
marmoteCore Venezia, 5 December 2017

marmoteCore:
a Markov modeling platform

Alain Jean-Marie, Inria

Valuetools 2017
Venezia, 5 December 2017

Contents

Motivation and Objectives

Inside marmoteCore
State spaces
Transition structures
Markov Chains

Conclusion

marmoteCore Venezia, 5 December 2017

Motivation and Objectives

marmoteCore Venezia, 5 December 2017

1
Motivation and
Objectives

Motivation and Objectives

Markov modeling
Markov chains on discrete state spaces are useful in many areas of
science and engineering:
Operations Research : queueing theory, Markov decision processes,

random graphs (e.g. PERT), ...
BioInformatics : random sequences, random trees, ...

BioMaths : random population models, epidemic models, ...
Physics : interacting particle models, magnetism, lasers,

network science (Erdös-Rényi, pref. attachment, ...),
...

yet...
I scientists outside Stochastic Operations Research do not

identify a “Markov” software library that suits their needs;
I even within SOR, Markov modelers continue to do ad-hoc

development.

marmoteCore Venezia, 5 December 2017

Motivation and Objectives

Markov modeling tools

Wouldn’t it be nice if tools for Stochastic Operations Research
would reach the maturity of tools for Deterministic OR
(Mathematical Programming, Linear Programming, (M)ILP, ...)?

marmoteCore Venezia, 5 December 2017

Motivation and Objectives

The marmoteCore roadmap

Guiding ideas:
I develop a software base focusing on Markov chains per se
I providing an API in several languages
I allowing the construction of complex models
I providing access to advanced solution methods

marmoteCore is the prototype of such a system.

It was realized thanks to the funding of the
ANR (project MARMOTE ANR-12-MONU-0019)
and the contributions of Issam Rabhi, Hlib
Mykhailenko, Emmanuel Hyon.

(Courtesy Laurent Chusseau)

marmoteCore Venezia, 5 December 2017

Motivation and Objectives

Architecture

Target architecture in three layers:
I Bottom: solution methods
I Middle: marmoteCore API, construction of models, handling

of data, algorithms, results
I Top: User models/applications, GUI & workflow management

Specific High-level ... GUI:
user models models Kepler DTK ...

marmoteCore
Psi Xborne R Scilab ...

Choice of an object-oriented language: C++

marmoteCore Venezia, 5 December 2017

Inside marmoteCore

marmoteCore Venezia, 5 December 2017

3
Inside marmoteCore

Inside marmoteCore

Abstractions of marmoteCore

The programming model is based on just 4 main abstractions
(implemented as classes in C++)

I Markov chains: MarkovChain and derived classes
I Transitions: TransitionStructure and derived classes
I State Spaces: MarmoteSet
I Probability distributions: Distribution and derived classes

marmoteCore Venezia, 5 December 2017

Inside marmoteCore

Markov modeling, in practice

Markov modeling usually consists in
I constructing Markov models:

I specify state space
I specify transitions, probabilities/rates

I analyzing them:
I determine qualitive properties: structure, ergodicity, stability ...
I compute metrics related with probabilities/distributions,

frequencies, times, durations ...

marmoteCore Venezia, 5 December 2017

Inside marmoteCore State spaces

State spaces in marmoteCore

marmoteCore provides the MarmoteSet interface with some
standard state space implementations:
MarmoteInterval a simple 1-dimensional discrete interval, possibly

infinite
MarmoteBox cartesian products of intervals
BinarySequence sequences of bits

Simplex sequences of integers with given total sum
BinarySimplex sequences of bits with given count of ones

marmoteCore Venezia, 5 December 2017

Inside marmoteCore State spaces

Marmote sets, ctd

Implementing new sets is easy: it just requires providing the
minimal interface:

Required methods for MarmoteSets
virtual long int Cardinal();
virtual int Index(int* buffer);
virtual void DecodeState(int index, int* buffer);

Index() converts a state (buffer) into an integer, DecodeState()
does the converse.
Other functions may help state space exploration:

Useful methods for MarmoteSets
void FirstState(int* buffer);
void NextState(int* buffer);
bool IsFirst(int* buffer);

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Transition structures

Transition Structures

The object that describes direct transitions between states and
their weight.

What a TransitionStructure T should know how to do
I evaluate the (i , j) entry Tij
I (continuous time) evaluate the transition rate out of i
I identify the distribution of transitions from i
I evaluate the action on a measure
π′ = πT

I evaluate the action on a value
v ′ = Tv

plus some other things...

