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The Problem (1)

Consider a process of events with two types: good and lost.

n consecutive events are called a block.

Time may be continuous

but the model will be in discrete-time and ignore actual time intervals
between events.
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The Problem (2)

Metric of interest: given h and n,

P( the block is “lost” ) = P( > h losses among n events)

Usual objective: find the smallest h (redundancy) such that

P( > h losses among n + h events) < ε .

Today’s objective: compare two situations

same event loss probability

different “burstiness” patterns
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Motivation #1: Forward Error Correction

Forward error correction at the packet level: able to repair up to h
lost packets, using h packets of redundancy.

+k=8 information packets

OK

LOST

h=4 redundancy packets
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Motivation #1 (ctd)

Different queue management schemes at routers produce different
loss patterns.
Assuming the loss rate is the same: is it better

to have losses regularly spaced,

or have losses clustered?
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Additional motivation

Reliability/real time systems:

n tasks to be executed within a time frame
each one may fail
execute m = n + k of them
“k-out-of-m”

Bandwith reduction in a slotted network:

frames of n slots → frames of h slots
no buffer
probability of overflow?

Pedestrian crossing...
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Well known facts...

Several facts are well known:

Variability worsen things (Folk result)
=⇒ the situation with the “most regular arrivals” should be
better

The independence assumption is optimistic
If the loss events are independent, the block loss probabilities are
(much) smaller than if they are correlated
=⇒ the situation with the “most independent arrivals” should
be better

Investigate the issue with a focus on the bursts of losses.
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Mathematical experiment # 1: The Gilbert model

Assumption: losses occur according to the state of a (two-state)
Markov chain.

a

1−a

b

1−b

Geom(b) Geom(a)
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The Gilbert model (2)

Gilbert as a Markov-Additive process:

Lm+1 = Lm + 1{Xm=•} .

E (zLn) = π0 M(z)n 1

= (π•, π•) ×
(

az (1− a)z
1− b b

)n

×
(

1
1

)
,

where

π• =
1− b

2− a− b
π• =

1− a

2− a− b
.
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Gilbert model (3)

Loss Run Length (LRL):

LRL =
1

1− a

Good Run Length (GRL):

GRL =
1

1− b

Stationary loss probability:

p = π• =
LRL

LRL + GRL
.

Problem: with a fixed LRL (or a), the range of p is[
0,

LRL

LRL + 1

)
.
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Skewed Gilbert Model

Solution: make Good Runs Geometrically distributed on {0, 1, . . .}
instead of {1, 2, . . .}.
=⇒ another Gilbert process with matrix:(

1− b(1− a) b(1− a)
1− b b

)
,

and

LRL =
1

1− a
GRL =

b

1− b
p =

1− b

1− ab
.

Now the range of p is [0, 1] !
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Comparison Bernoulli/Gilbert
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Comparison experiments (1)

Experiment: consider two cases 1 and 2.

Fix tho Loss Run lengths: LRL1 < LRL2 ( a1 < a2 ),

fix a block length k and a “redundancy” quantity h

vary the Loss Probability p

plot the difference:

∆h(p) = P( block saved in case 1 )

− P( block saved in case 2 )
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Comparison experiments (2)

h grows from 0 (left, red) to 13 (right, yellow).
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Comparison experiments (3)

Let ph be the value at which ∆h(ph) = 0.
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Work in progress

Empirical finding: when n is large,

xh ∼ h

n − 1
.

How to prove it?
If the loss rate is p = h/n,

P(≤ h losses) = [zh]
1

1− z

(
(1− c)z cz
1− b b

)n

with

c = (1− b)
n − h

n
.

Work in progress...
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A Compound Poisson Model (1)

Simplification: move to continuous time

Continuous time

Discrete time

A3
A2

A1

τ1 τ2

’1 τ’2τ

m1      ...     m5 m6 m7 m8 m9        ...        m14
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A Compound Poisson Model (1)

Process of loss:

groups of losses occur according to a Poisson process with rate
λ,

groups have random sizes with identical distribution and mean a.

