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Introduction

In a communication network using routing/switching (Internet, ATM, Frame Relay...), queues form
along the communication path. Management of statistical multiplexing, contention.

These queues create delay and fosses.

The problem is to know how to quantify these.

The approach is stochastic, given the uncertain nature of traffic.

Queueing Theory: a set of concepts, tools, general and particular results for approaching these problems.

Research for results permitting to define, calculate and guarantee the celebrated quality of service (QoS).
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Methodology

How to obtain performance measures?

Real System: Define objectives
Instrument the system: place control points, place measurement points (not easy! intrusive)
Perform measurements
Change parameters
Do it again
Simulated System: Define objectives
Program a sufficient representation of the system, elements and behavior
Perform measurements
Change parameters

Do it again
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Mathematical analysis: Define objectives
Establish a sufficient mathematical representation of the system, elements and behavior

Calculate measures

For both Simulation and Analysis, one needs Models.
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Modeling Issues

Uncertainty and randomness
Definition of the “performance measures”, "Quality of Service”

Parameters, controllable (z1, ..., ), uncontrollable (input) (y1, ..., yn)

Tractability of models
— Analysis, exact: formulas, numerical methods.
— Analysis, approximate.
QoS = f(x1,- -, Tn;Y1y-- -5 Ym)
— Simulation.
e Validation of assumptions

e Optimization, dimensioning, capacity assignment.

max ,\,AHHv ey Ty Yty . - - UQSV
L1y--9IM
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e Optimization, design choices (protocols, architecture, topology).

?
.\.AHHU...vmﬁsm@H“...vQSV AV QA&HU...vaﬁm@H“...vQSV

e Statistics, measures for the input parameters (workload characterization).

Introduction



On the use of simulation

Quite common use of simulation

new idea for a protocol

implementation in a simulator

run with various experimental conditions
it works! — publish

Use of simulation in conjunction with modeling

Imagine a reasonable model
solve it
use simulation to validate the solution (esp. if approximations involved)

vary assumptions to show robustness

if it works, publish! if not, try to revise model...

Introduction



Uncertainty and randomness

Unknown quantities: arrival times of “events”, amount of resources claimed on the system.

O Stochastic models.
Unknown quantities are random variables.
Random in, Random out = performance measures are random in nature
=> compute or measure their statistics (mean, variance, distribution...).
=> necessity to define performance these measures rigorously
= understand the stochastic issues: stationarity, transience, ergodicity

= necessity to perform measurements, statistics, estimators

Collect the statistics on unknown quantities. Validate stochastic assumptions against real data.

Introduction
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O Deterministic models.
Unknown quantities have bounds.

Analysis reveals the worst case scenarios = guaranteed performance.
Accuracy of the bounds. How frequent are those bad cases?

Difficulty: worst case quantities do not always imply worst performance measures...

Introduction
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Random variables

Random processes

°
®

e Stationarity, ergodicity

e Covariance, autocorrelation
o

Markov Chains

Part |: Stochastic Processes

I: Stochastic processes
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Random Variables

Probability space: €2 set of trajectories or realizations.

Random variable X': function from the space of trajectories {2 into a space of values.

Distribution:
P{X <z} = P{lw | X(w) < z}.

Expectation (mean), variance:
EX = \a%@ < 2}

Var(X) = \%%ﬁm <z} — EX?

I: Stochastic processes
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If the variable is discrete:

EX = ) nP{X =n}

n

Var(X) = MU n’P{X =z} — EX’

n

Variance: measure of the variability of X around its mean.

Covariance of two r.v.:
Cov(X,Y) = EXY)—-EXEY.
Measure of the dependence between X and Y. If X and Y are independent, Cov(X,Y) = 0.

Laplace transform (Laplace-Stiltjes) of X:

X" (s) = \ooo e P{X <t} = E(e*").

I: Stochastic processes
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Generating function of a discrete random variable:

(0. 9)

X'(z) = > Z"P{X =n} = E(z").

n=0

Addition law: if X 1LY then

(X +Y)(s) = X"(s) Y7(s).

I: Stochastic processes
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Stochastic processes

A stochastic process “lives” in a state space £.

Two categories:
discrete time {Xn,n € Z}
continuous time {X(t),t € R}

Discrete time: a sequence of random variables.

Continuous time: a family of random functions w — X (t; w).

I: Stochastic processes
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Classical examples:
e sequence of independent Bernoulli (Heads/Tails) tosses:

X, = 0 withproba1/2, X, = 1 with proba 1/2.
e Brownian motion: { X (¢),t € R} such that

X(s+t)— X(t) ~ N(0,0t) .

I: Stochastic processes
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Discrete event systems

In the domain of information systems (computers, networks), one works with discrete event systems
such that X (¢) or X (t) is piecewise constant.

> >

Discrete event processes

I: Stochastic processes 18



Mathematical models for this situation:

e FEvent arrival processes: Point processes (Baccelli, Bremaud).

e More generally: deterministic dynamics + random jumps in space and time
= PDP = Piecewise Deterministic (Markov) Processes (Davis).

Frameworks for studying stationarity, distribution, optimal control.

I: Stochastic processes
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Stationarity

Stationarity in the strict sense: X (-) = X (- 4 s) in distribution.
In particular, Ef (X (t1)) = Ef (X (t2))

Stationarity in the mean: EX (¢1) = EX (¢2).

Stationarity in covariance: EX (t1)X (t1 + s) = EX (t2) X (t2 + s) for all t1, to, s.

Stationarity excludes periodicity. Example:
X(t) = sin(t) + &
with &; random and small.

Then
P{X(t+m) >0} #P{X(¢t) >0}.

I: Stochastic processes
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But there exist processes essentially periodic and stationary:
X(t) = sin(t+¢), £~U(0,m).

Trajectories of sin(t + &£(w)):

T

LA

0 5 10

I: Stochastic processes



Convergence

A process is in general not stationary, but it can become so:

X(t) — X, t—

X, — X, n— o
in distribution (or otherwise).

If for any s,
X[t,t+s] — X]|O0,s], in distribution t — oo.

The process converges to a steady state.

If convergence is fast enough, one can use the distribution of X as an approximation for that of of
X (t).

I: Stochastic processes 23



Ergodicity

Ergodicity: coincidence of spatial and temporal averages:

Ef(X(s)) = uﬁﬁ%\o FOX(£))dt
Bf(X(n) = Jim ~ > F(X,).

