039 | 0.52
DropConnect| 0.6340.035 | 0.57
yes | no No-Drop 0.50£0.098 | 0.38
Dropout 0.39+£0.039 | 0.35
DropConnect| 0.394+0.047 | 0.32
yes | yes No-Drop 0.30+0.035 | 0.21
Dropout 0.2840.016 | 0.27
DropConnect| 0.2840.032 | 0.21

Table 3. MNIST classification error. Previous state of the
art is 0.47% (Zeiler and Fergus, 2013) for a single model
without elastic distortions and 0.23% with elastic distor-
tions and voting (Ciresan et al., 2012).

Francois Fleuret

EE-559 — Deep learning / 6.3. Dropout

(Wan et al., 2013)

12/ 12

The end

References

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In International Conference on Machine Learning (ICML), 2013.

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research (JMLR), 15:1929-1958, 2014.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization
using convolutional networks. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural network
using dropconnect. In International Conference on Machine Learning (ICML), 2013.

