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ABSTRACT

1 Introduction

Initially restricted to interpolation errors, a priori anisotropic error estimates are available for goal-
oriented formulations, and have become an efficient tool for addressing steady Euler flows [5], unsteady
Euler flows [3], and more recently steady and unsteady Navier-Stokes ones [?]. The error analysis
followed the so-called implicit error method, dealing with an invertible system for the deviation between
discrete solution and a projection of the continuous one. Estimates were obtained for a second-order
mixed-element-volume approximation close to the usual P1 finite element. Promises given by theory
were kept by numerical demonstrators, showing second convergence for shocked flows. The theory also
predicts higher-order convergenceExtended-PAPER.tex for the higher-order interpolation of singular
flows. For their approximation by a higher-order scheme, anisotropic estimates are needed.

In this paper we consider a central-ENO approximation for the Euler equations. The scheme is third-
order accurate on irregular unstructured meshes. The implicit error method is extended to this new
context. The resulting a priori error analysis is a kind of dual of the a posteriori analysis of Barth and
Larson [1]. We exploit the principal direction representation of Cao [7]. Then an optimalisation prob-
lem for the mesh metric is obtained and analytically solved. For solving the resulting mesh optimality
system, we discretise it and apply the global unsteady fixed point algorithm of [3].

The new method is applied to an acoustic propagation benchmark and compared with previous ap-
proaches.

2 Numerical approximation

2.1 Model

The 2D Euler equations in a geometrical domain Ω of boundary Γ can be written undExtended-
PAPER.texer a nonlinear advection model:

Find u ∈ V such that
∫

Ω
v∇ · F(u) d Ω =

∫
Γ
vFΓ(u) d Γ ∀ v ∈ V. (1)



Here u holds for the conserved unknowns (density, moments components, energy) and F for the usual
Euler fluxes. As right-hand side we have an integral of the various boundary fluxes FΓ for various
boundary conditions, which we do not need to detail here. Defining

B(u, v) =
∫

Ω
v∇ · F(u) d Ω

and
Fu(v) =

∫
Γ
vFΓ(u) d Γ,

this writes:

Find u ∈ V such that B(u, v) = Fu(v) ∀ v ∈ V. (2)

We can simplify in a first phase to a linear variant:

Extended− PAPER.texFind u ∈ V such that B(u, v) = F (v) ∀ v ∈ V (3)

in which B(u, v) is bilinear.

2.2 CENO formulation

We choose a reconstruction-based finite-volume method, getting inspired by the unlimited version of
the reconstruction technique of Barth [2] and of Central-ENO (CENO) methods developed by Groth
and co-workers, [6]. Concerning the location of nodes with respect to mesh elements, we prefer to min-
imize the number of unknowns with respect to a given mesh and therefore we keep the vertex-centered
location already successfully used for second-order anisotropic (Hessian-based or Goal-oriented) mesh
adaptation. The considered numerical approximation is described in [8]. Its main features are: (a) vertex
centered, (b) dual median cells around the vertex, (c) a single mean square conservative quadratic re-
construction for each dual cell (d) HLLC Riemann solver for fluxes integration, (e) explicit multi-stage
time-stepping.

The computational domain is divided in triangles and in a dual tesselation in cells, each cell Ci being
built around a vertex i, with limits following sections of triangle medians.

We define the discrete space V0 of functions that are constant on any dual cell Ci.

For an advection model written (3), the discrete CENO version writes:

Find u0 ∈ V0 such that B(R0
2u0, v0) = F (v0) ∀ v0 ∈ V0

We observe that this produces a finite volume formulation:

∀Ci,
∫
∇ · F(R0

2u0) d Ω =
∫
∂Ci∩Γ

FΓ(R0
2u0) d Γ

or:

∀Ci,
∫
∂Ci

F(R0
2u0) · n d Γ−

∫
∂Ci∩Γ

FΓ(R0
2u0) d Γ = 0. (4)

It remains to define R0
2. It is a reconstruction operator which reconstructs a function of V0 in each cell

Ci under the form of a second-order polynomial:

R0
2u0|Ci = P2(x, y).