Application: the law of large numbers for statistical estimators of quantities.

There exist processes that are stationary but not ergodic.

I: Stochastic processes
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Autocorrelations

Autocorrelation:

R(s,s+t) = E[X(t) X(t+ s)] .
Autocovariance: dependence of the state of X a instant ¢ + s with respect to instant ¢.
h(t,t+s) = Cov(X(t) X(t+s)) = E[X(t) X(t+s)] — EX(t) EX(t + s) .
If X (t)1LX (¢t + s), then h(t,t +s) = 0.
Definition: X stationary in the large sense (or at the second order): for any t:
h(t,t+s) = h(s) = EX(0) EX(s) — (EX)>.

Note: h(0) = Var(X).

I: Stochastic processes 25



Memory

Total Autocorrelation:

o0 o0

continuous time |h(s)| ds  discrete time M |h(n)]| .

0 n=0

A process has a short memory if
o0

|h(s)| ds < oo.
0
Otherwise, it has a long memory.

Long memory = a | slow decrease | of the dependence of X (t + s) et X (¢).

I: Stochastic processes



4 Markov chains _

{X(n),n € N} is a homogeneous discrete time Markov chain if:

i/ (Markov property) Vt € N, et V' (Jo, j1, - - - 5 Jt, jee1) € ET2
P{X (¢t +1) = jita1| X (t) = Ji, ..., X(0) = jo} = P{X(t+1) = jira| X () = Ji} s
i/ (homogeneity) Vt € N, et (¢,75) € € X &,

PIX(t+1)=j]X() =it = Py

P;;,(i,7) € € X £: transition probabilities

P transition matrix.

I: Stochastic Processes — Markov chains, discrete time 27



Dynamics of probabilities

One looks for transition probabilities at n steps:

p(i,j;n) = P{X(n) =7 | X(0) =i},

Let P(n) be the matrix of p(%, 7;n). Then:

P(n) = P".

Let now, forn € Nand 5 € &,

m™(j) = P{X(n) =7}

I: Stochastic Processes — Markov chains, discrete time
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Then:

T (j) = Mﬁ.o?.v p(i,7;m) .

Algebraic form: for any n € N:

€€

q—.o_U

n

I: Stochastic Processes — Markov chains, discrete time
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Example of Markov chain

Transition diagram

I: Stochastic Processes — Markov chains, discrete time
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Transition Matrix:

Probability vectors:

Po
P1
P2
P3
P4

0.2 0.2 0.6
0O 0.5 0.5

(1,0,0)

(0.2 0.2 0.6)

(0.64 0.14 0.22)
(0.348 0.198 0.454)
(0.5236 0.1686 0.3078)

Nm\HHQN\HH“g\HHV

I: Stochastic Processes — Markov chains, discrete time
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Equilibrium equations

If lim,, 7v,, = 7t exists, then:

T = wP.

These equilibrium equations are written: Vi € &,

w(i) = > w(4) Pji-

JEE
They define the stationary probability.

The computation of stationary probabilities is reduced to the solution of a linear system!

Problem: it is often very large, and even infinite.

I: Stochastic Processes — Markov chains, discrete time
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The continuous time

A random variable X has an exponential distribution of parameter A > 0 (X ~ Exp(\)) if:

Fx(z) = P{X <z} =1 — .

1 T T T —— 2 T T
2.0*exp(-2.0*x)
09 - b 18 [ T
08 - b 16 b
0.7 - b 14 T
0.6 [~ b 12 T
05 b 1r b
04 - b 08 T
03 b 0.6 - b
02 b 04 T
0.1+ b 02 T
0 ! ! ! 0 ! I I
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

Cumulative density function and density of the exponential random variable

I: Stochastic Processes — Markov chains, discrete time



The exponential distribution is memoryless: ¥s,t > 0,

P{X >s+t|X >s} = P{X > t}.

The family of exponential distributions is stable under minimization:

o If X7 ~ Exp(A1), X2 ~ Exp(A2) and X7 and X5 are independent: then

EWBAXTNMW ~ _mXUAv,H |_|v/wv

e Moreover:

A

H@AB:\HA__HNHv NMW = »vmqsuv = 3 .
1 2

I: Stochastic Processes — Markov chains, discrete time
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The Poisson process

Consider a random sequence Tp < T7 < ... < T}, < Th11 < .... The counting process:

N(a,b) = #{n|a <Tw<b} = > liacr,cn
n=0

is a Poisson process of parameter A if {T},41 — T}, } is a i.i.d. sequence of variables Exp(\).

For all w:

Av,\ng —Au

——e :
k!

In particular, EN (z, x + w) = Au: X is the arrival rate of the process.

P{N(z,x+uv) = k} =

Limit Theorem: if one superposes a large number of “rare” processes, the resulting process is
asymptotically Poisson.

|: Stochastic Processes — Markov chains, discrete time 35



Continuous time Markov chains

Let {X (t),t € R"}, having the following properties. When X enters state 4

e X stays in state 7 a random time, exponentially distributed with parameter 7;, independent of the
past; then

e X jumps instantly in state j with probability p;;. We have p;; € [0, 1], p;; = 0 and
D pi =1
J

The exponential distribution being memoryless, we obtain a process which has the property that:

P{X (tnt1) = Gn+1 X (n) = jns - - -, X (t0) = jo}
= P{X(tns1) = jurt|X (b) = G} -

|: Stochastic Processes — Continuous time Markov chains 36
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The Definition

A process { X (t),t € R"} is a homogeneous continuous time Markov chain (or: Markov process) iff:

i/ (Markov property) For all n € N, every n + 2-uple of reals tg < t1,< ... < t, < tpy1 and
every i + 2-uple (Jo, J1y - - - » Jns Jn+1) of elements of &:

%AXA&S.IV — .w.:.I_svaﬁsv = Jny .- vvmmwov — uov
= P{X(tn+1) = Jnt1| X (tn) = Jn}

i/ (homogeneity) For all reals s, t and wu, and every pair (¢, j) of £, independently of ¢t we have:

P{X(t+u) = j|X (s +u) = i} = P{X(t) = j|X(s) = i} = Pry(i, ) -

|: Stochastic Processes — Continuous time Markov chains 38



Dynamics of probabilities

Chapman-Kolmogorov equations:

Puslind) = 32 Pulis k) Pulks )
ke&

or, in algebraic form:
_U&I.m = Py _Umu

If the process { X ()} is “regular’ enough, then there exists a matrix Q = P’(t) such that:

dPy

2t _ QP, = P,Q.
7 QP +Q

This is infinitesimal generator.

|: Stochastic Processes — Continuous time Markov chains



Then:

P; = PPt = poe .

