Markov-modulated arrival processes in queueing theory

Alain Jean-Marie
INRIA et LIRMM, University of Montpellier 2
161 Rue Ada, 34392 Montpellier Cedex 5, France
ajm@lirmm.fr

Lunteren Conference
January 2005
Plan of the talk

Introduction

- Modeling the traffic of networks
- Markov chains and Markov calculus

Markov-modulated arrival processes

- discrete: MMPP, MAP, BMAP
- continuous: MMRP
- generalization: a Semi-Markovian accumulation process
Decomposition of Markov-Modulated sources

- Markov chains with Markov-modulated speeds
- The MMPP/GI/1 queue
- Equivalent Bandwidth
The mathematical modeling of computer & communication systems necessitates an accurate representation of the arrival process of information/workload.

Depending on the level of the model, this may be:

- the quantity of packets arrived in some network element before some time t,
- a quantity of frames (video), requests (transactions), or any other network Application Data Unit, tasks (computing), orders (production),
- a quantity of bytes or bits, or CPU seconds.
Mathematical models of arrivals

The appropriate mathematical object is a counting process:

\[N(t) = \text{quantity arrived in the interval } [0, t) . \]

Several cases:

- **discrete time**: \(t \in \mathbb{N} \)
- **continuous time**: \(t \in \mathbb{R} \)
- **discrete space**: \(N(t) \in \mathbb{N} \)
- **continuous space**: \(N(t) \in \mathbb{R} \)
Counting process: illustration

Process of arrivals of \textit{events} (arrivals, departures, changes, starts, stops, etc).

\[N(t) \]

\[t \]
Modeling constraints

The variety of situations makes the following features necessary:

- relatively complex processes (bursts, temporal correlations, ...)
- possibly large number of sources
- ease of use, for simulation and stochastic calculus: distributions, queueing networks, asymptotics...

... with a mastered algorithmic complexity.

→ Markov-modulated processes have these features
Markov chains

A discrete-time Markov chain is a process \(\{X(n), n \in \mathbb{N}\} \) such that:

- if \(X(n) = i \), then \(X(n + 1) = j \) with probability \(p_{i,j} \),
- jumps are independent.

A Markov chain is fully described by its

transition probabilities: \(p_{i,j}, (i, j) \in \mathcal{E} \times \mathcal{E} \), or its

transition matrix \(\mathbf{P} \).
Example of Markov chain

Transition diagram

Transition matrix

\[P = \begin{pmatrix} 0.2 & 0.2 & 0.6 \\ 0 & 0.5 & 0.5 \\ 1 & 0 & 0 \end{pmatrix}. \]
Continuous time Markov chains

Let \(\{X(t), t \in \mathbb{R}^+\} \), having the following properties. When \(X \) enters state \(i \):

- \(X \) stays in state \(i \) a random time, exponentially distributed with parameter \(\tau_i \), independent of the past; then

- \(X \) jumps instantly in state \(j \) with probability \(p_{ij} \). We have \(p_{ij} \in [0, 1] \), \(p_{ii} = 0 \) and

\[
\sum_j p_{ij} = 1.
\]

This process is a continuous-time Markov chain with transition rates

\[
q_{ij} = \tau_i p_{ij}.
\]
\[\tau = \begin{pmatrix} 0.3 \\ 1 \\ 0.6 \end{pmatrix} \quad \mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix} \quad \mathbf{Q} = \begin{pmatrix} -0.3 & 0.3 & 0 \\ 0.5 & -1.0 & 0.5 \\ 0.2 & 0.4 & -0.6 \end{pmatrix}. \]
Properties and Analysis

From the computational point of view, the most useful properties of Markov processes are:

- they are described by matrices,
- computing distributions involves the solution of linear problems
- their superposition and composition leads to simple matrix computations.
Superposition of sources

If one superposes several Markov-modulated sources, the resulting process is still Markov-modulated.

The matrices (generators and rates) are obtained using Kronecker sums.

