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ABSTRACT
We compare the performance of Cubic, Compound TCP,
HighSpeed TCP and Reno under a simple loss model, where
each packet is dropped with probability p. Modeling the
evolution of the congestion window with a Markov chain,
we can use efficient numerical algorithms to compute the
average window size (response function), the Coefficient of
Variation (CoV) of the window and the average throughput.
We find that, for smaller bandwidth delay products, Cubic
can have a similar throughput to Reno while for larger values
the throughput of all new versions is similar and larger than
Reno. The CoV of Cubic has a peak but it is otherwise the
smallest one. This peak corresponds with a sharp increase
in the response function.

1. INTRODUCTION
Throughout the years many studies have analyzed the per-

formance of TCP in different scenarios. Several of these
studies ([6, 8, 1] just to name a few) analyze the impact of
random losses. In the simplest form these losses are modeled
as a Bernoulli process: each packet is dropped with proba-
bility p and is independent of all the others. Clearly this loss
model is not very sophisticated and it is not necessarily the
most realistic one. Nonetheless it has been widely used in
the literature and, at least for TCP Reno, it does correctly
predict the performance in some cases (see, for example [8,
1]). Whether the same holds true for other versions of TCP
is currently an open question, to the best of our knowledge.
At the same time, thanks to its simplicity, we think that it
is a reasonable first step in analyzing the behavior of some
of the new versions of TCP.

In this work we are going to analyze different TCP ver-
sions under this loss model. In each case it is possible to use
a Markov chain to model the evolution of the congestion win-
dow immediately after a packet loss. Given that in a real
network the congestion window is always bounded by the
bandwidth-delay product plus the buffer size, it is realistic
to impose an upper bound on the window size. Furthermore,
as the window size is usually an integer, we can use a dis-
crete Markov chain with a finite number of states. Such a
chain can easily be analyzed with numerical algorithms even
for fairly large values of the maximum window size (that is
the number of states).

Using such a numerical approach has several advantages
over simulations. First of all, at least for smaller values of the
maximum window size, roughly less than 2000, finding the

steady state distribution of the Markov chain is much faster
than running simulations. Second, using the steady state
distribution of the Markov chain, one does not have to deal
with convergence issues. With simulations it is not always
easy to establish whether steady state has been reached, es-
pecially if it has to be done in an automatic way. As a fair
comparison between simulations and the Markov chain ap-
proach would require to find the shortest simulation time
needed to reach steady state we do not explicitly compare
the running time of the two approaches. While transient
phase and its duration can have significant practical conse-
quences we believe that it is also interesting to study the
steady state behavior, which should have the greatest influ-
ence on the performance of long-lived connections.

On the downside the Markov chain we have used only
models the evolution of the window if no timeouts occur.
But, as we are mainly interested in networks with large
bandwidth delay products, on average the window will be
fairly large, reducing the probability of timeouts. Also, the
computation time grows as the maximum windows size in-
creases and it depends on the protocol used. For example
Reno and Compound TCP require significantly more time
than Cubic and HighSpeed for values of the maximum win-
dow size around 6000. As both these protocols increment
the window by one (at least in some cases), the transition
matrix has more transitions than for HighSpeed and Cubic,
increasing the time required to compute it.

Clearly such a method cannot replace simulations but we
think that it can be a useful tool. Especially for analyzing
a wide range of conditions (like large intervals of the drop
probability) in order to establish the general behavior of
a certain protocol and potentially highlighting interesting
features that can be then analyzed, in greater details, with
simulations. We have used simulations ourselves in order to
check the results obtained with the Markov chain.