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Transition structures

Non-matrix implementation of transitions

Typical implementation of TransitionStructure will be a
(sparse) matrix but...
Example of a transition structure on an infinite state space: the
random walk.
Implementation of getEntry() for the 1-D random walk

getEntry(int i, int j)
if (i == j-1) return p_;
else if (i == j+1) return q_;
else if (i == j) return r_;
else return 0.0;

q_p_

r_

=⇒ possibility of making simulations.

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Transition structures

Creation of a transition structure with a state space
Objects of type MarmoteSet are useful to create the generator:

SparseMatrix* makeGenerator(AdHocStateSpace* sp, ...) {

SparseMatrix* gen = new SparseMatrix(sp->Cardinal());

int stateBuffer[5];
sp->FirstState(stateBuffer);
int idx = 0;
do {

...
// destination state stored in nextBuffer
nextBuffer[0] = MIN(stateBuffer[0] + 1, someBound);
...
gen->addToEntry(idx, sp->Index(nextBuffer), someRate);
gen->addToEntry(idx, idx, -someRate);
...
sp->NextState(stateBuffer);
idx++;

} while (!sp->IsFirst(stateBuffer));
}

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Markov Chains

The Markov Chain object

The markovChain object is just a container for its state space and
transition structure.

Attributes of markovChain
timeType type_;
MarmoteSet* state_space_;
TransitionStructure* generator_;
DiscreteDistribution* init_distribution_;

What is more interesting is the possibility to organize families of
markovChain objects in a hierarchy following the inclusion relation.
Exploit the principle: The more structure (the fewer parameters),
the deeper the analysis

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Markov Chains

Markov Zoo, continuous time
A hierarchy of Markov models ⇐⇒ C++ classes

Queueing

Physics

Biology

PoissonSystem

Fensenstein81

MMPP

PoissonIPP

TwoStateJukesCantor69

Kimura80

HomogeneousQBD

GeneralMarkov

BirthDeathASEP

ContactProcess

IndependentOnOff

M/M/oo M/M/1

BCMP

Jackson

MMPP/M/1TamuraNei93 G−net

BMAP

MAP
QBD

MArP

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Markov Chains

Available Solution Methods for markovChain

I Structural analysis
I Monte Carlo Simulation (forward)
I Exact sampling from the stationary distribution (backwards)
I Computation of the stationary distribution (various methods)
I Computation of transient distributions
I Hitting times (distribution, average)

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Markov Chains

Exploiting the hierarchy/structure

Reimplementation with direct solution methods for specific chains:
I Homogeneous1DRandomWalk

DiscreteDistribution* TransientDistribution(int t, int nMax);
GeometricDistribution* StationaryDistribution();
SimulationResult* SimulateChain(long int tMax, ...);

I Felsenstein81

DiscreteDistribution* TransientDistribution(double);
DiscreteDistribution* StationaryDistribution();
Distribution* HittingTime(int iState, bool *hitSetIndicator);
double* AverageHittingTime(bool *hitSetIndicator);
SimulationResult* SimulateChain(double tMax, ...);

marmoteCore Venezia, 5 December 2017

Inside marmoteCore Markov Chains

marmoteCore Venezia, 5 December 2017

4
Using 3rd party tools

Inside marmoteCore Markov Chains

Interface with R tools

Just one example of interaction with external tools.

Interfacing with R is possible with the Rcpp C++ library.
In current marmoteCore

I Structural analysis, computation of stationary distribution
→ interface with R’s package markovchain (maintainer: G.A.
Spedicato)

I Sampling from probability distributions
→ for PoissonDistribution

I Computation of transient distributions
→ interface with R code (L. Cerdà-Alabern, Valuetools 2013)

marmoteCore Venezia, 5 December 2017

Conclusion

marmoteCore Venezia, 5 December 2017

5
Conclusion

Conclusion

As a conclusion

A large todo list
I interfaces with R, scilab, projected: Python
I addition of solution methods
I more interface formats
I more models in the hierarchy, e.g. QBDs
I application packages: Markov Decision Processes
I ...

but already operational.
An open development

I in need of users/testers
I in need of contributors

http://marmotecore.gforge.inria.fr

marmoteCore Venezia, 5 December 2017

http://marmotecore.gforge.inria.fr

	Motivation and Objectives
	Inside marmoteCore
	State spaces
	Transition structures
	Markov Chains

	Conclusion