Kronecker product: consider two matrices $A \ (n \times n)$ and $B \ (m \times m)$. Their Kronecker product is a matrix $nm \times nm$ with

$$A \otimes B = \begin{pmatrix}
A_{11}B & \cdots & A_{1n}B \\
\vdots & \ddots & \vdots \\
A_{n1}B & \cdots & A_{nn}B
\end{pmatrix}. $$
Kronecker sum: a matrix $nm \times nm$ defined as

$$A \oplus B = A \otimes I(m) + I(n) \otimes B$$

$$= \begin{pmatrix} A_{11}B & \cdots & \cdots & A_{nn}B \\ \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \ddots & \cdots \\ \cdots & \cdots & \cdots & A_{nn}B \end{pmatrix} + \begin{pmatrix} B_{11}I & \cdots & \cdots & B_{1m}I \\ \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \ddots & \cdots \\ \cdots & \cdots & \cdots & B_{nn}I \end{pmatrix}.$$
Example: for two Markov chains \(\{X_1(t)\} \) and \(\{X_2(t)\} \), we have:

\[
\begin{pmatrix}
-\lambda & \lambda & 0 \\
0 & -\mu & \mu \\
\nu & 0 & -\nu
\end{pmatrix}
\oplus
\begin{pmatrix}
-\alpha & \alpha \\
\beta & \beta
\end{pmatrix}

= \begin{pmatrix}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
\nu & 0 & -
\end{pmatrix}
\begin{pmatrix}
- \lambda & 0 \\
0 & - \mu \\
\beta & 0
\end{pmatrix}
\begin{pmatrix}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
\nu & 0 & -
\end{pmatrix}
\begin{pmatrix}
\beta & \beta
\end{pmatrix}
\begin{pmatrix}
- \lambda & 0 \\
0 & - \mu \\
\nu & 0 & -
\end{pmatrix}
\end{pmatrix}
\]
Markov modulated speeds

Consider a Markov chain Z which evolves in some state space with a generator $M = (m_{ab})$.

There is an "environment" X which is a CTMC with generator $G = (g_{ij})$.

When X is in state i, the speed of $Z(t)$ (transition rates) is multiplied by v_i:

$$\text{rate } a \rightarrow b = m_{ab} \times v_i.$$

The generator of the process $(Z(t), X(t))$ has transition rates:

$$
\begin{align*}
(i, a) & \rightarrow (i, b) \quad \text{with rate } m_{ab}v_i \\
(i, a) & \rightarrow (j, a) \quad \text{with rate } g_{ij}
\end{align*}
$$
In block-matrix form:

\[
Q = \begin{pmatrix}
 v_1M + g_{11} & g_{12} & \ldots & g_{1K} \\
g_{21} & v_2M + g_{22} & \ldots & g_{2K} \\
\vdots & \vdots & \ddots & \vdots \\
g_{K1} & g_{K2} & \ldots & v_KM + g_{KK}
\end{pmatrix}
\]

Or, with the Kronecker notation:

\[
Q = G \otimes I + V \otimes M.
\]

where

\[
V = \text{diag}(v_1, \ldots, v_K).
\]
Plan of the talk

Introduction ..3

Markov-modulated arrival processes ...17
 • discrete: MMPP, MAP, BMAP
 • continuous: MMRP
 • generalization: a Semi-Markovian accumulation process

Decomposition of Markov-Modulated sources ...38
Markov modulated arrivals

General idea:

• A Markov chain \(\{X(t); t \in \mathbb{R} \text{ or } \mathbb{N}\} \in \mathcal{E} \), the phase

• A counting process \(N(t) \) such that \(\{(X(t), N(t))\} \in \mathcal{E} \times \mathbb{N} \) is a Markov chain.
Let \(\{X(t); t \in \mathbb{R}\} \) be a continuous-time Markov chain.

\(\{N(t); t \in \mathbb{R}\} \) counts the number of jumps of \(X \) in \([0, t)\).
Let \{X(t); t \in \mathbb{R}\} be a continuous-time Markov chain in \mathcal{E}.

Let \(\lambda_i \geq 0\) be an arrival rate, for each \(i \in \mathcal{E}\).