Building on our previous work about Compound TCP [2]
we extended it to include Cubic and HighSpeed TCP, as well
as Reno, used as a reference. While many other versions
have been proposed, like Fast TCP [12], H-TCP [9], Illinois
[7], and Scalable [5] just to name a few. We have chosen
Cubic and Compound because they are used by default, re-
spectively, in Linux and Windows Vista Server (Compound
is also included in Windows Vista client but it is not acti-
vated by default). HighSpeed TCP is used in some commer-
cial TCP accelerators, like those produced by Riverbed. Be-
cause of this we think these versions should have the largest
number of users and, as such, are of interest to network op-



erators, who, typically, do not have control over most of the
end systems but deal directly with the traffic, and conges-
tion, that they generate.

2. SYSTEM DESCRIPTION AND SOLUTION
METHODOLOGY

We consider a single, long-lived, TCP connection going
through a single bottleneck link, of capacity µ, where each
packet has the same probability (p) of being dropped. Let τ̃
be the Round Trip Time when the queue is empty (that is it
is the sum of all the propagation and processing delays). As
previously mentioned we are only considering integer values
of the congestion window w, corresponding to the number of
MSS (Maximum Segment Size) and we also assume that w
is upper bounded by wmax. This upper bound can represent
either the sum of the Round Trip Time and the buffer size
or the advertised window, whichever is smaller. In the re-
mainder of the paper we are going to consider two different
settings for wmax: one with“small”values (wmax = µτ̃+150),
corresponding to a buffer size of 150 MSS, and one with
“large” values (5000 MSS ≤ wmax ≤ 7000 MSS). The idea
behind large values is that we would like to know what
happens when wmax → ∞, which is often the case consid-
ered when talking about the TCP response function. As we
consider bandwidth delay products between 220 MSS and
1600 MSS, a value of wmax around 6000 MSS is not a very
good approximation of infinity but, as we will discuss later,
it is enough to highlight some interesting features of the
protocols under discussion.

As previously mentioned, we use a discrete Markov chain
to model the evolution of the congestion window immedi-
ately after a packet loss. Formally, let Xn be the value of
sending window after the n-th packet loss. Clearly for each
different TCP version the evolution of Xn will be different
but, in each case, it is possible to construct the transition
matrix of the Markov chain. To see why this is true consider
that, if we know the value of the window after the last packet
drop, we can construct the evolution of the window until the
next packet drop, as it only depends on how the window is
increased. As each packet is dropped with probability p we
can compute the probability that there will be n round trip
times before the next packet is dropped for any n ≥ 1.

As in [2], after we have computed the transition matrix
for Xn we use the ARPACK implementation of the Arnoldi
method to compute the steady state distribution of the Markov
chain Xn. From this it is possible to compute the average
window size, the throughput and the Coefficient of Variation
(CoV), see [2] for more details. The only difference with [2]
is that, in this work, we always measure time in seconds and
not in Round Trip Times. This is because Cubic does not in-
crement its window based on the number of round trip times
but on the number of seconds elapsed since the last packet
drop. The coefficient of variation is linked to the jitter expe-
rienced by the connections sharing the same bottleneck link,
as long as this model is applicable to more general settings
with multiple connections.

We have verified a subset of our results using ns-2 in the
same setting, that is with a single connection with no other
traffic and a constant packet drop probability p. The main
conclusion is that our model captures correctly the main
mechanisms of the protocols. Due to space constraints and
to the fact that the simulations share the same hypothesis

with the model we do not present these results.
As the Compound TCP sending window has two com-

ponents (congestion and delay) if one wants to model the
evolution of both components the number of states of the
Markov chain Xn increases significantly. One possible ap-
proach is to use a bi-dimensional Markov chain as we have
done in [2]. Another possible solution is to simplify the
model for Compound TCP and assume that the delay com-
ponent (wd) is always 0 after a packet loss. This assumption
does introduce an error given that the length of the “con-
stant window” phase of Compound TCP cannot be correctly
computed. At the same time this could have an impact only
when there is a significant number of packet drops during the
constant window phase: if most of the packets are dropped
before the constant window is reached, the value of wd is
uninfluential and if most of the packets are dropped during
the “Reno” phase (that is when the window is increased by
one each Round Trip Time) wd is indeed zero after a packet
drop. Comparing the results obtained with this approach to
those obtained with the bi-dimensional chain in [2] we have
concluded that the difference between the two approaches
is negligible. Even in the cases when there is a significant
number of packet drops during the constant window phase
the average window size is basically the same using the two
different Markov chains. This apparent independence of the
average window size from the length of the constant window
phase could be a consequence of our (simple) loss model;
but it might be worthwhile to investigate this further, as it
could lead to a simplified version of Compound TCP.