Theoretically, computation of transient probabilities, of the speed of convergence etc.

|: Stochastic Processes — Continuous time Markov chains
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Construction of generators

Under the evolution assumptions above, the process {X(t),t € RT} is a CTMC of infinitesimal
generator:

q(%,J) iti #j
q(%, )

Il
| 3
AT
.k:

Construction #2.

Consider a stochastic process in continuous time, {X (¢),t € R™}, having the following properties.
When X enters state 4:

e For each state 7 7% ¢, a random variable Y;; with exponential distribution of parameter p;;, is
drawn, independently between them and of the past. It is possible that p;; = O, in which case
Y, = +o0.

e The minimum of the Y;; is one of them: Y;. At time Yz, X jumps instantly in state k.

|: Stochastic Processes — Continuous time Markov chains 41



Then {X(t),t € RT} is a CTMC of infinitesimal generator Q:

q(i, ) = g
q(t,1) — D> Mij -

if1#3

|: Stochastic Processes — Continuous time Markov chains
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Equilibrium equations

If lim; 7v,, = 7v exists, then:

0O = Q.

These equilibrium equations can be written: Vi € &,

O _a)m(@) = D> w(i)gj -
j#i j#i
Interpretation: entering flow = outgoing flow.

Generalization: global equilibrium equations. For S C &:

> o@Dy = Y, (D)

i€S,jES i€S,jES

|: Stochastic Processes — Continuous time Markov chains



Part IlI: Queuing Theory

e Discrete queues, fluid queues

e Arrival process, service process; Kendall's notation

e Performance measures: number of customers, waiting/response time, loss probability, jitter
e Dynamics of the queue; workload curves; evolution equations

e Capacity: finite or infinite?

e Simple queues or networks of queues?

e Stochastic models of traffic

— l.i.d processes
— Poisson process
— Markov modulated processes

[I: Queuing Theory
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4 Queues _

Queue

waiting room server

a2 ,

\

N ]

arrivals wait service  departure

m.n_._mm.: 01 O2...

Usual representation of a queue

[I: Queuing Theory
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The elements that compose a queue are:

e one or several servers

® a waiting room

e (possibly) classes of customers
e an arrival process per class

® 2 process of service durations

e a service discipline

[I: Queuing Theory
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Kendall's notation

This notation allows to identify certain queues among the variety of possibilities.

A queueing model is denoted by:
A/S/P/K/D

A the inter-arrival distribution

S the service time distribution

P the number of servers

K the size of the waiting room (by default: oo)
D the discipline of service (by default: FIFO)

Examples: the queue M/M/1, M/GI/1/K, etc.

[I: Queuing Theory
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Performance measures

Stability condition Under which conditions the queue admits a stationary behavior? X (t) i

dynamic quantity:
lim P{X(¢t) <z} =7

t—o0

Throughput If N(a,b) counts the number of arrivals in [a, b[, the throughput of arrivals:

. ZAOU wv : n
A = limsup,_, — = EN(0,1) = limsup,, o — -
Anp

If the departure instants of customers are d1, ..., d,, ..., the throughput of outputs is:

. n
0 = limsup,, ., — -

dn,

The throughputs are conserved:

S a

[I: Queuing Theory
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A1+ A

A2

If stability:

A A

A(l—p)
Laws of conservation of throughputs

[I: Queuing Theory
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Utilization Fraction of the time some resource is used:

U0, T)
——

p = limsupp_, o

Response time R, = d,, — a,.
Also: waiting time W, and service time o,:

R, =W, + o, .

Loss rate/probability Fraction of customers “lost”. Ratio of “effective” throughput to the “offered"
throughput.

Cycle time For cyclic systems.

Jitter Measure of the variability of the network'’s response:

In = _A&:.TH — &:v - A@:.TH — @:V_ — _m: - mz.i_ .

[I: Queuing Theory 50



Dynamics of a queue

Fundamental quantities:

N (t) number of customers present in the system at time ¢;

W (t) quantity of work (workload, backlog) present in the queue at time ¢

[I: Queuing Theory
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Evolution of W (t): the workload curve.

A W)

|P BP |P BP IP BP IP

A workload curve

Busy (or Activity) periods (AP) and Idle periods (IP).

BP

[I: Queuing Theory
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Waiting times — the FIFO case

W ,.: waiting time of customer n before service. o, duration of the service of customer n.

Lindley’'s Equation:
S\Sn_.H — :\ﬂ\i + op — q-in_.HH_.T.

W (t) Tn+1 W (t) Tn+1

A

an

Wn on /

S\§+H t 1 t

S\SHTH
an An+1 an an+41

[I: Queuing Theory
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Relationship between number of customers and workload

a & a ag
w() 121
10|
8 [
| N
N
6| . .
|- / N
4 N N
\ N N\
L N N \
2 / . A .
L N N \
\ N N N
o I 1 k/ 1 1 1 1 k/ 1 1 / 1 1 k// 1 H
0 2 4 6 8 10 12 1 16 18 20 22
Nt 4 1
3L _
2L
1
t
o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 1 16 18 20 22

[I: Queuing Theory
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Virtual waiting time, real waiting time

If a,, is the arrival time of customer n and if FIFO:

= W (t) is also called: virtual waiting time.

Warning! W, and W (t) do not necessarily have the same distribution!

[I: Queuing Theory
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Example: the D/D/1 queue.

0 o T T+ 0 27 + 20

0 o T T+ 0 27 + 20

Property PASTA (Poisson Arrivals See Time Averages)
arrivals are Poisson, the stationary distributions of W,, and W (t) do coincide.

[I: Queuing Theory
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Fluid queues

No more customers, but some “fluid” arriving with a certain rate r(t) (variable) and served at a certain
speed C' (possibly variable too).

Example: arrivals according to an “on/off" process (typical of digitized voice, video, etc.):

[I: Queuing Theory 57



Off

qH On

On

Off

Workload
W(t)
A

OFRP NWPMOUIO N O

ti = end of processing of the workload
arrived in the i-th period «On»

[I: Queuing Theory
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General Results

Stability
Stability: W, admits a stationary regime.

