
Oscillations of the Sending Window in

Compound TCP

Alberto Blanc1, Denis Collange1, and Konstantin Avrachenkov2

1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France
2 I.N.R.I.A. 2004 route des lucioles, 06902 Sophia Antipolis, France

Abstract. One of the key ideas of Compound TCP is to quickly increase
the sending window, until full link utilization is detected, and then to
keep it constant for a certain period of time. The actual Compound TCP
algorithm does not hold the window constant but, instead, it makes it
oscillate around the desired value. Using an analytical model and ns-2
simulations we study these oscillations on a Linux implementation of
Compound TCP, in the case of a single connection with no cross tra�c.
Even in this simple case we show how these oscillations can behave in
di�erent ways depending on the bandwidth delay product. We also show
how it is important to take into account, in the analytical model, that
some implementation subtleties may introduce non-negligible di�erences
in the behavior of the protocol.

1 Introduction

Tan et al. have introduced Compound TCP [5] to improve the performance of
TCP on networks with large bandwidth delay products. One of the main ideas
of this new high speed TCP variant is to quickly increase the sending window
as long as the network is underutilized and then stabilizing it when a certain
number of packets is bu�ered in the network. To achieve this goal the sender
monitors the round trip time: as long as the network is underutilized (i.e. no
packets are queued) the round trip time will not change. This corresponds to
the case where the window is smaller than the bandwidth delay product. As the
window is increased the sending rate will eventually surpass the capacity of the
bottleneck link and the round trip time will start to increase. In particular the
sender estimates the number of packets currently backlogged in the network.
When this estimate is greater than or equal to a threshold γ the sender stops
increasing its window. Figure 4 in [5], and some of the comments in that paper,
give the impression that the window is then kept constant for a certain time.

While this might be a useful approximation in explaining and thinking about
this new TCP version, it is easy to see, from equation (5) in [5], that the window
will indeed oscillate during this phase. Figure 1 shows the evolution of the sending
window from an ns-2 simulation. Clearly, at least in this case, the oscillations
have a non-negligible amplitude. In the remainder of this paper we are going
to analyze these oscillations in the case of a single Compound TCP connection
with no competing tra�c and no random losses (packets are dropped only when



35 40 45 50 55

time/s

350

400

450

500

550

600

650

w
in

d
ow

si
ze

/
M

S
S

Fig. 1. The evolution of the sending window between two packet drops (ns-2 simulation,
µ = 100 Mb/s, τ̃ = 69 ms)

the bu�er is full). While this is clearly the simplest possible scenario, even in
this case, the oscillations have several possible patterns and, based on simulation
results, their amplitude increases with the bandwidth delay product.

These oscillations may have many consequences on Compound TCP �ows.
Firstly, the packet loss probability in presence of other �ows, using Compound
TCP or not, will be increased during this phase. This may reduce the proportion
of time during which the congestion window is larger than the bandwidth delay
product, and then the e�ciency of the protocol. Secondly, as these oscillations
increase with the bandwidth delay product, the probability to saturate the bot-
tleneck's bu�er and will be higher and the e�ciency will be lower in case of large
round-trip times, as observed in [2]. Thirdly, these oscillations of the window,
and, therefore of the bu�er occupancy, may also degrade the performance of the
network, increasing the delay, the jitter and the loss rate experienced by the
other �ows.

2 Evolution of the Compound TCP Window During the

�Constant Window� Phase

During the �constant window� phase, every round trip time, the sender estimates
the current backlog in the bu�er of the bottleneck through the variable∆ (diff in
[5]). An objective of Compound TCP is to keep ∆ positive, to use the bottleneck
at full speed, but small (close to γ), to minimize the bu�er occupancy.

Let w(t) be the window size at time t and let ti be the end of the i-th round
trip, when the window is increased from wi to wi+1. In order to make the w(t) a
left continuous function we set w(t) = wi if ti−1 < t ≤ ti. This way w(ti) = wi.
Throughout this paper we will assume that w is expressed in terms of packets,
or Maximum Segment Size (MSS). Note that ti−1 − ti is one round trip time



so that the expression �every round trip time� refers to the time between two
increments of the window. In the absence of loss, Compound TCP increments
the window in the following way (see [5] for a complete description):

wi+1 =

{
wi + αwk

i , if ∆i < γ

wi − ζ∆i + 1 , if ∆i ≥ γ
(1)

with

∆i = wi

(
1− τ̃

τi

)
. (2)

Where τ̃ is the smallest round trip time observed so far, and τi is the latest
estimate of the round trip time. For the remainder of the paper we assume that
ζ = 1, and for all numerical example we use α = 1/8, γ = 30, and k = 3/4,
as suggested by the authors of CTCP [5]. While selecting these values is an
interesting problem in itself it is outside the scope of this work (see [5] for more
details).

