EE-559 — Deep learning

3.6. Back-propagation

Francois Fleuret
https://fleuret.org/ee559/
Mon Dec 23 16:20:34 UTC 2019

N (w] = Tm) =PFL


https://fleuret.org/ee559/

We want to train an MLP by minimizing a loss over the training set

Z(w, b) = Z C(f(xn; w, b), yn).

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 1/11



We want to train an MLP by minimizing a loss over the training set

Zf (xn; W, b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss ¢, = ¢(f(xn; w, b), yn) with respect to the parameters, e.g.

ot A It
— n — -
owl) o6

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 1/11



For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.

@) p0) @) p(2) (L) p0)
£ = WO ) o ) WO (2) o W s 25 D) = f(x: w, b).

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 2/11



For clarity, we consider a single training sample x, and introduce s, ... s(
as the summations before activation functions.

w(@) 5@
e

W) p(1) - -
£ — o WO ) o ) §@ 2,

Formally we set x(0) = X,
s() = wx(I=1) 1 p(N)
vi=1,...,L,
x) =& (5(/)) ,

and we set the output of the network as f(x; w, b) = x(L).

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 2/11



For clarity, we consider a single training sample x, and introduce s, ... s(
as the summations before activation functions.

w(@) 5@
e

W) p(1) - -
£ — o WO ) o ) §@ 2,

Formally we set x(0) = X,
s() = wx(I=1) 1 p(N)
vi=1,...,L,
x) =& (5(/)) ,
L)_

and we set the output of the network as f(x; w, b) = x(
This is the forward pass.
2/11

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation



The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 3/11



Francois Fleuret

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

Iyoty_1o--of (X) = Jry (v—1(- - (x))) - - - I (R(A(x))) I (f1(x)) I (%)

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.

EE-559 — Deep learning / 3.6. Back-propagation

3/11



! )
N AL LN WS ()

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 4/11



O]

i

O]

Since s:’ influences ¢ only through xl./ with

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 4/11



O]

i

influences # only through x with

Since s ;

NI

we have

oc o ox"

as!) ax gsth

i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation

a/11



! )
N AL LN WS ()

O] O]

Since s; "’ influences ¢ only through x;’ with
I I
NI
we have

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation

4/11



! )
N AN NN ()

O] O]

Since s; "’ influences ¢ only through x;’ with
I /
A0 = o (s,
we have
o  of 8xi(/) o or ,( (/))
950 axD 95D~ g T\ )
And since xj(’_l) influences # only through the 5,'(/) with

o _ 0y _(I-1 )
st = w0 4,
j

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation

a/11



! )
N AN NN ()

O] O]

Since s; "’ influences ¢ only through x;’ with
I /
A0 = o (s,
we have
o  of 8xi(/) o or ,( (/))
950 axD 95D~ g T\ )
And since xj(’_l) influences # only through the 5,'(/) with
i _ (1 (1-1) (!
50 =2 wiix Y ),
J
we have

a¢ 5 o¢ s

ax!~Y N as!) ax!=Y
J

J J i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation

a/11



! )
N AN NN ()

O]

Since s;

O]

influences ¢ only through x;”/ with
) I
X = o(s"),

we have

(I-1)

And since x;

(O]

influences ¢ only through the s;

RO S UN G O]

’JJ
J

with

we have 0
ot _ o¢  Os; _ at
ax(lfl) B Z 85(/) 8x(/71) B Z 850) i

J J i J ! i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 4/11



! )
N AL LN WS ()

O]

Since s;

O]

influences ¢ only through x;”/ with
) I
X = o(s"),

we have

(I-1)

And since x;

(O]

influences ¢ only through the s;

RO S UN G O]

’JJ
J

with

we have 0
ot _ o¢  Os; _ at
ax(lfl) B Z 85(/) 8x(/71) B Z 850) i

J J i J ! i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 4/11



i1y w60

N RO

O]

i and bfl) influences # only through s

i

0 = S w1 b0
J

Since w; with

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 5/11



! 1
N ALY BN

and bfl) influences # only through sl.(’) with

0 = S w1 b0
J

Since Wi(?

we have

a¢ a¢ s

aw!) B as! gw()

Y] ! )

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation

5/11



! )
N AN BN ()

Since wl.(? and bfl) influences # only through sl.(’) with

0 = S w1 b0
J

we have

or  or o) ar iy

o 050 gul) 950 I

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 5/11



! )
N TR0 BN ()