Result:

The G/G/1 queue is stable if and almost if

Fo < ET

Little's formula

The average response time R and the average number of customers N are linked by the formula:

AT = N

[I: Queuing Theory
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Traffic models

The traffic is described by:

e the arrival process {a, }nen or the distribution of inter-arrivals {7, } nen.

e the service process {0, }nen.

“lid" models. Distribution of the inter-arrival time is fixed + independence. |dem for services.
Classical cases: deterministic, exponential distribution:
— Az
P{r >z} = e

Gamma/Erlang distribution (sums of exponentials).

[I: Queuing Theory — Traffic Models
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New trends: laws with a “heavy tail: Pareto

P{r >z} = A
Weibull, LogNormal.

P{r >z} = P{X > log(z)},

a

@.THV

X ~ N(m,o).

[I: Queuing Theory — Traffic Models
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Example

Comparison of irregularities in arrival times for various laws of 7.

mOO T T T T T T T mOO T T T T
Exponentiel + Exponentiel +
Erlang  ~ Erlang  ~
450 + Pareto = . 450 Pareto =
Lognormal, var=1 a Lognormal, var=1 a
400
350
300
250

150

100

50

250 300 350 400

X-axis: Qp, y-axis: 1.

[I: Queuing Theory — Traffic Models



Markov modulated arrivals

MAP: Markov Arrival Process: The arrivals occur at the times where a Markov chain changes
state.

10

10

[I: Queuing Theory — Traffic Models 63



MMPP: Markov Modulated Poisson Process: Arrivals according to Poisson processes with an
intensity depending on the state of a Markov chain (or a semi-Markov process).

In particular, the IPP processes: Interrupted Poisson Processes.

[I: Queuing Theory — Traffic Models 64



MMRP: Markov Modulated Rate Process: according to a fluid process of rate depending on
the state of a Markov chain.

10

10

2 A} —

—t+

[I: Queuing Theory — Traffic Models 65



Superposition of sources

If several sources of traffic are superimposed, the resulting process is still modulated by Markov.

A Iz

A | '

1] —— 2
y \H\ I_I o G H e 8 « QN\Q I6;
A )
@ © | D P

I
| >
| = ©
oo

oo ®wT o
oo o
Il eNe

o |

I
| & ©oQ oo

[I: Queuing Theory — Traffic Models
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Modeling hypotheses

e Finite or infinite capacity?
Queues with infinite capacity are easier to analyze: they can be used as approximations.

P{loss} «+ P{N =K} & P{W > K}

e Modeling networks?
Few results exist on networks of queues. Analysis relies on the single bottleneck assumption (often
valid).

e What traffic models? Compromise between what can be calculated and what is reasonable in
practice.

[I: Queuing Theory — Traffic Models 67



Part |ll: Exact analysis

e [Exact analysis in the case of infinite buffers

— the M/M/1 queue, the M/GI/1 queue, the GI/M/1 queue.
— the MMPP/GI/1 queue

e Exact analysis in the case of finite buffers
— the M/M/1/K queue.
— QBDs (Quasi Birth-Death processes)

e Queueing networks

I1l: Exact Analysis
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The M/M /1 queue

Characteristics: Infinite waiting room, 1 server.

inter-arrivals: exponential distribution with parameter A:
services: exponential distribution with parameter pu:

P{r <z} =1—¢e "7, P{loc <z} =1-—¢e .

Stability: A < .
{N(t)} is a Markov Chain: a birth and death process

ap'ans

I1l: Exact Analysis
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Performances:

A (u=A)e
P{W > z} = DY

PNV 20} = (

A
7

)

I1l: Exact Analysis
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Other classical results

The M/GI/1 queue

Arrivals: exponentials, rate A,

Services: arbitrary distribution, Laplace transform S*(s).

The Laplace transform of the waiting time and of the number of customers (Pollaczek-Khinchine

formula):
S ()

S*(A(1—=2)) — =z

[1l: Exact Analysis 71



In particular, the averages are:

EW =

p = A/ u: is the utilization.

A\Eo?

2(1 —p)

I1l: Exact Analysis
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The GI/M/1 queue

Arrivals: arbitrary law, Laplace transform A*(s),

Services: exponential, average 1/u.

Distribution of the waiting time:

P{W >z} = e 0707
with:
o = A"(u(1-9)).
= exponential distribution!
Equivalent service rate
A= Ou.

= equivalent Bandwidth for networks.

I1l: Exact Analysis

73



The MMPP/GI/1 queue

Arrivals: MMPP with N states, generator Q and matrix of rates A,;

Services: independent with a general distribution H (), of Laplace transform H™(s).

Distribution of the workload W :
W*s) = s(1—p)gsl+Q— (1 —H(s))A] ' 1,

g vector to be determined.

I1l: Exact Analysis
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If o ~ Exp(u) (the MMPP/M/1 queue), then:

with 0 such that:

N
—6 —6
P{W >z} = M ape K~ a;e 1
k=0

det{—0ysl + Q — (1 — H*(—0x))A} = 0.

=> again: tail of distribution asymptotically exponential.

I1l: Exact Analysis
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The M/M/1/K queue

As the M/M/1 but with a finite capacity K.

Markov Chain: it is finite

@9 e®8®

I1l: Exact Analysis
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Performances: let p = A/ p.

I—p
1 Ibki )

P{N = K} = p"

Probability of losing a customer: it is precisely P{N = K} (PASTA).

Note: with the approximation of an infinite buffer, one would have had:

P{N = K} ~ p"(1—p).

I1l: Exact Analysis
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QBD processes

QBD: “quasi birth-death”.
This is a structure of Markov chain obtained when the arrival process or the service process has “phases’”.

. 0H©H@H@l@l .
B & - -

They are solved using (for instance) Neuts' method.
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Neuts’ method for QBD

The state space &£ is partitioned in finite blocks of the same size
Exr = {(k,1),(k,2),...,(k, N)}
such that the transition matrix of the Markov chain has the N X N block tridiagonal structure:

Sy L /
M S L
M S L
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The stationary probabilities are also grouped in blocks:

T = Aﬁ.?f...“ﬂ.w“zv
The equilibrium equation 7P = 7 becomes:
TS0 + T M = 7
Te_1 L + TS + meiM = mr 0<EkE< K
g1 L + 7wgSk = TK

= numerical resolution of the recurrence by iterative methods.

The same analysis for continuous time Markov chains.