Clearly as w increases so does ∆i and, as the round-trip time is an increasing
function of window, eventually ∆ > γ; and the window will be decreased, pro-
vided no packets are dropped in the meantime. Similarly, as smaller values of w
imply smaller values of ∆, the window will be increased again. In other words
one or more increasing phases are followed by one or more decreasing phases. We
call a �cycle� the collection of increasing and decreasing phases starting with the
�rst increasing phase and ending with the last decreasing phase. Figure 2 shows
two possible cycles, the one on the left has 3 increasing phases and 1 decreasing
phase, while the one on the right has 4 and 2, respectively. We will use two inte-
gers to classify cycles, with the �rst one representing the number of increments
and the second one the number of decreasing phases. A 5:2 cycle, for example,
has 5 increments and 2 reductions. In the �gure dots and circles represents the
value of the window before and after each increment, respectively.

t

ŵ1

w1

ŵ2
w2

ŵ3

w3

ŵ4

w4

u1 t1 u3 t3u2 t2

w5

ŵ5

∆4

∆5

∆6

u4 t4 u5 t5 u6 t6

w

µτ

t

ŵ1

w1

ŵ2

w2

ŵ3

w3

ŵ4

w4

u1 t1 u3 t3 u4 t4u2 t2

w

µτ

Fig. 2. The 3:1 and 4:2 cycles



The sending window of Compound TCP is the sum of two components that
are incremented independently during each round trip time. The congestion com-
ponent is incremented by one each round trip time, just like the window in TCP
Reno. While the delay component (wd) is incremented, once per round trip time
as well, as wd = wd + αwk − 1. The minus one compensates for the increase
of the congestion component so that the total window grows as w = w + αwk.
Similarly the plus one in (1) comes from the increment of the congestion window
component, which happens also during the round trip time when the delay com-
ponent is decreased. So that in a m:n cycle there are m increments of the delay
component and m+ n increments of the congestion component. In Figure 2 the
smaller increments, between ŵi and wi, represent the increments of the conges-
tion component and they take place at time ui while the bigger increments are
due to the delay component and take place at time ti. Note that w1 is the value
after the initial increment of the congestion window, such increment represents
the increment of the congestion window corresponding to the last reduction of
the delay component at the end of the previous cycle.

2.1 Linux Implementation

In order to study the behavior of Compound TCP we ran simulations using
ns-2 version 2.33 [4] with a Compound TCP implementation for Linux [1]. This
implementation uses a slightly di�erent formula to compute ∆i: instead of wi it
uses wi−1 so that (2) is replaced by:

∆i = wi−1(1− τ̃ /τi). (3)

Recall that wi is the value of the window before the increment at time ti so
that wi−1 is the value of the window during (ti−2, ti−1]. While [5] is somewhat
vague about the details of these computations, it is appropriate to use wi−1 in-
stead of wi. One way of thinking about ∆i is that it tries to estimate the number
of backlogged packets by comparing the current round trip time with the small-
est round trip time observed so far. Given that the sender uses acknowledgments
to measure the round trip time, any such sample corresponds to the round trip
time experienced by the packet last acknowledged and such a packet was sent
when w = wi−1. In other words all the round trip samples are �one round trip
time old.�

Another aspect to take into account is that, while it is possible to �nd several
equivalent expression for ∆i, the Linux kernel does not use �oating point opera-
tions. So that all the operations have to be approximated with integer ones. This
introduces an error that can be minimized but that can lead to non-negligible
di�erences between the implemented protocol and a theoretical model. In order
to minimize the approximation error ∆i is computed as:

2∆i = 2wi−1 −
⌊

2wi−1τ̃

τ

⌋
(4)

and γ is multiplied by 2 whenever it is compared with ∆i. (We use bxc to
represent the integer part of x.) Computing the window increment αwk

n presents



a similar problem. As α = 1/8 and k = 3/4 (as suggested in [5]) the following
formula is used:

αwk
n =

⌊
1
23

⌊
28wn√
216
√
wn

⌋⌋
(5)

where all the multiplications (and divisions) by a power of 2 are implemented as
shift operations and the square root is implemented using the int_sqrt() function
of the Linux kernel.

2.2 Modeling the Linux Implementation

For the case of a single connection with no other tra�c τ̃ is equal to the prop-
agation delay, which we assume to be known. In this case it is also possible
to express τi (the latest estimate of the round trip time) as a function of the
window and the bottleneck capacity µ. In the Linux kernel the round trip times
are measured in microseconds so that, even if integers are used, the precision is
extremely high.

