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�/�#QQbi U6`2mM/ �M/ a?�TB`2 RNNeV

G2 i2`K2 /2 #QQbiBM; pB2Mi /2 HǶB/û2 /2 Ǵ#QQbi2`Ǵ mM �H;Q`Bi?K2- �
T`BQ`B T2m T2`7Q`K�Mi @ 7�B#H2- TQm` 2M 7�B`2 mM �H;Q`Bi?K2 7Q`iX

�ii2MiBQM PM b2 +QM+2Mi`2 B+B bm` H2 +�b /2 H� /Bb+`BKBM�iBQM #BM�B`2X

_2T`ûb2Mi�iBQM b+?ĕK�iB[m2 /2 HǶ�H;Q`Bi?K2 �/�#QQbi

ú+?�MiBHHQM BMBiB�H → φ̂R
↓

ú+?�MiBHHQM TQM/û`û → φ̂k
↓
XXX

ú+?�MiBHHQM TQM/û`û → φ̂B

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

φ = bB;M2
( B∑

b=R
αbφb

)
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�H;Q`Bi?K2 �/�#QQbi
BMTmi , φdw �H;Q`Bi?K2 7�B#H2 +�H+mH�#H2 bm` HǶû+?�MiBHHQM dn

R TQM/û`û
T�` w , dw

#2;BM
AMBiB�HBb2` ηy(x) 2i wR

i = R/n TQm` iQmi i c
7Q` b = R- X X X -B /Q

*�H+mH2` φb = φdwb c
*�H+mH2` εb =

∑n
i=R w

b
i Ryi!φb(xi) TmBb αb = R

k HM
( R−εb

εb

)
c

J2ii`2 ¨ DQm` η̂b4 η̂b−R + αbφb c
J2ii`2 ¨ DQm` H2b TQB/b wb+R

i = wb
i e

kαbRYi!φb(xi) c
_2MQ`K�HBb2` H2b TQB/b TQm` [m2

∑n
i=R w

b+R
i = R

2M/
QmiTmi , η̂B(x)

2M/
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_2K�`[m2b

! G� T`2KBĕ`2 ûi�T2 /2 HǶ�H;Q`Bi?K2 Mû+2bbBi2 mM �H;Q`Bi?K2 7�B#H2
TQmp�Mi āi`2 BKTHûK2Miû bm` mM û+?�MiBHHQM TQM/û`ûX .�Mb H2 +�b
+QMi`�B`2- QM �TTHB[m2 HǶ�H;Q`Bi?K2 bm` mM û+?�MiBHHQM iB`û �p2+
`2KBb2 /�Mb HǶû+?�MiBHHQM /2 /ûT�`i b2HQM H2b TQB/b pQmHmbX

! � +?�[m2 ûi�T2- H2 TQB/b /2 HǶQ#b2`p�iBQM i MǶ2bi �m;K2Miû2 [m2 bB
HǶQ#b2`p�iBQM 2bi K�H +H�bbû2X �BMbB HǶ�H;Q`Bi?K2 7�B#H2 2bi 7Q`+û ¨ b2
+QM+2Mi`2` bm` H2b Q#b2`p�iBQM /B{+BH2b ¨ +H�bb2`X

! G2 TQB/b αb /2 HǶ�H;Q`Bi?K2 φb �m;K2Mi2 �p2+ H� T2`7Q`K�M+2 /2
φb K2bm`û2 bm` HǶû+?�MiBHHQM , αb �m;K2Mi2 HQ`b[m2 εb /BKBMm2X
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What is Gradient Boosting

Gradient Boosting = Gradient Descent + Boosting

Gradient Boosting

I Fit an additive model (ensemble)
P

t ⇢tht(x) in a forward
stage-wise manner.

I In each stage, introduce a weak learner to compensate the
shortcomings of existing weak learners.

I In Gradient Boosting,“shortcomings” are identified by
gradients.

I Recall that, in Adaboost,“shortcomings” are identified by
high-weight data points.

I Both high-weight data points and gradients tell us how to
improve our model.



What is Gradient Boosting

Why and how did researchers invent Gradient Boosting?