I1l: Exact Analysis
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Product form solutions: Jackson Networks

N queues (stations) which services are ~ Exp:

- the vector Ag = (Ao.1,- .., Ao,nv) of external arrivals rates in each queue,
- the vector (p1, ..., pun) of service rates,

- square matrix N X N of internal routing R: 7; ; = P{a customer going out of ¢ goes to j}.

Entering flow in stations: vector A = (A1, ..., An) solution of:
A= X + AR.

The stability condition of the system:

[Il: Exact Analysis — Queueing Networks
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If stability, the stationary probability distribution is:

N n
A by 7
p(ni,...,ny) = J[ (1-=) (=)
i1 Hi Hi
= as if queues were M /M /1 in isolation, and independent
=> justification of the end-to-end response time formula:
a 1
T = —
M C; — L;
1=1

C';: capacity of the link/switch, L;: entering traffic.

[Il: Exact Analysis — Queueing Networks
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Kelly networks

Customers belong to several classes.

To each class k corresponds a route in the network:

1
e = (T, ..., 7. %) .

Customers arrive according to Poisson processes, and servers deliver service times with an exponential
distribution.
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— N

2
\ \C Routes
— _ (123
—— — (1,2,5)
_(1,4)
= 0 — (145)

A Kelly network

A

The flow (throughput) A;x of customers of class k entering in queue ¢:

A

Ait = Ar X (number of 7 in ry).

Total throughput, all classes aggregated:

A= 3w
k

[Il: Exact Analysis — Queueing Networks
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Stationary probabilities

Let M = ((myx)) be a matrix of populations per queue and per class. The stationary probability that
the network is in the state M is:

N R K Q Mk
%ﬁmgw = _ 1 — — AMWHHS;NV_ _
i=1 Fri k1 Tvik: \ Hi
Marginal probabilities: if n = (n1,n9,...,nk) is a possible population at queue %:
H@AT\LV = 1 — — Mumml ™Mk !
L (i) MH—H mik! \ i
If m = (mq, ma, ..., my) is a possible network population, then:
N Q S\ ™
i i
Pim} = [ (1-22) (2
i=1 M M
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Statistics

Average number of customers in queue 7,

End-to-end response time on route k:

_ 1 &
T, = — M
Ak j=1 M,

Average response time, all classes aggregated:

— 1
T =

K
MwHH Ak

i
i — Ms
A
ﬁwﬂw
i A
k k
> 2
im1 Hi = A

[Il: Exact Analysis — Queueing Networks
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Questions for networks

There exist extensions to the product forms of Jackson and Kelly networks: multiclass networks, mixt
open/closed, and with various service disciplines: The BCMP theorem.

Numerous questions stay open. For example:

® less restrictive assumptions on traffic models: non-Poisson arrival processes, non-exponential services
e finite capacities, losses, feedback
e service disciplines and stability

e distributions of end-to-end response times
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Part IV: Asymptotic Analysis

e Principle
e Bounds and exponential asymptotics

— Chernoff Bounds and Kingman's bound
— Markov Additive Processes
— Equivalent Bandwidth

e Long memory, autosimilarity, sub-exponentiality

— Autosimilar Processes in Nature
— Sub-exponentiality and Asymptotic Dominance
— Long Memory and Finite Capacity

IV: Asymptotic Analysis
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Principle
Direct asymptotic analysis: find an equivalent to:

P{W > x}, T — 0O

of which one hopes to find an approximation.
Typically: an exponential asymptotic equivalent:

P{W >z} ~ Ce %, z - .

Bounds: one tries to find bounds of this nature (for « “large”, or for all x)

B(6) e <P{W >z} < C(9) e,

IV: Asymptotic Analysis
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Chernoff’s bound

Let ¢t be a fixed real number, and X a random variable.

Laplace-Stiltjes transform of X:
X*(s) = E(e ).
The following holds:

Liz<t) < ef@=t) Vx, 0

Elix<yy < Eef (X~ 2

P{X <t} < X*(—0) e 7
P{X <t} < infe{X*(—0)e )}

IV: Asymptotic Analysis
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Kingman’s bound

We consider the GI/GI/1 queue

P{W >z} < e

For all number & > 0, such that:
E(ef ) < 1.

Hence, taking the largest possible 6:

0" = sup{6 >0 |E("""7) <1}

Conclusion: exponential decrease in the case 8* > 0.

IV: Asymptotic Analysis
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lllustration: value of @.

IV: Asymptotic Analysis
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Large deviations

This result is generalized to arrival/service processes less simple:

If the process {U, } = {0, — 7.}, stationary and ergodic, satisfies:

then:

with

o1 0(Ug+...4U,,_1)
®(0) = mwmwo n log E[e ]
1 .
lim —P{W >z} = -—-6.
T—00 I
0" = sup{f > 0| ®(0) =0} .

Y

IV: Asymptotic Analysis
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Long memory and autosimilarity

Measures have shown that process of arrival of information exhibits a certain autosimilarity and long

term correlation.
But the “classical” models do not have this property.
From where does this phenomenon come from?

What is the influence of this long term memory on the loss probabilities? Is it necessary to throw the

known models away?

What new models are analyzable? Models with arrivals/services “heavy tailed”.

Notion of sub-exponentiality of probability distributions.
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Autosimilarity

Let X = {X (n)}, be a stationary process in the large sense.

X is autosimilar if: )

X = i (Xim—1)+1 + - - - + Xim)
for all m.

H: Hurst parameter.
Example: the fractional Brownian motion is autosimilar.

It is also a long memory process.

IV: Asymptotic Analysis
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The problem, graphically: consider the plot of several distributions

0.01

0.0001

1le-06

1le-08

le-10

le-12

Sub-Exponentiality

Exponential

Bounded
Pareto

10
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A queueing example: two independent On/Off sources.

e A duration of “On" heavy tailed

e A, duration of “On" is arbitrary, of average throughput p

e (': capacity of the server.

A, I

\i

IV: Asymptotic Analysis
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Compare the stationary workload of two queueing systems:

W1t2 . workload when A; and Aj are superimposed.
W1 . workload with A1 alone but with capacity C' — p.

Then:

P{W'*? > 2} ~ P{W' > z}

Conclusion: A7 “dictates” the asymptotic behavior W',

IV: Asymptotic Analysis
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Application 1: Differentiated Services

Position of the problem

Model for throughputs
— Analysis

— Results

— Validation

Model for delays

— Analysis

— Results

— Validation

Conclusions

V:

Differentiated Services
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The idea of Differentiated Services

Objective Improve the “quality of service” of the Internet by adding some kind of service definition
and guarantees.

