
Anisotropic Goal-oriented estimate

for a third-order accurate Euler model

A. Carabiasb, A. Belmeb, F. Alauzeta, A. Loseillea, A. Dervieuxb

aINRIA, Projet Gamma, Domaine de Voluceau, Rocquencourt, BP 105,
78153 Le Chesnay Cedex, France.

bINRIA, Projet Tropics, 2004 route des lucioles - BP 93,
06902 Sophia Antipolis Cedex, France

Abstract

Initially restricted to interpolation errors, a priori anisotropic goal-oriented error estimates have

become an efficient tool for addressing steady Euler flows [10], unsteady Euler flows [5],[6], and more

recently steady and unsteady Navier-Stokes ones [4]. Estimates are obtained for a second-order

mixed-element-volume approximation close to the usual P 1 finite element. Promises given by theory

were kept by numerical demonstrators, showing second-order convergence for shocked flows. The

theory also predicts higher-order convergence for the higher-order interpolation of singular flows.

For this, higher-order anisotropic estimates are needed. In this paper we consider a central-ENO

approximation for the Euler equations. The scheme is third-order accurate on irregular unstructured

meshes. The implicit error method is extended to this new context. The resulting a priori error

analysis is a kind of dual of the a posteriori analysis of Barth and Larson [3]. We exploit the

principal direction representation of Cao [7]. Then an optimum problem for the mesh metric is

obtained and analytically solved. The resulting mesh optimality system is discretised and solved

thanks to the global unsteady fixed point algorithm of [5]. The new method is applied to an acoustic

propagation benchmark and compared with previous approaches.
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1. Introduction

Initially restricted to interpolation errors, a priori anisotropic error estimates are available for

goal-oriented formulations, and have become an efficient tool for addressing steady Euler flows [10],

unsteady Euler flows [5], and more recently steady and unsteady Navier-Stokes ones [4]. The error

analysis followed the so-called implicit error method, dealing with a discrete invertible system for

the deviation between discrete solution and a projection of the continuous one. Estimates were
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obtained for a second-order mixed-element-volume approximation close to the usual P1 finite element.

Promises given by theory were kept by numerical demonstrators, showing second convergence for

shocked flows. The theory also predicts higher-order convergence for the higher-order interpolation

of singular flows. For their approximation by a higher-order scheme, anisotropic estimates are needed.

In this paper we consider a central-ENO approximation for the Euler equations. The scheme is

third-order accurate on irregular unstructured meshes. The implicit error method is extended to this

new context. The resulting a priori error analysis is a kind of dual of the a posteriori analysis of Barth

and Larson [3]. We exploit the principal direction representation of Cao [7]. Then an optimisation

problem for the mesh metric is obtained and analytically solved. For solving the resulting mesh

optimality system, we discretise it and apply the global unsteady fixed point algorithm of [5, 6].

The new method is applied to an acoustic propagation benchmark and compared with previous

approaches.

2. Numerical approximation

2.1. Model

The 2D Euler equations in a geometrical domain Ω of boundary Γ can be written:

Find u ∈ V such that

∫
Ω

v∇ · F(u) d Ω =

∫
Γ

vFΓ(u) d Γ ∀ v ∈ V . (1)

Here u = (u1, u2, u3, u4) holds for the conserved unknowns (density, moments components, energy)

and F for the usual Euler fluxes. As right-hand side we have an integral of the various boundary

fluxes FΓ for various boundary conditions, which we do not need to detail here. Defining

B(u, v) =

∫
Ω

v∇ · F(u) d Ω

and

Fu(v) =

∫
Γ

vFΓ(u) d Γ,

this writes:

Find u ∈ V such that B(u, v) = Fu(v) ∀ v ∈ V . (2)

2.2. CENO formulation

We choose a reconstruction-based finite-volume method, getting inspired by the unlimited version

of the reconstruction technique of Barth [2] and of Central-ENO (CENO) methods developed by
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Figure 1: Dual cell and two reconstruction molecules

Groth and co-workers, [9]. Concerning the location of nodes with respect to mesh elements, we

prefer to minimize the number of unknowns with respect to a given mesh and therefore we keep

the vertex-centered location already successfully used for second-order anisotropic (Hessian-based or

Goal-oriented) mesh adaptation. The considered numerical approximation is described in details in

[8]. Its main features are: (a) vertex centered, (b) dual median cells around the vertex, (c) a single

mean square conservative quadratic reconstruction for each dual cell (d) HLLC Riemann solver for

fluxes integration, (e) explicit multi-stage time-stepping.

