
Optimal Prefetching in Random Trees

Alain Jean-Marie
Inria – University of Montpellier

Kausthub Keshava
Deloitte (formerly at IISER Mohali)

Sara Alouf
Inria – Université Côte d’Azur

Working group COSMOS of the GDR RO, 22 November 2021

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Outline

1 The prefetching game in non-random graphs
Documents and random surfing
Feasibility

2 The prefetching game in random dynamic graphs
Dynamic graphs
MDP analysis

MDP specification
Obvious results
Less obvious results

2 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

The prefetching game

A world of “documents”: a weighted & directed graph
nodes represent documents
arcs represent possible transitions
weights represent transition probabilities

Model of a random & memoryless surfer: random walk / Markov
chain.

3 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

The game

Two players: the Surfer and the Controller
The surfer stands at a node of the graph
Round of the game:
I The Controller marks k nodes
I The surfer moves to a neighbor of its position, randomly

A cost is incurred if the surfer moves to an unmarked node.
The game ends when all nodes are marked, or the surfer is
trapped in a marked subgraph.

An optimal control problem, rather than a dynamic game:
surfer is not strategic
dynamics independent of control

4 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

Simplifying features

Several assumptions are made for keeping a simple model and
can/could be relaxed in realistic cases:

unlimited memory for the controller: no caching decisions
atomic documents: no partial prefetching
constant prefetching “budget” k :
I document viewing time does not vary
I bandwidth does not vary

5 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

Goal of the game

Optimization problem

Minimize the (expected) total cost where:

cost = number of times the surfer moves to an unmarked node

Feasibility problem
Given a document graph, possibly with marked nodes, and a surfer
position, does there exist a marking strategy that realizes zero cost?

If the answer to the feasibility problem is “yes”, it provides a
solution to the optimization problem.

6 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

The feasibility problem

The feasibility problem is difficult in general: see
F. Fomin, F. Giroire, A. Jean-Marie, D. Mazauric, N. Nisse.
To satisfy impatient web surfers is hard. Theoretical Com-
puter Science, 526(20) :1–17, March 2014.

However, it is easy in trees.

7 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

Feasibility in trees

Let a tree be represented by t = (v0, (t1, . . . , tm)), where v0 is the
root, m the number of sons/subtrees. Let C (v) be the set of
children of node v .
Consider the following recursive construction:

f (v) = 0 for all leaf v
f (v) = max{0,m +

∑
w∈C(v) f (w)− k} for all internal nodes

8 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

Feasibility in trees (ctd)

Theorem (Fomin et al. 2014)

There exists a zero-cost policy for tree t if and only if f (v0) = 0.

Definition: f -policy

Define the policy from function f (·): v being the position of the
surfer,

mark the sons, if not already marked
mark f (w) unmarked nodes in the subtree with root w , for all
w ∈ C (v), in a connected way

Proof of Theorem
f (v0) = 0 iff the f -policy realizes zero cost.

9 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Documents and random surfing
Feasibility

Open problem

Optimality of the zero-cost policy?
Is the f -policy optimal for the Optimization Problem when it fails
to solve the Feasibility Problem?

10 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Progress

1 The prefetching game in non-random graphs
Documents and random surfing
Feasibility

2 The prefetching game in random dynamic graphs
Dynamic graphs
MDP analysis

MDP specification
Obvious results
Less obvious results

11 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Dynamic graphs

It is relevant to consider that the document graph is dynamic
it may be too large to be stored: e.g. the web graph
the optimal decision involves the whole graph: too much
information for the decision
I purposedly forget nodes that are “far away” from the surfer

12 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Dynamic trees

The simplest dynamic graph with given “lookahead”: random trees
of depth d .
When the surfer moves to a node v :

nodes at distance d + 1 are removed
leaves at distance d − 1 are completed with a random number
of new leaves

The process becomes endless → finite-horizon or stationary-like
criterion.