Move away from “best effort” and its lack of response time/throughput guarantees.

Means Use the TOS (half) octet in IP headers
Specify mechanisms at routing nodes that use this information

Problems Whatl information? What mechanisms.
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Progression of the idea:

Clark'95 — Service discrimination

Crowcroft'96 — All you need is just one bit

Bolot et al. — 1-bit schemes for service Discrimination: INRIA report '97
IETF Diffserv working group — RFC 2475 '98

May et al. — Simple performance models: INFOCOM' 99

Martin May’'s PhD Thesis, oct’ 99
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Two types of differentiation: using 1 bit, define 2 classes with one of them having:
® better throughput

or

e better delay characteristics

In Diffserv:

e Assured Forwarding

e Expedited Forwarding (aka: Premium Service of V. Jacobson)

This is per class Qos and NOT per flow Qos.
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Model for “Assured Forwarding”

A simple markovian model:

Buffer sizeK

Router = single server queue

Input traffic = two classes, IN (high priority, tagged) and OUT, low priority.

Arrivals according to Poisson processes
Services Exponential distribution.
Buffer Finite capacity K
Service discipline = FIFO

V: Differentiated Services — The model
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Buffer management = RIO

RED = Random Early Detection / Discard

RIO = RED on IN and OUT

[~ THRESH (NT)
08
0.7 -
0.6
05
04 -
03
02
01

—RIO (Out/NT)

Dropping probability

_ _ _ _ ueue Size (nb of packets
0 20 40 60 80 B% ( P )
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Analysis

Superposition of two independent Poisson processes: a dual view:

P(Ap)
P(A1) P(A)
P(A
) PO - p)
Probability that a given packet is In = proportion of In packets:

p = .
+ Aout
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Probability of accepting a packet:

Aout
a(n) = BN ajp(n) + wc aout(n)
Evolution of the number of customers N (¢):
n — mn+1 withrate X ajp(n) n< K
n — mn+1 withrate Aoyt X agut(n) n < K
n — n—1 withrate u n >0

From constructions 1 and 2, this is a Markov chain. Actually: a Birth and Death process

Aa (0) A ﬁ_.v Aa(n-1)  Aa(n) Aa (n+1)

V: Differentiated Services — Analysis
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Analysis: solution

Equilibrium equations for the stationary probabilities 7 (n):

(Aa(n) + p)m(n) Aa(n — 1)wr(n—1) + pur(n+1) .
provided that n > 1.

Global balance equations:

Aa(n)r(n) = pn(n+1).
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Solution of the recurrence:

A .
w(n) = =(0) (— —_Q?v
K i=0
K A\ 7 n—1 —1
w0 = |3 (2) [eo
n=0 H i=0
Computation of performance measures:
throughputs
ff -—
o= ajp(n)m(n)
n=0
ff —
v,oﬁm = Aout MQo:Zﬁvﬂsz
n=0
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average queue length

2
|
]
3
3
3

n=0
response times of accepted packets
K-1
n+1
n=0 H
B N
+ Aout
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Effective throughput

0.8

0.6

0.4

0.2

Results

Effective throughputs, global and per class, p=0.5, K=100

0.5 1 15 2.5 3 35

2
Offered Load

HP/LP tail drop
In/HP RED
HP Threshold
Out/LP RED
LP Threshold
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Validation against simulation

s the result robust? Does it depend on the arrival process?

Testing the Poisson assumption using simulation of the system with several input traffic characteristics:

e Poisson processes (just checking the analytical formulas)

e A superposition of 32 On/Off process with constant inter-arrivals and exponentially distributed on
and off periods

e A superposition of 32 On/Off processes with constant inter-arrivals and Pareto distributed on and
off periods (o = 1.4: Hurst parameter = 0.8).
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0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Per class |oss probabilities, analytical and simulation, p=0.9, K=100

In/HP Analytic

Out/LP Analytic

HP loss simul. (Poisson)

LP loss simul. (Poisson)

HP loss simul. (On/Off Expo)

3
+
O
LPlosssimul. (On/Off Expo) X
A
X

HP loss simul. (On/Off Pareto)
LP loss ssimul. (On/Off Pareto)

offered
|oad
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Asymptotic sharing of the processor.

The existence of formulas allow to compute the asymptotic expansion when the load increases.

Define
b = oin (K — 1) .
ajn(K — 1) + Aoutaout (K — 1)
Then:
eff _ ¢ + W pp aj (K — 2) B ajn (K —1) 4+ QAFV
C T ek 1) Va(K—2)  a(K -1) p*

Proposal: take the term (...)=0 so that predictible sharing occurs as soon as possible.

V: Differentiated Services — Validation
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The impact of bursts

A model with Poisson batch arrivals: each arrival brings B packets at the same time.

Possible transitions for N (t):

n — n+B withrate A Xa(n) n< K -—-B
n — K withrate A X a(n) K —-B<n< K -1
n — n-—1  withrate u n >0

This Markov chain can be solved numerically — 7 (n).

Results for B large can be compared to that of the normal Poisson process (B = 1), and the Tail
Drop mechanism (a(n) = 1ifn < K).

May and Bonald conclude that RED does not discriminate between bursty and smooth arrival processes,
whereas Tail Drop does.
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The model for Expedited Forwarding

A ouT

out
-

Buffer sizeK

Service discipline: (preemptive) priority of In over Out.

Analysis:

e Forln:a M/M/1/K queue = use known results

e For Out: a M /M /1 queue with priorities (not quite) = compute stochastic bounds, use results
of Miller and Takacs
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Analysis of preemption

For a lower priority customer: the response time is
A(x) .
Ro=x+ > B
j=1

with

x: low priority workload W found upon arrival
mwﬁv“ length of a busy period of high priority: BP ina M /M /1/K (known!)
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Because of K: x and A(x) are difficult. However:

X Sst Response(M/M/1) =a Exp(pt — Ajp)
A(x) <st A(Bxp(p — Ajp)) =a Geom(pjp)

Finally, with b,, = EB™:

n—1q 1
b, = MU@ 7 Lt
H._JS
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Results: K = 100. Total offered load varies: 0.67, 0.71, 0.77, 0.83, 0.91, 0.95.