Since wl.(? and bfl) influences # only through sl.(’) with

= Sl
J

F)

we have

or  or o) ar iy

o 050 gul) 950 I
)

ij i i

o¢ a¢
o as!”

i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 5/11



Francois Fleuret

ot

To summarize: we can compute oD from the definition of #, and recursively
X

i
propagate backward the derivatives of the loss w.r.t the activations with

o _ o¢ U,<S_(/))
as)  ax " \7

i i

and

ot at
> S Wi

i

ox\™D 5 b

EE-559 — Deep learning / 3.6. Back-propagation

6/11



To summarize: we can compute 66) from the definition of #, and recursively
Ox;

i
propagate backward the derivatives of the loss w.r.t the activations with

o _ o¢ U,<S_(/))
s ax  \T
and

ot at
- = —w .,
0)(}/4) Z,: PRONGE

And then compute the derivatives w.r.t the parameters with

or _ or NG
8W(I) as(’) J ’

i i

and

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 6/ 11



To write all this in tensorial form, if v : RN — RM we will use the standard
Jacobian notation

APy oY1

. Ox1 T Oxy

oyl . ) .

ox : K : ’
Yy Yy
Ox1 Oxy

and if ¢ : RNXM _s R we will use the compact notation, also tensorial

oy oy
Owip T Owm
oY
ow : . :
oy oy
Owy1 7T Owny

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 7/11



To write all this in tensorial form, if v : RN — RM we will use the standard

Jacobian notation

O
Ox1
o .
ox .
OYm
Ox1

Oxy

and if ¢ : RNXM _s R we will use the compact notation, also tensorial

oy

w1

[{ o H B

owl :
Xl

Owp,1

9
owy m

oy
Own,m

A standard notation (that we do not use here) is

o or
{Tx(’)} =Vt {85(’)} =Vt {

EE-559 — Deep learning / 3.6. Back-propagation

Francois Fleuret

} =V,n?

ot
[{aw(’) ]] =N

7/11



Francois Fleuret

x(

I1—1)

b

EE-559 — Deep learning / 3.6. Back-propagation

S

8 /11



Francois Fleuret

x(

1—1)

[}

EE-559 — Deep learning / 3.6. Back-propagation

8/11



Francois Fleuret

x(

I1—1)

EE-559 — Deep learning / 3.6. Back-propagation

ar
ax(D

8/11



Francois Fleuret

x(

1—1)

o _ o (s
as!) ax

i i

EE-559 — Deep learning / 3.6. Back-propagation

8/11



x(I=1 X +
ol
[ax(/—l)] T 1

o (n OF
PRGN Z Wi j PRO
J / i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 8/ 11



x(I=1 X +
.
(555 ] T |

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 8/ 11



T &
[ [
U= |t X 4
= =
[axﬁil)] Tx |
or 9¢ (-1
ow() o5 7
i i

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 8/ 11



| ar | a¢
ot [[6w<’)]l [ab“]
f | - }
NG X +
a¢
(555 ] i |

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 8/ 11



Forward pass

Compute the activations.

xO =x wvi=1,...,L,

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 9/11



Forward pass

Compute the activations.

xO =x vi=1,...

Backward pass

Compute the derivatives of the loss wrt the activations.

[%} from the definition of 7 ¢ ¢ .- (5(’)>
- o Os( dx(/)
it <L, [)xm] = (wl*) [asum]
Compute the derivatives of the loss wrt the parameters.
e R L N - R P
ow) || — [ 9s) ab os()

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 9/11



Forward pass
Compute the activations.

0)

xO =x vi=1,...

Backward pass

Compute the derivatives of the loss wrt the activations.

[%} from the definition of 7 ¢ ¢
o (5(/)>
T or as(l) dx(/)
it <L, [) (/J] = (wl*) [asum]
Compute the derivatives of the loss wrt the parameters.

Y 00 1 T {BK}:[E)K]
[{aw“)ﬂ - {asm] (X( )) ab(h) s

Gradient step

Update the parameters.

ot or
() n _ (/) (n _
w'\' «— w n |:|:0W(I):|:| b\« b n{ab(’)}

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 9/11



In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Francois Fleuret EE-550 — Deep learning / 3.6. Back-propagation 10 /11



Regarding computation, since the costly operation for the forward pass is

s — (=1 4 )

and for the backward

or T[ o
_ (I+1)
{ax(l)} - (W ) {as(m)}

ot ot T
0 1[92 | (-
[[aw(/)ﬂ - {as(o} (X ) :

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 1 /11



The end