For Compound TCP we assume that the sender has a
perfect estimate of the queue size so that the value of the
window during the “constant window” phase is exactly θ ,
µτ̃ + γ (as suggested in [11] we set γ = 30 MSS). To the
best of our knowledge there are no definitive studies on the
robustness of the queue size estimate used by Compound,
which is the same estimate used by Vegas. While it is possi-
ble to construct cases in which this estimate performs poorly
it is not clear how frequent they are in reality. At the same
time one could argue that the Bernoulli losses unduly penal-
ize Cubic as this protocol uses the value of the window at the
last packet loss as the target value for the window. (Recall
that Cubic puts the inflection point of the cubic function
at this value, so that the window is quickly increased until
this value and then its growth rate is reduced until the max-
probing phase.) With Bernoulli losses such target value is
random with a potentially negative impact on Cubic’s per-
formance. While this is an unfortunate aspect of the loss
model, whenever one has to compare multiple protocols it is
not always easy to find a scenario which does not penalize,
or favor, any of the protocols. Comparing different TCP
versions is not an easy task and this study examines only
one specific case and it is by no means the definitive an-
swer. Even though it does have some limitations we think
that such a case is interesting and informative about the
behavior of the protocols considered.

One last comment about the Markov chain Xn is that
we do not model the TUBE algorithm for Compound [10]
nor Fast Convergence for Cubic. While it is possible to
model both by modifying the Markov chain this would lead
to a significant increase in the number of states, and hence
solution time. In both cases, given the random losses, we
think that the influence of these algorithms is negligible. We
have run a limited number of simulations with and without
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Figure 1: Average throughput for µτ̃ = 220 MSS
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Figure 2: Average throughput for µτ̃ = 800 MSS

these algorithms, without changing anything else, and the
steady state distribution of Xn did not change in any of
them.

3. NUMERICAL RESULTS

3.1 Average Throughput
We start by looking at the efficiency of the different pro-

tocols. Figures 1-3 show the average throughput for dif-
ferent values of the bandwidth delay product. In all cases
the bottleneck capacity is 100 Mbit/s which is equivalent
to 8333 MSS/s with packets of 1500 B and wmax = µτ̃ +
150 MSS. The Round Trip Time is 26.4 ms, 96 ms and 192 ms,
respectively. In each case the maximum throughput (i.e. the
capacity of the link) is achieved for sufficiently small drop
probabilities. Eventually, as p increases, the throughput de-
creases for all protocols, but this transition does not take
place for all the protocols at the same time. For example, for
µτ̃ = 220 MSS Compound and HighSpeed achieve a higher
throughput, that is they are more efficient, than Cubic and
Reno for larger values of p (in this case there is almost no
difference between Cubic and Reno). When µτ̃ = 800 MSS
Cubic is still fairly close to Reno, while for µτ̃ = 1600 MSS
it is very close to the other new versions. Recall that, as the
rate at which Cubic increases its window depends on real
time, these results are a function of the Round Trip Time
and not only of the bandwidth-delay product.
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Figure 3: Average throughput for µτ̃ = 1600 MSS
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Figure 4: The coefficient of variation for µτ̃ =
220 MSS

For p > 10−3 all the protocols behave in a similar way, this
is not too surprising given that Compound and HighSpeed
are designed to behave like Reno for small values of the
window. Similarly Cubic increases its window at least by
the same amount by which a Reno connection in the same
circumstances would increase its window. Note that it has
been reported in [4] that the end to end drop rate experience
by ADSL customers is normally between 10−4 and 10−3.