The computational domain is divided in triangles and in a dual tesselation in cells, each cell Ci

being built around a vertex i, with limits following sections of triangle medians.

We define the discrete space V0 of functions that are constant on any dual cell Ci.

Let us define a reconstruction operator R0
2 which reconstructs a function of V0 in each cell Ci

under the form of a second-order polynomial:

R0
2u0|Ci = Pi(X).

Given the means (u0,i, i = 1, ...) of u0 on cells i of centroid Gi, find the ci,α, |α| ≤ k such that

Pi,i = u0,i

∑
j∈N(i)

(Pi,j − u0,j)
2 = Min

with

Pi(x) = u0,i +
∑
|α|≤k

ci,α[(X −Gi)
α − (X −Gi)α]

and where Pi,j stands for the mean of Pi(X) on cell j.

For the Euler model (2), the discrete CENO version writes:

Find u0 ∈ V0 such that B(R0
2u0, v0) = FR0

2u0
(v0) ∀ v0 ∈ V0

We observe that this produces a finite volume formulation:

∀Ci,
∫
∇ · F(R0

2u0) d Ω =

∫
∂Ci∩Γ

FΓ(R0
2u0) d Γ
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or:

∀Ci,
∫
∂Ci

F(R0
2u0) · n d Γ−

∫
∂Ci∩Γ

FΓ(R0
2u0) d Γ = 0. (3)

The knowledge of the reconstruction does not completely define the CENO approximation. In-

deed, the reconstruction performed in each cell is generally discontinuous at cell interfaces. In order

to fix an integration value at the interface, we can consider an arithmetic mean of the fluxes values

for the two reconstruction values:

F(R0
2u0)quadrature|∂Ci∩∂Cj · n =

1

2

(
F(R0

2u0)|∂Ci + F(R0
2u0)|∂Cj

)
· n (4)

where (R0
2u0)|∂Ci holds for the value at cell boundary of the reconstructed R0

2u0|Ci on cell Ci. The

above mean is applied on Gauss integration points (two per interface segment). This formulation

produces a central-differenced numerical approximation which is third order accurate, but it cannot

be used as it is in nonlinear applications, due to a lack of stability.

2.3. Vertex-centered low dissipation CENO2

Scheme (3) is usually combined with an approximate Riemann solver used instead of (4). This

latter option produces a rather dissipative third-order accurate scheme. Now we are here interested

only by rather mild non-linear effects. Scheme (3)(4) is instead stabilized as in [1], i.e completed

by two extra terms: the first term compensate partially the main dispersive error. The second one

introduces a sixth order dissipation. We refer to [1] for details and for numerical experiments showing

the interest of this new CENO2 variant.

3. Error analysis

We drive an a priori analysis which is in some manner the dual of the a posteriori analysis

proposed in [3]. Let be j(u) = (g, u) the scalar output which we want to accurately compute. We

concentrate the reduction by mesh adaption of the following error:

δj = (g,R0
2π0u−R0

2u0)

where g is function of L2(Ω). The adjoint state u∗0 ∈ V0 is the solution of:

∂B

∂u
(R0

2u0)(R0
2v0, u

∗
0) = (g,R0

2v0), ∀ v0 ∈ V0.
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We also need to define the projection π0:

π0 : (V )→ (V0),

v 7→ π0v

∀ Ci, dual cell, π0v|Ci =

∫
Ci

vdx.

Then we can write, successively:

(g,R0
2π0u−R0

2u0) = ∂B
∂u

(R0
2u0)(R0

2π0u−R0
2u0, u

∗
0) (adjoint eq.)

≈ B(R0
2π0u, u

∗
0)−B(R0

2u0, u
∗
0)

and then

(g,R0
2π0u−R0

2u0)

≈ B(R0
2π0u, u

∗
0)− FR0

2u0
(u∗0) (disc.state eq.)

≈ B(R0
2π0u, u

∗
0)−B(u, u∗0)− FR0

2u0
(u∗0) + Fu(u

∗
0) (cont.state eq.)

≈ ∂B
∂u

(u)(R0
2π0u− u, u∗0)− ∂F

∂u
(u).(R0

2π0u− u).(u∗0)

In this study, we do not consider the adaptation of boundary mesh and as in [10] we discard the

boundary terms. Then the case of Euler equations is written:

∂B

∂u
(u)(R0

2π0u− u, u∗0) ≈
∑
i

∫
Ci

u∗0∇ · F ′(u)(R0
2π0u− u)dx

where the sum applies for all dual cell Ci of the mesh. Noting that u0 is constant over each cell Ci,

we can transform the above with an integration by parts (again terms on ∂Ω are skipped):

∂B

∂u
(u)(R0

2π0u− u, u∗0) ≈ −
∑
i

∫
∂Ci

u∗0F ′(R0
2π0u− u) · n dσ.