13 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

A first exploration

In his 2019 study, Q. Petitjean has defined and compared strategies
based on indices.

f -based index: compute recursively

f (v) = max{0, µ̄(C (v)) +
∑

w∈C(v)

f (w)− k}

where µ̄(A) is the number of unmarked nodes in set A.
second-generation index: s(v) = |C (v)|
middle-term index: compute recursively

ind(v) =
1

100× |C (v)|

µ̄(C (v)) +
∑

w∈C(v)

ind(w)


14 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

A first exploration (end)

Algorithm:
mark sons with higher indices first
if budget remains, place a mark in the subtree with higher
index, recursively
if budget still remains, recompute and redo.

Conclusion:
“It is observed that no strategy is really more efficient than the
others”
The short-term strategy is slighty more efficient for prefetching
budgets larger than p/2

This calls for a deeper study...

15 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Modeling the decision problem as a MDP

Construction of a MDP with decision/transition cycle:
1 the surfer stands at the root of a depth-d tree
2 the controller marks up to k nodes
3 the surfer moves randomly and uniformly to one of the depth-1

nodes
4 the subtree is completed by converting each leaf into a depth-1

tree with random number of leaves, uniform between 1 and p.
5 the rest of the tree is forgotten (including former root)

Note: the surfer never goes back.

16 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

MDP specifications

The MDP has:
State space: set of marked trees of depth d and arity p, with
unmarked leaves
Action space: marking at most k nodes
Transitions: deterministic concerning the controller, random
for the surfer and the tree

t = (µ, (s1, s2, . . . , sm))

→ (µ, (s ′1, s
′
2, . . . , s

′
m)) after marking

→ s ′r = (µr , (σ1, . . . , σ`)) with probability 1/m

→ t ′ = (µr , (σ
′
1, . . . , σ

′
`)) with probability (1/p)leaves(s

′
r)

Cost: 1 if µr = 1, 0 otherwise

17 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Criterion and method of proof

We chose as criterion the expected, infinite horizon average cost.
The dynamic optimality equation (DOE, aka “Bellman”) and its
relation to optimal policies are:

Theorem (Ross)

If there exists a bounded function f (s) for every s ∈ S and a
constant g such that

g + f (s) = min
a

[
c(s, a) +

∑
s′∈S

P(s, a, s ′)f (s ′)

]

then there exists a stationary policy γ∗ such that, for all s,

g = max
γ
φγ(s) = φγ∗(s).

18 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

First results

Definition
A policy that marks unmarked sons in priority is called “greedy”.

Theorem
If k = 1 and d = 2, or if d = 1, any greedy policy is optimal.

Both results can be proved for the finite-horizon, then pass to the
limit.
How to prove it using the DOE?

find g

find f

check DOE

19 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Cost of greedy policies

To evaluate g , a detour via Markov chains is useful.
A tree shape is a tree stripped of its marks (or unmarked).

Property
The process of tree shapes is independent of the control. It is a
Markov chain with stationary distribution that of Galton-Watson
trees stopped at depth d .

20 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Cost of greedy policies (ctd)

Corollary
Let t be distributed according to this stationary distribution, and
let C be the random variable:

C =
[|s(t)| − k]+

|s(t)|
.

Then,

EC =
1
p
Hpk , k ≤ p,

where

Hpk :=

p∑
m=k+1

m − k

m
= p − k − k(Hp −Hk).

21 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Back to optimality

The value of g is given by EC thus computed.

The value of f is: f (µ, (1, . . . , 1)︸ ︷︷ ︸
j times

) =
(j − k)+

j
, when d = 1

and when d = 2, k = 1:

f (µ; (µ1, j1), . . . , (µm, jm))

=


− 1
m

(
1 +

m∑
r=1

µr +
m∑
r=1

1
jr

)
m∑
r=1

µr ≤ m − 1

−1− 1
m

(
2

m∑
r=1

1
jr

+ |{r |jr = 1}|Hp − p

p − 1

)
m∑
r=1

µr = m.