According to the ENO principle, a mean square formula is applied from the dual cell averages around
the considered dual cell. The knowledge of this reconstruction does not completely define the above ap-
proximation. Indeed, the reconstruction performed in each cell is generally discontinuous at interfaces.
In order to fix an integration value at the interface, we can consider an arithmetic mean of the fluxes
values for the two reconstruction values:

F(R0
2u0)∗|∂Ci∩∂Cj

· n =
1
2
(
F(R0

2u0)|∂Ci
+ F(R0

2u0)|∂Cj

)
· n (5)

where (R0
2u0)|∂Ci

holds for the value at cell boundary of the reconstructed R0
2u0|Ci on cell Ci. This

formulation produces a central-differenced numerical approximation which is third order accurate, but
it cannot be used as it is in nonlinear applications, due to a lack of stability.

2.3 Vertex-centered low dissipation CENO2

Scheme (4) is usually combined with an approximate Riemann solver used instead of (5). This latter
option produces a rather dissipative third-order accurate scheme. Now we are here interested only by
rather mild non-linear effects. Scheme (4)(5) is then stabilised as in [9], i.e completed by two extra
terms: the first term compensate partially the main dispersive error. The second one introduces a six-th
order dissipation. We refer to [9] for details and for numerical experiments showing the interest of this
new CENO2 variant.

3 Error analysis

We drive an a priori analysis which is the dual of the a posteriori analysis proposed in [1]. Let beM(u)
the scalar output we want accurately compute. We shall concentrate the error reduction effort on the
following expression:

δM = M(R0
2π0u−R0

2u0).

The adjoint state u∗0 ∈ V0 is the solution of:

∂B

∂u
(R0

2u0)(R0
2v0, u

∗
0) = M(R0

2v0), ∀ v0 ∈ V0.

We also need to define the projection π0:

π0 : (V )→ (V0),
v 7→ π0v

∀ Ci, dual cell, π0v|Ci =
∫
Ci

vdx.

Then we can write, successively:

M(R0
2π0u−R0

2u0) = ∂B
∂u (R0

2u0)(R0
2π0u−R0

2u0, u
∗
0) (adjoint eq.)

≈ B(R0
2π0u, u

∗
0)−B(R0

2u0, u
∗
0)

≈ B(R0
2π0u, u

∗
0)− F (u∗0) (disc.state eq.)

≈ B(R0
2π0u, u

∗
0)−B(u, u∗0) (cont.state eq.)

≈ ∂B
∂u (u)(R0

2π0u− u, u∗0)

(6)



In the case of Euler equations, we have:

∂B

∂u
(u)(R0

2π0u− u, u∗0) ≈
∑
i

∫
Ci

u∗0∇ · F ′(u)(R0
2π0u− u)dx

where the sum applies for all dual cell Ci of the mesh. Noting that u0 is constant over each cell Ci, we
can transform the above with an integration by parts:

B(R0
2π0u− u, u∗0) ≈ −

∑
i

∫
∂Ci

u∗0F ′(R0
2π0u− u) · n dσ.

Observing that two integrals are computed on each interface Cij separating two neighboring cells:

B(R0
2π0u− u, u∗0) ≈ −

∑
Cij

∫
∂Ci∩∂Cj

[(
u∗0F ′(R0

2π0u− u)
)
Ci
−
(
u∗0F ′(R0

2π0u− u)
)
Cj

]
· n dσ.

Even for u∗0 ≈ π0u
∗, with u∗ smooth, the discontinuity at interface of u∗0 is of order 1. By construction

of the higher order reconstruction, the discontinuity at interface of R0
2π0u− u is of higher order. Then:(

u∗0F ′(R0
2π0u− u)

)
Ci
−
(
u∗0F ′(R0

2π0u− u)
)
Cj
≈

1
2
[
(u∗0)Ci − (u∗0)Cj

] [(
F ′(R0

2π0u− u)
)
Ci

+
(
F ′(R0

2π0u− u)
)
Cj

]
We shall show that R0

2π0u − u can be replaced by a smooth function of the local third derivatives and
local mesh size:

R0
2π0u− u ≈ G(u(3), (δx)3).

F ′(R0
2π0u− u) ≈ F ′(G(u(3), (δx)3)).