3.2 Coefficient of Variation of the Congestion
Window

The Coefficient of Variation (CoV) is defined as the ratio
between the standard deviation and the mean and it is re-
lated to the jitter experienced by the connection in question
as well as by other flows sharing the same bottleneck link.
Figures 4-6 show the CoV for the same settings used in the
previous section (3.1). When µτ̃ = 220 MSS for small loss
rates (roughly less than 10−5) all new versions of TCP have
a smaller values than Reno. For larger drop probabilities
Cubic has the smallest values while Compound has a peak:
this is probably due to the fact that Cubic adapts its target
value for the window (the inflection point of the cubic func-
tion) while Compound keeps quickly increasing the window
without reaching its target value of µτ̃ + γ (as suggested in
[11] we set γ = 30) causing larger oscillations of the window.

For larger bandwidth delay products, the general shapes
of the curves does not change much and they are all shifted
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Figure 5: The coefficient of variation for µτ̃ =
800 MSS
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Figure 6: The coefficient of variation for µτ̃ =
1600 MSS

to the left. The exception is Cubic, that has a peak around
p = 3 · 10−5 when µτ̃ = 800 MSS. (We will discuss this in
section 3.4.)

3.3 Impact of wmax on the Average Window Size
and CoV

In the previous two sections we have used wmax = µτ̃ +
150 MSS. In this section we investigate the influence of
larger values for this parameter. Figures 7 and 8 show the
average window size for wmax = 950 MSS and 6000 MSS, re-
spectively. In both cases the total propagation delay is 96 ms
and the capacity is 8333 MSS/s (µτ̃ = 800 MSS). Figure 8
shows how HighSpeed and Cubic reach wmax for larger drop
probabilities than Compound and Reno. As previously dis-
cussed, this is probably a consequence of our assumptions:
Bernoulli losses can adversely affect Cubic by randomizing
the target value for the window while, for Compound, we
assume that the sender has a perfect estimate of the queue
size so that the window will be equal to µτ̃ + γ during the
constant window phase. Figure 8 shows, as well, that Cu-
bic has a smaller average window than Compound for larger
drop probabilities, but the opposite is true for smaller drop
probabilities.

The fact that one protocol has a larger window than an-
other is sometimes rephrased as “one protocol is more ag-
gressive” than the other. In this case we could say that

10−7 10−6 10−5 10−4 10−3

p

102

103

w̄
/
M

S
S

CTCP

Cubic

HighSpeed

Reno

Figure 7: The average window size for µτ̃ = 800 MSS
with wmax = 950 MSS
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Figure 8: The average window size for µτ̃ = 800 MSS
with wmax = 6000 MSS

for certain drop probabilities Cubic is more aggressive than
Compound while the opposite is true for other values of p.
It might be worthwhile to point out that, as Cubic grows
its window based on real time while Compound uses round
trip times, it is not possible to establish which of the two
protocols has the larger average window (is more aggressive)
without knowing both the bandwidth and the propagation
delay. As we will discuss in section 3.4 Cubic response func-
tion depends both on the round trip time as well as on the
capacity and not only on the bandwidth delay product as
for Compound, Reno and HighSpeed.

Some care should be taken when in interpreting this “ag-
gressiveness:” even if two connections share the same bottle-
neck link it is not necessarily true that they will experience
the same drop rate. Therefore it not always appropriate
use the response function to predict what happens when
two connections share the same link, unless it is possible to
compute the drop probability for each protocol.