22 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Proving optimality

Annoying feature of this method of proof:
The function f has to be guessed for states that “don’t really
matter”: they don’t belong to the recurrent class of Markov
chains derived from optimal policies.
Specifically: these states have marks where an optimal policy
would never place one.
This makes the extension to the case k = 1, d > 2
cumbersome, although the result looks simple.

23 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Findings

The case d = 2 and k = 2.
Contrary to the “easy” cases just solved, there is now the possibility
to mark depth-2 nodes in optimal policies:

either because the root of the tree has only one son
or because some of the depth-1 nodes are already marked

24 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Exploration of greedy policies

All policies mark first as many unmarked sons as possible.
Greedy Depth 1: Only the sons of the tree are marked.
Greedy Smallest: If budget remains, then mark the first leaf
of the smallest subtree. If budget still remains, mark the
second leaf of the smallest subtree, if any. Otherwise, mark
the first leaf of the second smallest subtree.
Greedy Largest: If budget remains, then mark the first leaf of
the largest subtree. If budget still remains, mark the second
leaf of the largest subtree, if any. Otherwise, mark the first
leaf of the second largest subtree.
Greedy Leftmost: If budget remains, then mark the first leaf
of the leftmost subtree. If budget still remains, mark the
second leaf of the leftmost subtree, if any. Otherwise, mark
the first leaf of the second leftmost subtree.

25 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Typology for depth-2 trees

26 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Typology for depth-2 trees

27 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

The Greedy Finite Optimal policy

Tree Unmarked Spec. subtree Optimal
Type Sons sizes Action
Type 1 ≥ 2 a(d1, d1)

Type 2a 1
jr ≥ 3 for some r a(d1, ljc), jc = minr jr ≥ 3
jr < 3 for all r a(d1, ljc), jc = maxr jr

Type 2b 0
j1 > 3 a(lj1 , lj1)

j1 ≤ 3 a(lj1 , lj2)

Type 2c 0 a(lj1 , lj1)

Specification of the Greedy Finite Optimal policy. Conventions:
j2 ≥ j1

d1 stands for “depth 1”
lj stands for “leaf of subtree of size j”

28 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Results for greedy policies

Average cost of the different greedy policies
Policy p = 3 p = 4 p = 5
Greedy Depth 1 0.111111 0.208333 0.286667
Greedy Smallest 0.067912 0.161568 0.229741
Greedy Leftmost 0.062802 0.160227 0.226289
Greedy Largest 0.054369 0.156907 0.217443
Greedy Finite Optimal 0.054369 0.154401 0.208282

29 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Dynamic graphs
MDP analysis
Obvious results
Less obvious results

Optimal policy for d = 2 and k = 2

Theorem (?)

The Greedy Finite Optimal policy is optimal for d = 2 and k = 2,
when p = 2, 3, 4, 5.

Proof: numerically check that this policy γ is a fixed point of the
Policy Iteration algorithm (Puterman, chapter 8.6).
Equivalently, find g and f solving:

0 = cγ + g1 + (Pγ − I)f

and check that those solve the DOE.
Possible weakness: done only for “relevant” states.

30 / 31

The prefetching game in non-random graphs
The prefetching game in random dynamic graphs

Conclusions

Conclusions and issues

Conclusions:
Greedy (sons-first-marking) policies are possibly optimal
Connected policies are possibly optimal
Next steps planned:
I Find direct arguments for the optimality of greedy policy

(including k = 1!)
I Check numerically the optimality of “Greedy Finite Optimal”

policy for larger p
I Use agregation to “factorize” the MDP

31 / 31

	The prefetching game in non-random graphs
	Documents and random surfing
	Feasibility

	The prefetching game in random dynamic graphs
	Dynamic graphs
	MDP analysis
	Obvious results
	Less obvious results

	Conclusions

