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Motivation of the study

Propagation of waves in large spaces.

Mesh adaptation would follow the wave propagation.

Adjoint-based adaptation criterion will concentrate on zone of
interest for a chosen functional output.

An accurate approximation scheme needs be chosen.

2 Approximation and metrics



Scope of the talk

1. CENO2 Scheme

2. Error analysis
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5. Numerical experiments

6. Concluding remarks
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1. CENO2 Scheme (1)

Vertex, dual cell, 2-exact Central-ENO* quadratic reconstruction

Given ūi on on each cell i of centroid Gi , find the ci,α, |α| ≤ 2 s.t.

R0
2 ūi (x) = ūi +

∑
|α|≤2

ci,α[(X − Gi )
α −

∫
Celli

(X − Gi )
αdx]

R0
2 ū =

∫
Celli

R0
2 ūi,idx = ui

∑
j∈N(i)

(R0
2 ūi,j − uj)

2 = Min .

* after C. Groth.

4 Approximation and metrics



1. CENO2 Scheme (1)

Variational statement of discrete CENO2 scheme

B(u, v) =

∫
Ω
v∇ · F(u) dΩ ; F (u, v) =

∫
Γ
vFΓ(u) dΓ,

Find u ∈ V such that B(u, v) = F (u, v) ∀ v ∈ V.

V0 = {v0,V0|Celli = const ∀ i}

CENO discrete statement:

Find u0 ∈ V0 such that B(R0
2u0, v0) = F (R0

2u0, v0) ∀ v0 ∈ V0
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1. CENO2 Scheme (2)

2-exact flux integration

The integral on a cell interface Cij = Ci ∩ Cj is split into the
integrals on the two segments of Cij .

On each segment C
(1)
ij and C

(2)
ij a numerical integration with two

Gauss points (two Riemann solvers) is applied.
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1. CENO2 Scheme (4)

Computational accuracy

The scheme is third order accurate when combined with a
third-order time advancing (RK3).

The Quadratic-CENO scheme involves a fourth-order dissipation
with ∆x3 weight term,i.e. of same order as for a MUSCL
second-order scheme.

The number of Riemann solvers to compute is 4 times larger than
for a MUSCL second-order scheme.
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CENO2 is too dissipative

A test case: C.Tam’s test for linear acoustics

[Ouvrard-Kozubskaya-Abalakin-Koobus-Dervieux, INRIA Rep. 2009]

- 12 ∆x per bandwidth, three types of mesh.

- black: MUSCLV6 scheme, Blue: the present CENO2 scheme.

Mesh1 Mesh1 Mesh2 Mesh2 Mesh3 Mesh3
L1 L2 L1 L2 L1 L2

1.3045D-3 2.8561D-3 1.2786D-3 2.6318D-3 3.1097D-3 5.9216D-3
1.5189D-4 3.4010D-4 3.7384D-4 2.6318D-3 6.7626D-4 1.4598D-3
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1. CENO2 Scheme (3)

Computational accuracy

A variant of the Quadratic-CENO scheme uses:

- central differencing for the Gauss points integration instead of a
Riemann solver and

- an added 6-th order dissipation in order to ensure some
robustness.

From left to right: basic CENO2, centered CENO2, new CENO2 schemes.

Exact solution, Numerical solution.
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2. A priori error analysis (1)

Cf. A posteriori analysis for a large set of p-order
reconstruction-based Godunov methods: Barth-Larson 2002.

Find u0 ∈ V0 such that B(R0
pu0, v0) = F (R0

pu0, v0) ∀ v0 ∈ V0

j(u) = (g , u): scalar output. δj = (g ,R0
pπ0u − R0

pu0).

The adjoint state u∗0 ∈ V0 is the solution of:

∂(B − F )

∂u
(R0

pu0)(R0
pv0, u

∗
0) = (g ,R0

pv0), ∀ v0 ∈ V0.

We also need to define the projection π0:

π0 : (V )→ (V0), v 7→ π0v∀ Ci , dual cell, π0v |Ci
=

∫
Ci

vdx .
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2. A priori error analysis (2)

Simpler case:

B is bilinear, F is linear, for example:
B(u, v) =

∫
Ω
vdivVudΩ +

∫
Γ
uvV · ndΓ and F (v) =

∫
Γ
uBvV · ndΓ.

B(v , u∗0 ) = (g , v) (discr.adj. eq.)
B(R0

pu0, v) = F (v) (discr.state eq.)
B(u, v) = F (v) (cont.state eq.)

⇒

(g ,R0
pπ0u − R0

pu0) = B(R0
pπ0u − R0

pu0, u
∗
0 ) (discr.adj. eq.)

≈ B(R0
pπ0u, u

∗
0 )− B(R0

pu0, u
∗
0 )

≈ B(R0
pπ0u, u

∗
0 )− F (u∗0 ) (discr.state eq.)

≈ B(R0
pπ0u, u

∗
0 )− B(u, u∗0 ) (cont.state eq.)

≈ B(R0
pπ0u − u, u∗0 )

The error is directly expressed in terms of the reconstruction error for
exact solution, essentially the rest of a Taylor formula.
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2. A priori error analysis (3)

Unsteady Euler: W = (ρ, ρu, ρv , ρE )

For the case of Euler eqs, we get after some calculations:

|B(R0
pπ0W −W ,W ∗

0 )| ≈≤

2

∫
Ω

∑
q

Kq(W ,W ∗)|G (u
(p+1)
q , (δx)p+1)| dΩ

with (uq)q=1,8 = (W ,Wt) .
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3. Optimal metric (1)

The parametrization of the mesh is a Riemannian metric defined in
each point x of the computational domain by a symmetric matrix,

M(x) = R(x)Λ̄(x)Rt(x) = dMR(x)Λ(x)Rt(x).