Global loss rate: p = λ× a

Distribution of the number of losses:∑
k

zkP(k losses in [0, t)) = eλ(A(z)−1) .
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Comparison experiments (1)

Comparison of two cases:

Small bursts case: losses of
1 with proba 0.9,
2 with proba 0.1

Larger bursts case: losses of
1 with proba 0.6,
2 with proba 0.4

Same average packet loss number x = p × T

∆h(x) = P( block saved with small bursts)

− P( block saved with larger bursts)
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Comparison experiments (2)

Difference ∆h(x) as the average number of losses x grows
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Again an empirical law
xh ∼ h + C .
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Analysis of limits

Analysis of extreme cases: consider the probability of success of a
block

P(NT ≤ h) =
h∑

n=0

xn

(EA)nn!
e−xT/EAP(A1 + . . . + An ≤ h) .

i/ Assume that

P(A(1) > h)

EA(1)
<

P(A(2) > h)

EA(2)
.

Then ∆h(x) > 0 when x → 0.

ii/ Assume that m(1) < m(2). Then ∆h(x) < 0 when x →∞.



Burstiness vs
Frequency

Alain Jean-Marie,
Yvan Calas,
Tigist Alemu

Introduction

Mathematical
experiment #1

Mathematical
experiment #2

Analysis

Networking
application

Simulation
experiment

As a conclusion

Asymptotic Analysis (1)

Consider the quantity:

dh(y) = P( ≤ h losses in h + y time units) .

Then we find:

dh(y) =
1

2
+

1√
2πh

√
µ1

µ2

(
1

2
+

µ3

2µ2
− y

)
+ o(h−1/2) ,

where µ1 = EA, µ2 = E (A2), µ3 = E (A3).
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Asymptotic analysis (2)

Accordingly: for all real y , we have:

∆h(h + y) =
1√
2πh

(C0 − C1y) + o(h−1/2) ,

where:

C0 =

√√√√µ
(1)
1

µ
(1)
2

(
1

2
+

µ
(1)
3

6µ
(1)
2

)
−

√√√√µ
(2)
1

µ
(2)
2

(
1

2
+

µ
(2)
3

6µ
(2)
2

)

C1 =

√√√√µ
(1)
1

µ
(1)
2

−

√√√√µ
(2)
1

µ
(2)
2

.
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Asymptotic analysis (3)

Finally, we have indeed:

∆h(h + yh) = 0 =⇒ yh ∼ C1

C0
,

and therefore

xh ∼ C1

C0
+ h .
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FEC and the Queue Management

Packet queues inside network routers are handled by a Queue
Management scheme.

Two common ones:

Tail Drop Drops packets if and only if the buffer is full
=⇒ tends to produce bursts of losses

RED Drops packets at random preventively
=⇒ tends to produce isolated losses

Two loss paterns: which one works better with FEC?
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Application of the model

Admitting that the smaller bursts (RED) work better when

x ≤ h + C

for some constant C .
Equivalently, RED better if:

small block k ≤ 1− p

p
h +

C

p

large redund. ratio
h

k
≥ p

1− p
− C

1− p

1

k

small loss rate p ≤ h + C

h + k
.
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Application of the model

Admitting that the smaller bursts (RED) work better when

p(k + h) ≤ h + C

for some constant C .
Equivalently, RED better if:

small block k ≤ 1− p

p
h +

C

p

large redund. ratio
h

k
≥ p

1− p
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Experimental setup

Simulations with the ns-2 program.

Source of packets with the UDP protocol, 5-10% of the BW

Background traffic of TCP flows, saturating the BW.

S0

SN

R1

100 Mbps, 1
00 ms

S1 100 Mbps, 20 ms
R2

Drop Tail / RED (buffer size = 35packets)
10 Mbps, 30 ms

100 Mbps, 50 ms

UDP

TCP

Statistics collected about Packet Loss Rate Before Correction and
after correction.
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Results of Simulations

Loss rates, k = 16 packets per block + h = 2 FEC packets.

 0.001

 0.01

 0.1

 8  16  24  32  40  48  56  64
 0.001

 0.01

 0.1

Lo
ss

 P
ro

ba
bi

lit
y

Number of information packets, k

PLRBC (DT) PLR (DT) PLRBC (RED) PLR (RED)

RED does not always win...
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An Explanation

There is a compromise between loss “burstiness” and loss rate.
Assume blocks protected with h = 1 packet.
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An Explanation

There is a compromise between loss “burstiness” and loss rate.
Assume blocks protected with h = 1 packet.

Low loss rate/small blocks
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An Explanation

There is a compromise between loss “burstiness” and loss rate.
Assume blocks protected with h = 1 packet.

High loss rate/large blocks
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