Assuming that the backlog is non-zero, we can compute the round trip time
dividing the window by the bottleneck capacity so that:

τi = min
[⌊
wi−2 + 1

µ

⌋
, τ̃

]
. (6)

This is is because the implementation in question uses the smallest round trip
time sample among all the samples collected during the last round trip time,
between ti−1 and ti. (One comment in the source code explains that the choice
of using the smallest round trip sample is to minimize the e�ect of delayed
acknowledgments.) As the window, and therefore the round trip time, is an
increasing function of time, the smallest value corresponds to the smallest time
value; that is the beginning of the round trip. For example in Figure 2, at time
t4 the sender considers all the samples relative to the packets sent between times
t2 (excluded) and t3 (included), whose acknowledgments were received between
t3 (excluded) and t4 (included). At time t2 the window was increased from w2

to w3, but, while this increment is instantaneous, the round trip time grows
by smaller increments (more precisely by 1/µ) so that the smallest round trip
sample observed between t3 and t4 corresponds to the packet that was sent when
the window was w2 +1. Clearly τi cannot be smaller than the propagation delay,
hence the minimum with τ̃ . This can indeed happen as wi can be smaller than
µτ̃ , either during the initial growing phase during the oscillation phase in the
case of multiple reductions.

In [5] the authors say that the window should be updated �once per round
trip time.� The implementation we used accomplishes this as follows: whenever
the window is updated the sequence number of the next segment to be trans-
mitted (say ni) is recorded. Once the corresponding acknowledgment arrives the
window is updated another time. As a consequence, whenever the window is
reduced because ∆ ≥ γ the next segment cannot be sent immediately (the win-
dow is smaller than the number of unacknowledged packets). The sender resumes



transmission only after receiving acknowledgments for ∆ packets. Due to this
pause in the transmission the backlog experienced by packet ni is smaller. When
the corresponding acknowledgment arrives the round trip time (for this packet)
is:

τi = min
[⌊
wi−1 −∆i−1

µ

⌋
, τ̃

]
. (7)

Where wi−1 −∆i−1 is the window size after the reduction. Therefore, if at time
ti−1 the window was reduced, ti (i.e. the beginning of the new round trip time)
corresponds with the arrival of the acknowledgment for packet ni. As we have
already mentioned, the implementation we have used takes the smallest of all
the round trip samples collected between the last window update, at time ti−1

(excluded), and the current time ti (included). This implies that, each time the
window was reduced at ti−1, the smallest round trip time sample is due to the
last acknowledgment received. And the corresponding packet is the �rst one sent
after the transmission pause.

Note that, provided the queue at the bottleneck link does not empty during
the pause, when the sender resumes sending packets the backlog size will not
change until the window is updated at time ti. This implies that the value given
by (7) is actually the �true� value of the round trip time between ti−1 +∆i−1/µ
and ti , where ∆i−1/µ is the duration of the transmission pause (it is the time
needed to receive enough acknowledgments to compensate for the reduction of
the window).

Given that we have de�ned a cycle as a series of increasing phases followed
by one or more decreasing phase, the �rst phase of a cycle will always follow
a window reduction so that, at t1 (7) is used. In this case we also have that
wm − ∆m = w1 − 1, where m is the last phase of the previous cycle. (Recall
that we have de�ned w1 as the value after the �rst increment of the congestion
component.) And we can write τ1 = (w1 − 1)/µ. At time t2 the smallest round
trip samples received between t1 and t2 is again τ1 because the packets whose
acknowledgments arrive during (t1, t2] were sent between during (tm+∆m/µ, t1].
As previously observed, all the packets sent during this time experience the same
round trip time: (wm −∆m)/µ.

In general, τi is given by (6) unless the window was reduced at time ti−1,
in which case (7) should be used, or if the window was reduced at time ti−2

and incremented at time ti−1, in which case τi = τi−1. Using these formulas,
together with those for ∆i (3) and for the window increment (5) it is possible
to model the evolution of the window. At the same time it is important to use
the same integer approximations used in the Linux kernel: for example if we
compute w4(w1) (that is the value of the window after three increments with a
starting value of w1) using the same formulas used in the Linux Kernel or using
�oating point operations the di�erence between the two quantities is between 0
and 2. Where we use the formula αwk

n to compute the window increment and
compute ∆i as ∆i = wi(1− τ̃ /τ) when we use �oating point operations. Finally,
Figure 3 compares ∆5 using integer and �oating point operations.