100

Simulation
80

Bound ____

60

40

Per Packet Average Delay

20

_ |
0 0.2 0.4 0.6 0.8 1

Fraction of HP packets (p)
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Conclusion

Conclusions

o A fairly efficient yet simple scheme
e A fairly good model
e Insight on the behavior of RED/RIO at high loads

Research issues

e |Investigate average queue length measurements:

Q)ﬁiuu = «(dgn +

e Investigate RIO based on the queue length of

AH_. - QVQ,:

packets instead of total queue length

V: Differentiated Services — Conclusions
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Part VI: Deterministic Models

Traffic envelopes and (o, p) bounds
Bounds on the delay and on the buffer sizes
Traffic shapers

Service curves

Network calculus

VI: Deterministic Models 120



Principle

Work arrival function:

S(a,b) = M On (discrete)

a<an<b

b
= r(t)dt (fluid)

Envelop of the arrival of work: the worst of situations for intervals of a certain length :

a(t) = sup S(s,s+1t).

Example: bounds “(o, p)™:
S(s,s+t) < o + pt, Vs.
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If a process with an envelop bounded by an affine “(o, p)" function, feeds a queue, then:

in addition, the response time is bounded: for all customer n

Results

W(t)

< o

Y

Ry

<

o)

1 —0p

whatever the work conserving service policy.

= dimensioning of buffers.

VI: Deterministic Models
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Proof: foralla < b

b
W) = W(a) + S(a,b) — \ 1 cerved ot a U -

If a starts a Busy Period, then

e W(a)=0

® customers are served on [a, t] as long as W (t) > O (work conserving).

Therefore:

0 < W(t) S(a,t) — (t —a)

o+ p(t—a) — (t—a)

IA IA
q

= (t—a)(1 =p)

VI: Deterministic Models
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Illustration:

~ w=0—(1—p)t

VI: Deterministic Models 124



Networks: addition of burstiness

Consider arrival processes with (o, p) envelops:

,m.s.AQuQA_lﬁv < o; + pit.

Then the superposition of the processes is also (o, p) with:

o = MUS. Pi = MUP..
0 i
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Traffic shapers

Elements of a network in charge of reducing the impact of bursts: shaping, smoothing of traffic.

Example: the Token Bucket (also: Leaky Bucket).

A

oo |

e
bl

Arrival of packets

Arrival of tokens

Service Inter-token time

Possible applications: definition of traffic contracts based on:
(peak rate,sustained rate,packet length burst length)
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Service curves

Input/Output view of a (lossless) system:

A(t) D(t)

With:

A(t) quantity of information arrived at time ¢

D(t) quantity of information departed at time ¢
o W(t) = A(t) — D(t) backlog of information at time ¢
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The service system offers the service curve B(t) if for some g
D(t) > A(t —to) + B(¢t) .

} B
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Backlog and delay bounds

quantity of
information

-

a(t)

B(H)

Response time of element
of information "q"

Backlog at time't

time

e

VI: Deterministic Models — Bounds
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Formulas for the bounds:

Wi(t) < m%w?@ — B(s)}
R(q) < supinf{a(s) <B(s+ 1)}

s>0 7=0

VI: Deterministic Models — Bounds
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Example: video/voice playout

guantity of Original stream

information /L
_ |

I_ Smoothed stream

[~

-

Maximum backlog

Response time of the network
-

time
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The importance of service disciplines

Service curve of FIFO?

o fluid: B(t) =C x t

t
o discrete, with packet service time < T: ((t) = C X T X %W;

A Ideal fluid

Actud

|
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Application: IETF's IntServ

Integrated Services: assume a “leaky-bucket-like” shaped input traffic,
a(t) = min{M + pt,b+ rt} ,
and "RSVP" nodes with a service curve of the form

Bor(t) = Cx (t—1)".

Bounds:
b— M
ggmx = b |_| T B@NA u%v
p—r
1 b — M n
Rmax = —=| M + (p —C) + T
C p—r
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Grapbhical illustration:

—+
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Network calculus

The output flow of a network element with service curve 3(-) is bounded:

D(t+s) = D(t) < aou(s) = sup{a(s +u) — B(u)} .

u>0
= propagation of boundedness.

Nodes in series:

B(t) = inf {Bi(s) + B2(t — s)}

0<s<t

“Pay bursts only once™ D < Dy + Ds.
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Problems to solve

® superposition of flows = increase of burstiness
— Reshaping
— per-flow service disciplines, such as Generalized Processor Sharing (GPS), or Earliest Deadline
First (EDF)
e loose bounds = over-reservation = waste of bandwidth and buffer
— Improve accuracy

— combined stochastic and deterministic analysis

® |osses
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Application 2: Traffic Management

Queueing analysis gives an insight into several issues of Traffic Management in networks (included the
Internet), among which:

e capacity planning
e route planning, routing

e window-based congestion control and TCP
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Traffic Matrices

The network is formed of

® pairs of pairs, generating traffic with rates Ao, p)
with capacities C,
between routers with capacities C ;

representing the path followed by the information (cells, frames, datagrams...) between some
Oand D

Each location where queuing takes place is modeled by a queuing “node”.
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Offered load at node m:

A\, = MU A, .

r route going through node n

Kelly/Jackson's theorem: the average response time, all classes aggregated:

_ o w
T = MU .
with A = MMAHH A the total offered traffic.
Taking into consideration the propagation delay d,, associated with node n, a IS
2 A~
_ An
T = M + d, .
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Capacity Planning

Assuming known: traffic rates and routes.

Problem: allocate link/node capacity so as to minimize collective average.

where M = set of feasible allocations (economical/technical /ethical constraints).

min
C&H“L\:/\vm.\/\ﬁ

T(p1,. - UN)

VII: Traffic Management
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Route Planning

Assuming known: node and link capacities, O/D traffics.

Problem: allocate routes so as to minimize collective average.

Decision variables: o p = quantity of traffic sent on route 7 between O and D.

x: vector of all such variables.

I T
W T

where /R = set of feasible route allocations.

VII: Traffic Management — Route Planning
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Typical constraints:

e if traffic can be shared between routes (e.g. datagrams):

HQ“NVLJ m ﬁou yﬁoubv“_ M HQ“NU“ﬁ — Vrmg“bv

e if traffic cannot be shared (e.g. virtual circuits)
MHQ“GLJ m A__Hou V/AQLUVHV m_ \\.u HO“G“Q: — V/AQ“GV
e capacity constraints: for all queueing node n

N, < C, .
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Routing

Consider a network with distributed routing based on

According to the response time formula at nodes for Kelly networks (the M /M /1 formula) plus the
propagation delay, a for link m = (¢ — j) is:

A
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Flow Control

If at some node M: > (', then the buffers fill up and losses are unavoidable.
Even if the sustained rate A, < Ch, temporary bursts may cause losses.