A Brief History of Gradient Boosting

I Invent Adaboost, the first successful boosting algorithm
[Freund et al., 1996, Freund and Schapire, 1997]

I Formulate Adaboost as gradient descent with a special loss
function[Breiman et al., 1998, Breiman, 1999]

I Generalize Adaboost to Gradient Boosting in order to handle
a variety of loss functions
[Friedman et al., 2000, Friedman, 2001]



Gradient Boosting for Regression

Gradient Boosting for Di↵erent Problems
Di�culty:
regression ===> classification ===> ranking



Gradient Boosting for Regression

Let’s play a game...
You are given (x1, y1), (x2, y2), ..., (xn, yn), and the task is to fit a
model F (x) to minimize square loss.
Suppose your friend wants to help you and gives you a model F .
You check his model and find the model is good but not perfect.
There are some mistakes: F (x1) = 0.8, while y1 = 0.9, and
F (x2) = 1.4 while y2 = 1.3... How can you improve this model?
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Gradient Boosting for Regression

Let’s play a game...
You are given (x1, y1), (x2, y2), ..., (xn, yn), and the task is to fit a
model F (x) to minimize square loss.
Suppose your friend wants to help you and gives you a model F .
You check his model and find the model is good but not perfect.
There are some mistakes: F (x1) = 0.8, while y1 = 0.9, and
F (x2) = 1.4 while y2 = 1.3... How can you improve this model?
Rule of the game:

I You are not allowed to remove anything from F or change any
parameter in F .

I You can add an additional model (regression tree) h to F , so
the new prediction will be F (x) + h(x).



Gradient Boosting for Regression

Simple solution:
You wish to improve the model such that

F (x1) + h(x1) = y1

F (x2) + h(x2) = y2

...

F (xn) + h(xn) = yn
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Gradient Boosting for Regression

Simple solution:
Or, equivalently, you wish

h(x1) = y1 � F (x1)

h(x2) = y2 � F (x2)

...

h(xn) = yn � F (xn)

Can any regression tree h achieve this goal perfectly?
Maybe not....
But some regression tree might be able to do this approximately.
How?
Just fit a regression tree h to data
(x1, y1 � F (x1)), (x2, y2 � F (x2)), ..., (xn, yn � F (xn))
Congratulations, you get a better model!



Gradient Boosting for Regression

Simple solution:
yi � F (xi ) are called residuals. These are the parts that existing
model F cannot do well.
The role of h is to compensate the shortcoming of existing model
F .
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applied to test data as well.



Gradient Boosting for Regression

Simple solution:
yi � F (xi ) are called residuals. These are the parts that existing
model F cannot do well.
The role of h is to compensate the shortcoming of existing model
F .
If the new model F + h is still not satisfactory, we can add another
regression tree...
We are improving the predictions of training data, is the procedure
also useful for test data?
Yes! Because we are building a model, and the model can be
applied to test data as well.
How is this related to gradient descent?



Gradient Boosting for Regression

Gradient Descent
Minimize a function by moving in the opposite direction of the
gradient.

✓i := ✓i � ⇢
@J

@✓i

Figure: Gradient Descent. Source:
http://en.wikipedia.org/wiki/Gradient_descent

http://en.wikipedia.org/wiki/Gradient_descent


Gradient Boosting for Regression

How is this related to gradient descent?
Loss function L(y ,F (x)) = (y � F (x))2/2
We want to minimize J =

P
i L(yi ,F (xi )) by adjusting

F (x1),F (x2), ...,F (xn).
Notice that F (x1),F (x2), ...,F (xn) are just some numbers. We can
treat F (xi ) as parameters and take derivatives

@J

@F (xi )
=

@
P

i L(yi ,F (xi ))

@F (xi )
=

@L(yi ,F (xi ))

@F (xi )
= F (xi )� yi

So we can interpret residuals as negative gradients.

yi � F (xi ) = � @J

@F (xi )



Gradient Boosting for Regression

How is this related to gradient descent?

F (xi ) := F (xi ) + h(xi )

F (xi ) := F (xi ) + yi � F (xi )

F (xi ) := F (xi )� 1
@J

@F (xi )

✓i := ✓i � ⇢
@J

@✓i



Gradient Boosting for Regression

How is this related to gradient descent?
For regression with square loss,

residual , negative gradient

fit h to residual , fit h to negative gradient

update F based on residual , update F based on negative gradient
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So we are actually updating our model using gradient descent!