500 550 600 650 700

w1/MSS

25

30

35

40

w
in
d
o
w
si
ze
/
M
S
S

∆5 (Linux Impl.)
∆5

Fig. 3. ∆5 using �oating point and integer
operations

460 480 500 520 540 560

µτ̃/MSS

460

480

500

520

540

560

580

600

w
in
d
o
w
s
iz
e
/
M
S
S

x3:1

z3:1

x4:2

z4:2

Fig. 4. Solutions of the �xed point equa-
tion for the 3:1 and 4:2 cycles using �oating
point (z) and integer (x) operations

3 Fixed Points

Given that, as previously discussed, a series of increasing phases is always fol-
lowed by one or more decreasing phases it is natural to ask if such oscillations
follow a speci�c pattern and, above all, if they reach a steady state. It is su�-
cient to look at a few simulations to guess that oscillations do reach a steady
state very quickly (after one or two cycles). Depending on the system param-
eters, we have observed 5 types of cycles: 3:1, 2:1, 5:2, 4:2 and 3:2. For each
cycle type it is possible to �nd the steady state solution by numerically solv-
ing a �xed point equation. For the 3:1 cycle, for example, if w1 is the value of
the window at the beginning of each phase the value at the end of the cycle is
f3:1(w1) , w4(w1) − ∆4(w1) + 1 where wn+1 = wn + αwk

n and ∆4 is given by
(3). Note that the only independent variable is w1 so that solving the �xed point
equation f3:1(w1) = w1 it is possible to �nd the steady state solution. The plus
one takes into account the fact that, during each cycle, there are three incre-
ments of both window components and one increment (by one) of the congestion
component combined with one reduction of the delay component. To be precise,
here w1 corresponds to the initial value of the total window after an increment
by one of the congestion component (see Figure 2).

For each cyclem:n it is possible to de�ne the corresponding function fm:1(w1) =
wm+1(w1) − ∆m+1(w1) + 1 if n = 1 and fm:n = wm+1(w1) − ∆m+1(w1) −
∆m+2(w1)+2 if n = 2. For the latter case the plus two compensates for the two
increments of the congestion component corresponding to the two reductions of
the delay component. Figure 4 shows the solution of f3:1 and f4:2 as a function
of the bandwidth-delay product (µτ̃). In this case the di�erence between using
�oating point and integer operations is not very signi�cant, especially for the 4:2
case where the error is negligible. While Figure 4 shows only two cases, they are
the most representative ones. The solutions for the 2:1 case are close to those
of the 3:1 case. And the solutions for all the m:2 cases are almost identical. It
is interesting to note how the solutions for the m:2 cases are very close (and
in some cases equal) to µτ̃ . As w1 − 1 is the minimum value of the window is



w1 = µτ̃ then w1 − 1 < µτ̃ which implies that the bu�er will be empty for the
�rst part of each oscillation. The simulations do con�rm this, showing that the
bu�er will be empty for half a round trip time during each oscillation. This is
caused by the increment of the congestion component, which usually takes place
after half a round trip time after the last reduction. While half round trip time
over a cycle of a few round trip times is not a big portion it does nonetheless
lead to an under utilization of the bottleneck link during this �constant window�
phase negating one of the main design ideas of Compound TCP.

4 Conclusions and Future Work

Contrary to what suggested by one of the �gures in [5], we have shown how
the Compound TCP window does oscillate during the �constant window� phase.
These oscillations converge quickly to a cyclic behavior whose mode (number of
increases:number of decreases) depends on the bandwidth delay product. Some
implementation details on Linux have also an in�uence on the mode, and on
the amplitude of these cycles, especially the discretization of the state variables,
increments of the window and backlog estimates.

These oscillations may explain some of the ine�ciencies observed for Com-
pound TCP on some tests, especially when the round-trip times are large or the
bu�ers small [3, 2]. This phenomenon may also degrade the performance of the
other simultaneous �ows. We plan on further analyzing the in�uence of these
oscillations on the performance of long lived Compound TCP connections and
on other simultaneous �ows. We would also like to understand the relationship
between the parameters of the system and the type of cycles followed by the
oscillations. While the simulations seem to indicate that this depends on the
bandwidth delay product we do not yet know the exact relationship.

References

1. L. Andrew. Compound TCP Linux module. available at
http://netlab.caltech.edu/lachlan/ctcp/, April 2008.

2. Andrea Baiocchi, Angelo Castellani, and Francesco Vacirca. YeAH-TCP: Yet An-
other Highspeed TCP. In Proc. 5th Int. Workshop on Protocols for FAST Long-

Distance Networks, March 2007.
3. Y-T. Li. Evaluation of TCP congestion control algorithms on the Windows Vista

platform. Technical Report SLAC-TN-06-005, Stanford Linear Accelerator Center,
June 2005.

4. S. McCanne, S. Floyd, et al. ns network simulator. available at
http://www.isi.edu/nsnam/ns/".

5. K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp approach for high-
speed and long distance networks. In INFOCOM 2006. Proc. 25th IEEE Int. Conf.

on Computer Communications., 2006.