• R = (eξ, eη) is the rotation matrix built with the normalised
eigenvectors of M, parametrises the two orthogonal stretching
directions of the metric.

• Λ̄ is a 2× 2 diagonal matrix with eigenvalues λ̄1 = (mξ)
−2 and

λ̄2 = (mη)−2 where mξ and mη represent the two directional local
mesh sizes in the characteristic/stretching directions of M.

• Λ is the diagonal matrix with eigenvalues λ1 = mη/mξ and
λ2 = mξ/mη and det Λ = 1.

• dM = m−1
ξ m−1

η is the node density.
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3. Optimal metric (2)

Given a metric or -somewhat equivalently- a mesh described by it,
we modelise the quadratic interpolation error like in the
communication of Mbinky et al.:

|uq(x)− πpuq(x)| =

(
|∂

p+1uq

∂τp+1
q

|
2
p (δτMq )2 + |∂

p+1uq

∂np+1
q

|
2
p (δnMq )2

) p
2

=
(
trace(M−1/2SqM−1/2)

) p
2
.

For the MUSCL scheme, p=1:

|uq(x)− π1uq(x)| = |∂
p+1uq

∂τp+1
q
|(δτMq )2 + |∂

p+1uq

∂np+1
q
|(δnMq )2

For the CENO2 scheme, p=2:

|uq(x)− π2uq(x)| =
(
|∂

3uq
∂τ3

q
|

2
3 (δτMq )2 + |∂

3uq
∂n3

q
|

2
3 (δnMq )2

) 3
2
.
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3. Optimal metric (3)

After the a priori analysis, we have to minimise the following error:

E =

∫ ∑
q

Kq(W ,W ∗)
(
trace(M−1/2SqM−1/2)

) p
2

dxdy

=

∫ (
trace(M−1/2SM−1/2)

) p
2

dxdy

=

∫
d
− p

2
M

(
trace(RMΛMRT

M)−
1
2 |S |(RMΛMRT

M)−
1
2 )
) p

2
dxdy

with constraint

∫
dM dxdy = N.

Optimal solution:

∀ x :S = RS Λ̄SRT
S ⇒ RMopt = RS , ΛMopt = Λ̄−1

S /det(S)

det(S)
p
2 (dMopt )

− p+1
2 = const.

⇒ dMopt = N (
∫
det(S)

p+1
p+3 dxdy)−1det(S)

2
p+1
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4. Resolution of optimum, unsteady case

The continuous model giving the adapted mesh involves a state system,

an adjoint system and the optimality relation giving Mopt .

We discretise it.

The time discretisation of the metric is made of coarser time intervals.

We solve it.

... by the Global Unsteady Fixed Point algorithm of Belme et al..
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5. Numerical experiments

We present a first series of experiments where the propagation of
an acoustical perturbation is followed by the mesh adaptator in
order to minimise the mesh effort.

1 Noise wall problem

2 Difraction problem
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5. Numerical experiments: Noise wall problem (1)

Propagation of an acoustic wave
from a source while observing the
impact on the detector.

Acoustic source :

r = −Ae−Bln(2)[x2+y2]cos(2πf ).

Functional:

j(W ) =

∫ T

0

∫
M

1

2
(p−pair )2dMdt.
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5. Numerical experiments: Noise wall problem (2)

Density field evolving in time on uniform mesh (line 1), adapted one (middle

line), with corresponding adapted meshes (last line):
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5. Numerical experiments: Noise wall problem (3)

Scalar output comparaison : MUSCL (-) vs CENO (—) schemes.
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5. Numerical experiments: Difraction problem (1)

The difraction of an acoustic
wave travelling from a source lo-
cation to a detector situated in a
small region under the ”step”.

Acoustic source :

r = −Ae−Bln(2)[x2+y2]cos(2πf ).

Functional:

j(W ) =

∫ T

0

∫
M

1

2
(p−pair )2dMdt.
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5. Numerical experiments: Difraction problem (2)

Density field evolving in time on uniform mesh (line 1), adapted one (middle

line), with corresponding adapted meshes (last line):
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5. Numerical experiments: Difraction problem (3)

Our goal-oriented method ensures the accuracy of the
functional output j(W ) =

∫ T
0

∫
M

1
2 (p − pair )2dMdt.

It is thus interesting to analyse the integrand
k(t) =

∫
M

1
2 (p − pair )2dM of j(W ) on the micro M for

different sizes of uniform vs. adapted meshes.
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5. Numerical experiments: Difraction problem (4)

Functional time integrand calculation on different sizes of non-adapted meshes

(28K, 40K, 68K) vs. adapted meshes (mean sizes: 2620, 4892, 6130).
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The convergence order is found to be 0.6 for uniform meshes and 1.98 for the

adapted one.
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6. Concluding remarks (1)

A third-order (spatially) accurate goal-oriented mesh adaptation
method has been built on the basis of:

• The extension of Hessian analysis to higher order interpolation of
Mbinky et al..
• A novel a priori analysis.
• The Unsteady Global Fixed-Point mesh adaptation algorithm of
Belme et al. .

Numerical experiments are yet only 2D and at the very beginning.
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7. Concluding remarks (2)

Next studies will address:

• Steady test cases.
• Flows with singularities.
• 3D extension.
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