Gradient Boosting for Regression

How is this related to gradient descent?
For regression with square loss,

residual , negative gradient

fit h to residual , fit h to negative gradient

update F based on residual , update F based on negative gradient

So we are actually updating our model using gradient descent!
It turns out that the concept of gradients is more general and
useful than the concept of residuals. So from now on, let’s stick
with gradients. The reason will be explained later.



Gradient Boosting for Regression

Regression with square Loss
Let us summarize the algorithm we just derived using the concept
of gradients. Negative gradient:

�g(xi ) = �@L(yi ,F (xi ))

@F (xi )
= yi � F (xi )

start with an initial model, say, F (x) =
Pn

i=1 yi
n

iterate until converge:
calculate negative gradients �g(xi )
fit a regression tree h to negative gradients �g(xi )
F := F + ⇢h, where ⇢ = 1



Gradient Boosting for Regression

Regression with square Loss
Let us summarize the algorithm we just derived using the concept
of gradients. Negative gradient:

�g(xi ) = �@L(yi ,F (xi ))

@F (xi )
= yi � F (xi )

start with an initial model, say, F (x) =
Pn

i=1 yi
n

iterate until converge:
calculate negative gradients �g(xi )
fit a regression tree h to negative gradients �g(xi )
F := F + ⇢h, where ⇢ = 1

The benefit of formulating this algorithm using gradients is that it
allows us to consider other loss functions and derive the
corresponding algorithms in the same way.



Gradient Boosting for Regression

Loss Functions for Regression Problem
Why do we need to consider other loss functions? Isn’t square loss
good enough?



Gradient Boosting for Regression

Loss Functions for Regression Problem
Square loss is:

X Easy to deal with mathematically

⇥ Not robust to outliers
Outliers are heavily punished because the error is squared.
Example:

yi 0.5 1.2 2 5*
F (xi ) 0.6 1.4 1.5 1.7

L = (y � F )2/2 0.005 0.02 0.125 5.445
Consequence?



Gradient Boosting for Regression

Loss Functions for Regression Problem
Square loss is:

X Easy to deal with mathematically

⇥ Not robust to outliers
Outliers are heavily punished because the error is squared.
Example:

yi 0.5 1.2 2 5*
F (xi ) 0.6 1.4 1.5 1.7

L = (y � F )2/2 0.005 0.02 0.125 5.445
Consequence?
Pay too much attention to outliers. Try hard to incorporate
outliers into the model. Degrade the overall performance.



Gradient Boosting for Regression

Loss Functions for Regression Problem

I Absolute loss (more robust to outliers)

L(y ,F ) = |y � F |
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Gradient Boosting for Regression

Loss Functions for Regression Problem

I Absolute loss (more robust to outliers)

L(y ,F ) = |y � F |

I Huber loss (more robust to outliers)

L(y ,F ) =

(
1
2(y � F )2 |y � F |  �

�(|y � F |� �/2) |y � F | > �

yi 0.5 1.2 2 5*
F (xi ) 0.6 1.4 1.5 1.7

Square loss 0.005 0.02 0.125 5.445
Absolute loss 0.1 0.2 0.5 3.3

Huber loss(� = 0.5) 0.005 0.02 0.125 1.525



Gradient Boosting for Regression

Regression with Absolute Loss
Negative gradient:

�g(xi ) = �@L(yi ,F (xi ))

@F (xi )
= sign(yi � F (xi ))

start with an initial model, say, F (x) =
Pn

i=1 yi
n

iterate until converge:
calculate gradients �g(xi )
fit a regression tree h to negative gradients �g(xi )
F := F + ⇢h



Gradient Boosting for Regression

Regression with Huber Loss
Negative gradient:

�g(xi ) = �@L(yi ,F (xi ))

@F (xi )

=

(
yi � F (xi ) |yi � F (xi )|  �

�sign(yi � F (xi )) |yi � F (xi )| > �

start with an initial model, say, F (x) =
Pn

i=1 yi
n

iterate until converge:
calculate negative gradients �g(xi )
fit a regression tree h to negative gradients �g(xi )
F := F + ⇢h



Gradient Boosting for Regression

Regression with loss function L: general procedure
Give any di↵erentiable loss function L

start with an initial model, say F (x) =
Pn

i=1 yi
n

iterate until converge:

calculate negative gradients �g(xi ) = �@L(yi ,F (xi ))
@F (xi )

fit a regression tree h to negative gradients �g(xi )
F := F + ⇢h
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#QQbiBM; `û;mH�`Bbû TQm` H2b �`#`2b /2 `û;`2bbBQM
BMTmi , d , T`Q7QM/2m` /2 HǶ�`#`2-