Figures 9 and 10 show the CoV for µτ̃ = 220 MSS and
µτ̃ = 1600 MSS with wmax = 5000 MSS and 7000 MSS re-
spectively. In both cases Cubic has a peak and its CoV is
not always the smallest one among all the protocols consid-
ered. (We did run several simulations to verify this results
and the height and location of the peak did correspond well
with the Markov chain results.) It is interesting to compare
this with what reported in [3]: using a different loss model
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Figure 9: The coefficient of variation for µτ̃ =
220 MSS with wmax = 5000 MSS

10−8 10−7 10−6 10−5 10−4 10−3

p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
V

CTCP

Cubic

HighSpeed

Reno

Figure 10: The coefficient of variation for µτ̃ =
1600 MSS with wmax = 7000 MSS

the authors conclude that Cubic has a smaller CoV than
other TCP versions. Note that, as we are using a different
loss model, these results do not contradict each other.

3.4 Compound and Cubic Response Functions
Traditionally the response function is defined as the av-

erage window size as a function of the drop probability,
where the average is computed measuring time in Round
Trip Times. This definition arose in the context of Reno
and other versions of TCP which increment the window once
each Round Trip Time. As Cubic increases its window based
on real time and not Round Trip Times we decided to al-
ways express time in seconds and compute the average win-
dow size using seconds and not Round Trip Times. Figure
11 shows the Compound response function for different val-
ues of the bandwidth delay product (with µ = 100 Mbit/s,
wmax = 5000 MSS and τ̃ = 26.4 ms, 96 ms, 192 ms). Com-
paring this figure with those in [2] it looks like that measur-
ing time in seconds or in Round Trip Times does not change
the response function significantly and that, for Compound,
the response function is only a function of the bandwidth
delay product.

For Cubic, instead, the response function depends on both
parameters. Figures 12 and 13 show the response function in
the case of constant capacity and constant round trip time,
respectively. Changing the bandwidth or the delay affects

10−6 10−5 10−4 10−3

p

102

103

w̄
/
M

S
S

µτ̃ = 220 MSS

µτ̃ = 800 MSS

µτ̃ = 1600 MSS

Figure 11: Compound w̄(t) for different values of µτ̃
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the response function in different ways. Due to space con-
straints we did not include the figure, but it is possible to
have different response functions for the same value of the
bandwidth delay product. It is interesting to note that, even
if Cubic uses real time to increase its window, the response
function does change when the round trip time changes (Fig-
ure 12).

In the case of µ = 100 Mbit/s and τ̃ = 26.4 ms the average
window size quickly decreases when p w 10−5. Figures 14
and 15 show w(t) (from a simulation) for p = 1.2 · 10−5

and p = 2.58 · 10−5, respectively. For the smaller value
of p, the window reaches wmax more often and the average
window size is larger as well. This also explains why the
CoV has a peak around these values of p. We have not
been able to explain why the behavior of Cubic changes so
rapidly for these values of the drop probability, nor we can
find the value of p for which this transition takes place. At
the same time this might be an issue worth investigating
further, as it clearly has non-negligible consequence on the
average window size and on the CoV.

4. CONCLUSIONS
We have used a Markovian model to compute the through-

put, average window size and CoV for different TCP ver-
sions, with Bernoulli losses. Such a method is, often, much
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Figure 14: The evolution of w(t) for Cubic with p =
1.2 · 10−5

more time efficient than simulations allowing us to cover
more scenarios. Among these we were somewhat surprised
to find that, in some cases, Cubic behaves similarly to Reno,
with a lower throughput than Compound and HighSpeed.
Also the CoV of the Cubic window has a peak, which is
more pronounced for larger values of the bandwidth delay
products and of wmax. As the response function of Cubic de-
pends both on the bandwidth as well as the delay (and not
only on their product as in the case of Compound, High-
Speed and Reno), it is not possible to say that “Cubic is
more aggressive than Compound” or vice-versa. Both cases
are possible and the answer also depends on the drop prob-
ability.

We believe that some of these aspects could be further
investigated but we did not find any glaring problem with
any of these protocols, which should be safe to use in most
cases. Finally it is worth pointing out that it should be
possible to modify the Markovian model in order to consider
different loss models. It should be possible to used any loss
model for which it is possible to compute the probability of
reaching a certain value of the window, knowing only the
value of the window right after the last packet drop.
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