Flow control uses feedback at the source to limit the offered load.

Among the possibilities:
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Application of Little's law

o 1V the average size of the window
e T’ the average round trip time
e 0 the throughput

W = 0T <= 6 = —.

The larger the window, the better... until the queues inside the network overflow.
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Analytical approach to flow control

Consider the with W customers, each node having capacity u

Source oON

n

N +2
n

The throughput and RTT of customers are

W

N+1

Ol=

Destination

W 4+ 2N

— 1

RTT

W 4+ 2N —1

VII: Traffic Management — Flow Control
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Models of TCP

Principles of TCP Reno

e TCP sources use a window W (bytes) of unacknowledged packets
e packets are acknowledged by the receiver (by groups of b: delayed ACKs)
® packet losses are detected

— because multiple ACKs of a packet are received = W <+ W/2
— after a time-out has expired = W <+ 1

e the window grows

— W < W41 each time an ACK is received in the or modes
— W <= W+1/W each time an ACK is received in the

Observe: after each RTT, W increases of (W/b) x 1/W = 1/b.

VII: Traffic Management — Models of TCP

147



slope=1/bT

A W() b WI()
W
= w2
" "
| |
i S o ]
cycle
Cycle analysis:
e length of the cycle: Ty =T x W /2b:
1 7o 3bW*
e number of packets transmitted: N = — W(t)ydt = ——
T Jo 8
ber of packets lost: 1 ti 8
e number of packets lost: 1, a proportion p = ———
p proportion p = ——oms
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Finally, the effective throughput is:

N —1 1 3

b = —— ~ —

MJO T Mﬁ@

This “square root formula” (S. Floyd, T. Ott) gives a relationship between the loss probability p and the
throughput 6.

=> concept of "TCP friendly” services.
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A Stochastic Model of TCP

Using the same principle but with random times S, between losses (Altman et al.).

b W(1) cyclen

The process { W, }nen is a discrete-time Markov chain. It evolves as (with o = 1/bT?):

1
§§+H — Mgz + aS,
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Solving for the recurrence:
.1
gﬁ M |\a SIHIw .
k=0
The chain admits a stationary behavior.

Computation of the moments: introduce

e )= intensity (“throughput”) of the loss process
o R(k) = E(S¢Sk) the autocorrelation of inter-loss times

EW? = — | R(0) +NM m:&

wVH
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The loss probability and the throughput are related by:

HH‘ H
mn|lllmo wlmw.

Finally, assuming {S,} form a sequence of independent and identically distributed random variables

with average d, variance Qw and coefficient of variation ¢? = QW\&M — 1, then:

I
SH
\V)
&
\%
—

R(0) = os+d°  R(k)

1 /34 c2
T 2pb

152
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Models of FEC

Forward Error Correction consists in adding redundancy to data so that it can cope with loss.

Assume a stream of packets of the same size, grouped in of size n.

It is possible to add k packets to each block so that any k losses in the super-block of n 4+ k packets
can be recovered.

— improved loss recovery for the group

— increased load, increased loss rate for individual packets

Does the compromise bring a global benefit? What is the optimal value of k7
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A Model based on the M/M/1/K queue

Assume packets arrive according to

e for the . a Poisson process with rate A°.

e for the other sources, a Poisson process with rate A\*.

The problem is to compute

P(j,n) = P{j packets are lost in a block of n consecutive ones} .
Poisson (X))
1 1
1 nnnn @ V
1 1101
capacity K M
_uo_mmosc&
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The analysis proceeds in several steps:

e Consider the distribution of the number of packets found by the of a block
K
. 1 12
G = /(3 ).

£=0

e Compute Q;(k), the probability that k packets out of i leave the system during an inter-arrival
epoch

Qi(k) = pa™ 0<k<i-—1
Qi(i) = o, (1)

where o := (1 4+ p)~ 1
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e Write down recurrent equations for P*%(j, n)

= IP{j packets of s are lost in a block of . consecutive ones, given that the first finds 7}

ws.mbmu.u”_.v — AW Www s”OvH_J UN|H
s,a - 1 QHH
PG 1) = Ao j=0,j>2

For n > 2, we have for 0 < 7 < K — 1 and for © = K, respectively:

i+1
P (j,n) M Qit+1(k) Tum SL v(J,n — 1)+ psP j& g0 m — C_
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K

.ﬁwmgmb.v 3v — M @N‘A\Av _Hmum.ﬁwmw\aﬁb o Hv\; - Hv l_lmuwwmmmw\a .w — ”_.“3\ — HZ ,
k=0

where P%(j, n) for n > 1 is given by:

it1
PH(Gm) = > Qin(k) [pePY1 4(sm) +psPY ,(im)], 0SS K =1
k=0
NUMEC.“ n) = NUWWHC.V n)
This is a set of which can be solved numerically.

Another approach is to compute the generating functions.
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Define

7=0 n=1
Then:
(v, 2) = Rik [ p"7'(1 = 2) [6xp1]” ﬁ 1
o (1—2) 2Pk 20 — OK+1 — PRPKY
Nm‘lH%
._L_NMM 4 P K+1
ZQK
with

o 1(2) and x2(2) be the solutions in & of > — (1 + p)x + p(ps + psz) =0

o 5=zt — 2k b = (ps + psz)Sh_1 — Ok,

o Rk =(3,p)"
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Complicated at it may seem, this expression allows:

e a faster computation of the quantities
e asymptotic expansions such as: for p fixed, and 1 < n < K, WMAV 0,n) =

\
Ry p™ ﬁ A Ps PsPs v n —3/2 g :
AL Ve — 6" O f 1
1 — o (1 —p)n+ T, 1. + Az v T p <

1 1 ps \ Vn 1
- M s H_y Q — — 3 +. = H_y
N+::: Vet ?:v,\mA N A:vv @_ f
A
) 4p? PsPs A 1 p—1 v
plp—1)2 p(l—ps) \p—1 (14 ps— ps)
B \Q 3\|w\w .
gn 1 (14+0(1)) if p > 1
\ (1 —ps)V/m
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