Observing that two integrals are computed on each interface Cij separating two neighboring cells:

∂B

∂u
(u)(R0

2π0u− u, u∗0) ≈ −
∑
Cij

∫
∂Ci∩∂Cj

[(
u∗0F ′(R0

2π0u− u)
)
Ci
−
(
u∗0F ′(R0

2π0u− u)
)
Cj

]
· n dσ.

Even for u∗0 ≈ π0u
∗, with u∗ smooth, the discontinuity at interface of u∗0 is of order 1. By construction

of the higher order reconstruction, the discontinuity at interface of R0
2π0u− u is of higher order and

can be neglected. Then:

(
u∗0F ′(R0

2π0u− u)
)
Ci
−
(
u∗0F ′(R0

2π0u− u)
)
Cj
≈

1

2

[
(u∗0)Ci − (u∗0)Cj

] [(
F ′(R0

2π0u− u)
)
Ci

+
(
F ′(R0

2π0u− u)
)
Cj

]
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We shall show that R0
2π0u−u can be replaced by a smooth function of the local third derivatives

and local mesh size:

R0
2π0uq − uq ≈ G(u(3)

q , (δx)3), ∀ q = 1, 4,

and for each flux component (r = 1, 2)

F ′r(R0
2π0u− u) ≈

∑
q

F ′qr(G(u(3)
q , (δx)3)).

On the other side, the jump term u∗0|Ci − u∗0|Cj is a first derivative of u∗ times the distance between

the centroids of the two cells, or equivalently (at first-order) the vertices i and j. The integration of

this term over the section of interface ∂Ci ∩ ∂Cj is essentially the (double of the) area of the four

triangles delimited by i, j and the centroids of triangles havin ij as common side. The set of all

these triangles is a tessellation of the computationa domain. Then:

|δj| ≈ |∂B
∂u

(u)(R0
2π0u− u, u∗0)| ≈ 2

∑
q

∫
Ω

Kq(u, u
∗)|G(u(3)

q , (δx)3)| dΩ

with

Kq(u, u
∗) =

∑
r

|(F ′rq(u))∗||
∂u∗q
∂xr
|.

The error is expressed in terms of the δx), measuring local mesh size. We consider now a way to find

the mesh which minimizes this error.

Optimal metric

The parametrization of the mesh is a Riemannian metric defined in each point x = (x, y) of the

computational domain by a symmetric matrix,

M(x) = d R(x)Λ(x)Rt(x).

The rotation matrix R = (eξ, eη), built with the normalised eigenvectors eξ = (exξ , e
y
ξ) and eη =

(exη , e
y
η) ofM, parametrizes the two orthogonal stretching directions of the metric. Denoting mξ and

mη the two directional local mesh sizes in the characteristic/stretching directions of M, the mesh

density is d = (mξmη)
−1. Matrix Λ is a 2 × 2 diagonal one with eigenvalues λ1 =

mξ
mη

and λ2 = mη
mξ

.

It is also useful to identify the mesh sizes (δx, δy) in Cartesian directions:

δxM = (δxM, δyM) , δxM = exξmξ + exηmη , δyM = eyξmξ + eyηmη .
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In the continuous mesh methods (see for example [11]), the error in linear interpolation was modelled

by (we discard the constant):

|uq(x)− πM1 uq(x)| ≈ |∂
2uq
∂τ 2

q

|(δτq)2 + |∂
2uq
∂n2

q

|(δnq)2 = δxM|Huq |δxM

= trace(M− 1
2 |Huq |M− 1

2 ) (5)

where Huq is the Hessian of uq, and orthonormal directions τq = (τ qx , τ
q
y ) and nq = (nqx, n

q
y) are

eigrnvectors of this Hessian.

In [12] the authors propose a general statement for an interpolation of arbitrary degree generalizing

(5). Here, we follow their proposition by defining the error model for a quadratic reconstruction as

follows (for q = 1, 4):

|uq(x)− π2uq(x)| ≈
(
|∂

3uq
∂τ 3

q

|
2
3 (δτMq )2 + |∂

3uq
∂n3

q

|
2
3 (δnMq )2

) 3
2

.

where orthonormal directions τq = (τ qx , τ
q
y ) and nq = (nqx, n

q
y) can be computed from the Silvester

decomposition of the cubic term of Taylor formula for uq. Increments δτMq and δnMq are local mesh

size in these directions:

δτMq = τ qxδxM + τ qy δyM ; δnMq = nqxδxM + nqyδyM .