B , MQK#`2 /Ƕ�`#`2b-
λ ∈ (y- R] T�`�Kĕi`2 /2 `û;mH�`Bb�iBQM

#2;BM
6Bt2` η(x) = y 2i ri = yi TQm` iQmi i /2 HǶ2Mb2K#H2 /Ƕ2Mi`�BM2K2MiX c
7Q` b = R- X X X -B /Q

�Dmbi2` mM �`#`2 ηb ¨ d Mƾm/b BMi2`M2b TQm` T`û/B`2 H2b ri �p2+ xi c
J2ii`2 ¨ DQm` η , η(x)← η(x) + ληb(x) c
J2ii`2 ¨ DQm` H2b `ûbB/mb ri ← ri − ληb(xi) c

2M/
QmiTmi , η(x) =

∑B
b=R λη

b(x)
2M/
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! G� };m`2 T`û+û/2Mi2 T`ûb2Mi2 H2b `ûbmHi�ib /m #QQbiBM; 2i /2
`�M/QK 7Q`2bi bm` H2 D2m /2 /QMMû2b /Ƕ2tT`2bbBQM /2 ;ĕM2b

! GǶ2``2m` /2 i2bi 2bi `2T`ûb2Miû2 2M 7QM+iBQM /m MQK#`2b /Ƕ�`#`2bX
SQm` H2b /2mt KQ/ĕH2b �Dmbiûb T�` #QQbiBM;- λ = yXyRX G2b �`#`2b
/2 T`Q7QM/2m` R #�ii2Mi Hû;ĕ`2K2Mi +2mt /2 T`Q7QM/2m` k- K�Bb
iQmb /2mt bQMi K2BHH2m`b [m2 H2b 7Q`āib �Hû�iQB`2bX UGǶ2``2m`
bi�M/�`/ bm` +2 i�mt /2 K�mp�Bb2 +H�bbB}+�iBQM 2biBKû 2bi /2 yXyk-
/2 i2HH2 bQ`i2 [m2 H� /Bzû`2M+2 MǶ2bi T�b i`ĕb bB;MB}+�iBp2VX

! G� K2BHH2m`2 2``2m` /2 i2bi �p2+ mM b2mH �`#`2 2bi /2 k9W
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�Dmbi2K2Mi /2 B TQm` �/�#QQbi 2i p�`B�Mi2b , +QKT`QKBb #B�Bbfp�`B�M+2
GQ`b[m2 B �m;K2Mi2- H2 #B�Bb /2 HǶ�H;Q`Bi?K2 /BKBMm2- K�Bb H� p�`B�M+2
�m;K2Mi2X aQM `Bb[m2 /BKBMm2 /QM+ /�Mb mM T`2KB2` i2KTb- TmBb
�m;K2Mi2 /�Mb mM b2+QM/ i2KTbX G2 +?QBt QTiBK�H /2 B +Q``2bTQM/
/QM+ �m K2BHH2m` +QKT`QKBb #B�Bbfp�`B�M+2 5
" +?QBt T�` p�HB/�iBQM +`QBbû2X
Lû�MKQBMb- �/�#QQbi `ûbBbi2 #B2M 2KTB`B[m2K2Mi ¨ HǶQp2`}iiBM;X

�Dmbi2K2i /2 B 2i λ TQm` H2 :`�/B2Mi #QQbiBM; `û;mH�`Bbû
G2b +?QBt /2 B 2i λ bQMi HBûb , bB λ �m;K2Mi2 H2 B QTiBK�H /BKBMm2 2i
BMp2`b2K2MiXXX .2 i`ĕb T2iBi2b p�H2m`b /2 λ T2mp2Mi Mû+2bbBi2`
HǶ�Dmbi2K2Mi /2 MQK#`2mt �`#`2bX

G2 MQK#`2 /2 Mƾm/b BMi2`M2b dX AH +QMi`ƬH2 H� +QKTH2tBiû /2b ûHûK2Mib
�DQmiûbX aQmp2Mi- d = R 2bi mM2 #QMM2 p�H2m`- �m[m2H +�b HǶ�`#`2 2bi 2M
7Q`K2 /2 [m2m2 /2 +2`Bb2 UmM2 bûT�`�iBQMV
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