On the other side, the jump term u∗0|Ci − u∗0|Cj is a first derivative of u∗ times the distance between
the centroids of the two cells, or equivalently (at first-order) the vertices i and j. The integration of this
term over the section of interface ∂Ci ∩ ∂Cj is essentially the (double of the) area of the four triangles
delimited by i, j and the centroids of triangles havin ij as common side. The set of all these triangles is
a tessellation of the computationa domain. Then:

|B(R0
2π0u− u, u∗0)| ≈≤ 2

∫
Ω
K(u, u∗)|G(u(3), (δx)3)| dΩ

with
K(u, u∗) = |(F ′)∗||∇u∗|.

Optimal metric

The parametrization of the mesh is a Riemannian metric defined in each point x of the computational
domain by a symmetric matrix,M(x) = R(x)Λ(x)Rt(x).

R = (eξ, eη), the rotation matrix built with the normalised eigenvectors ofM, parametrises the two
orthogonal stretching directions of the metric.

Λ is a 2 × 2 diagonal matrix with eigenvalues λ1 = (mξ)−2 and λ2 = (mη)−2 where mξ and mη

represent the two directional local mesh sizes in the characteristic/stretching directions ofM.



Given a metric or -somewhat equivalently- a mesh described by it, we modelise the quadratic interpo-
lation error as follows:

|u(x)− P2u(x)| = |∂
3u

∂τ3
|(δτ)3 + |∂

3u

∂n3
|(δn)3 .

After the a priori analysis, we have to minimise the following error:

E =
∫
K(u, u∗)

(
|∂

3u

∂n3
|(δn)3 + |∂

3u

∂t3
|(δt)3

)
dxdy.

We proceed as for the second-order metric analysis, e.g. [5] and we get :

Mopt = doptRt
(
e−1
opt 0
0 eopt

)
R

with

dopt =
N

C

(
|K(u, u∗)uξξξ|e

3
2 + |K(u, u∗)uηηη|e−

3
2

) 2
5
,

with

eopt =
mξ

mη
=
(
|uηηη|+ ε

|uξξξ|+ ε

) 1
3

,

and with

C =
∫ (
|K(u, u∗)uξξξ|e

3
2 + |K(u, u∗)uηηη|e−

3
2

) 2
5
dxdy.

Preliminaries Results



References

[1] T.J. Barth and M.G. Larson. A-posteriori error estimation for higher order Godunov finite volume
methods on unstructured meshes. In Herbin and Kroner, editors, Finite Volumes for Complex
Applications III, pages 4163. Hermes Science Pub., London, 2002.

[2] T.J. Barth, “Recent developements of high-order k-exact reconstruction on unstructured meshes”,
AIAA Paper 93-0668, 1993.

[3] A. Belme, A. Dervieux and F. Alauzet, Goal-oriented anisotropic mesh adaptation for unsteady
flows, Proceeding ECCOMAS CFD Conference, Lisbon, june 2010.

[4] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error esti-
mates. Part 1: The recovery technique, I.J. Num. Meth. Eng., 33:7,1331-1364,1992.

[5] A. Loseille, A. Dervieux, P.J. Frey and F. Alauzet, “Achievement of global second-order mesh
convergence for discontinuous flows with adapted unstructured meshes”, AIAA paper 2007-4186,
Miami, FL, USA, June 2007.

[6] L. Ivan and C. P. T. Groth, High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh
Refinement , AIAA Paper 2007-4323, June 2007.

[7] Weiming Cao, An interpolation error estimate on anisotropic meshes in Rn and optimal metrics
for mesh refinement. SIAM J. Numer. Anal. 45 (2007), no. 6, 23682391.

[8] H. Ouvrard, T. Kozubskaya, I. Abalakin, B. Koobus, and A. Dervieux, Advective vertex-centered
recon- struction scheme on unstructured meshes. INRIA Research Report, RR-7033 (2009).

[9] A. Carabias , O. Allain, A. Dervieux. Dissipation and dispersion control of a quadratic-
reconstruction advection scheme, European Workshop on High Order Nonlinear Numerical Meth-
ods for Evolutionary PDEs: Theory and Applications, Trento, Italy, april 11-15, 2011.