Then

|∂
3uq
∂τ 3

q

|
2
3 (δτq)

2 + |∂
3uq
∂n3
|
2
3 (δnq)

2 = (SqδxM, δxM)

with

Sq11 = (τ qx)2|∂
3uq
∂τ 3

q

|
2
3 + (nqx)

2|∂
3uq
∂n3
|
2
3

Sq12 = Sq21 = (τ qxτ
q
y )|∂

3uq
∂τ 3

q

|
2
3 + (nqxn

q
y)|
∂3uq
∂n3
|
2
3

Sq22 = (τ qy )2|∂
3uq
∂τ 3

q

|
2
3 + (nqy)

2|∂
3uq
∂n3
|
2
3

After the a priori analysis, we have to minimise the following error:

E =
∑
q=1,4

∫
Kq(u, u

∗)

(
|∂

3uq
∂n2

q

|
2
3 (δnq)

2 + |∂
3uq
∂τ 2

q

|
2
3 (δτq)

2

) 3
2

dxdy .

=

∫
(SδxM, δxM)

3
2 dxdy =

∫ (
trace(M− 1

2 |S|M− 1
2 )
) 3

2
dxdy.
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with

S11 =
∑
q=1,4

Kq(u, u
∗)

2
3 (τ qx)2|∂

3uq
∂τ 3

q

|
2
3 +

∑
q=1,4

Kq(u, u
∗)

2
3 (nqx)

2|∂
3uq
∂n3
|
2
3

S12 = S21 =
∑
q=1,4

Kq(u, u
∗)

2
3 (τ qxτ

q
y )|∂

3uq
∂τ 3

q

|
2
3 +

∑
q=1,4

Kq(u, u
∗)

2
3 (nqxn

q
y)|
∂3uq
∂n3
|
2
3

S22 =
∑
q=1,4

Kq(u, u
∗)

2
3 (τ qy )2|∂

3uq
∂τ 3

q

|
2
3 +

∑
q=1,4

Kq(u, u
∗)

2
3 (nqy)

2|∂
3uq
∂n3
|
2
3 . (6)

Matrix S(x) is a sum of symmetric positive definite matrices and so is it:

S(x) = RS(x)ΛS(x)Rt
S(x)

with eigenvectors nS and τ S and eigenvalues δnS and δτS .

Optimal metric. We know identify the optimal metric Mopt = Mopt(N) among those having a

prescribed total node number N which minimise the above error. We proceed as for the second-order

metric analysis, e.g. [10].

We observe that:∫ (
trace(M− 1

2 |S|M− 1
2 )
) 3

2
dxdy =

∫ (
trace(d−1

M(RMΛMRT
M)−

1
2 |S|(RMΛMRT

M)−
1
2 )
) 3

2
dxdy

We first prescribe, at each point x of the computational domain, the adapted metric eigenvectors

i.e. the representation of the direction of stretching of mesh, RMopt = (e
Mopt

ξ , e
Mopt
η ) as aligned with

the above error model, that is

e
Mopt

ξ = nS, eMopt
η = τ S.

Then, minimising the error at each point x of the computational domain for a prescribed density

dM, we derive that the best ratio of eigenvalues forM, i.e. the representation of mesh stretching or

anisotropy should be:

eMopt =
(δnS)−

1
2

(δτS)−
1
2

; ΛMopt = diag[e−1
Mopt

, eMopt ] .

Inside this restricted set of metrics, it remains to define the optimal metric density. Let us

consider the set of metrics with a total number of vertices prescribed to N :∫
d dxdy = N. (7)

We now have to minimise the L1 norm of the error

E(d) =

∫
d−

3
2 Γ(S) dxdy

Γ(S) =
(
trace((RMoptΛMoptRT

Mopt
)−

1
2 |S|(RMoptΛMoptRT

Mopt
)−

1
2 )
) 3

2
(8)
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with respect to d for a given number of nodes N . This means that:

E ′(d) · δd = 0 ∀ δd with

∫
δd dxdy = 0

which implies that the derivative of integrand in E is constant:

Γ(S)d−
5
2 = constant

and produces an optimal density

dopt =
N

C opt
(Γ(S))

2
5

with

Copt =

∫
(Γ(S))

2
5 dxdy.

This completes the definition of the optimal metric:

Mopt = doptRt
opt

 e−1
opt 0

0 eopt

Ropt.
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