Arrivals occur according to a Poisson process of time-varying rate \(\lambda_{X(t)}\): that is, \(\lambda_i\) as long as \(X(t) = i\).
BMAP: Batch Markov Arrival Process

Also known as “N-process” (N = Neuts), or the “versatile” process.

\{(X(t), N(t)); t \in \mathbb{R}\} is a continuous-time Markov chain with a generator structured as:

\[
Q = \begin{pmatrix}
D_0 & D_1 & D_2 & \ldots \\
D_0 & D_1 & D_2 & \ldots \\
D_0 & D_1 & \ldots & \ldots \\
\end{pmatrix}
\]

A process in the family of Markov additive process.
MMRP: Markov Modulated Rate Process

Let \(\{X(t); t \in \mathbb{R}\} \) be a continuous-time Markov chain over a finite state space \(\mathcal{E} \).

Let \(r_i \) be arrival rates (or accumulation rates), for each \(i \in \mathcal{E} \).

Arrivals occur according to a \textit{fluid} process with rate \(r_{X(t)} \), that is: with rate \(r_i \) as long as \(X(t) = i \).

Let \(N(t) \) the quantity arrived at time \(t \):

\[
\frac{dN}{dt}(t) = r_{X(t)}.
\]

Note: also known as “Markov drift process”.
Example. \mathcal{E} with three states, $0 < r_1 < r_2$, $r_3 = 0$:
On/Off processes:

- alternating periods On and Off, with IID durations
- while in period On, arrivals according to a fluid process (constant rate) or a discrete process (Poisson or periodic).
Elaborate multiscale processes

Process with arrivals of sessions, requests, packets:

can be modeled as well with hierarchical Markov-modulated arrival processes.
Synthesis

Markov modulated sources of arrivals are described by matrices.

- For a MAP:

 the generator Q

- For a MMPP/MMRP:

 the generator Q, and the rate matrix Λ

- For a BMAP:

 the collection of transition rate matrices D_0, D_1, \ldots

Most distributions and performance measures are computed using these matrices.
Examples of computations

Average arrival rate

For a MMPP/MMRP, with π the stationary probability of X,

$$\bar{\lambda} = \pi \Lambda 1 = \sum_{i \in \mathcal{E}} \pi_i \lambda_i.$$

Distribution of arrivals

For a MMPP, if $A_{ij}(k, T) = \mathbb{P}\{k \text{ arrivals and } X(T) = j \mid X(0) = i\}$, then

$$\sum_{k} z^k A_{ij}(k, T) = \left(e^{(Q-(1-z)\Lambda)T}\right)_{ij}.$$
A generalization:

- Start with a **semi-Markov process**: arbitrarily distributed but state-dependent sojourn times, probabilistic jumps.

- Let the quantity accumulate at a “rate” depending on the state,

- plus random increments at jump times
\[A(t) \]
The process of accumulation is an **independent-increments process**:

- **constant-rate**
- **Poisson**
- **diffusion**

or a mixture of them.
For independent-increment processes, it is known (e.g. Doob (1952)) that:

$$\mathbb{E}(e^{-\nu(x(t)-x(s))}) = e^{-(t-s)\phi(\nu)}.$$

For instance:

$$\phi(\nu) = r\nu \quad \text{for a constant-rate accumulation } r$$

$$\phi(\nu) = r(1 - e^{-\nu}) \quad \text{for a Poisson process with rate } r$$

$$\phi(\nu) = r\nu + \frac{1}{2}\sigma^2\nu^2 \quad \text{for a diffusion process with drift } r \text{ and variance } \sigma^2.$$
Distribution of the accumulated quantity

$Q(T)$ being the quantity accumulated at time T, consider the Laplace transform:

$$K_{i,j}(\mu, \nu) = \int_0^\infty e^{-\mu T} \int_0^\infty e^{-\nu x} \mathbb{P}\{Q(T) \leq x, X(T) = j | X(0) = i\} \, dx \, dT$$

$$K = (K_{i,j}(\mu, \nu))_{(i,j) \in \mathcal{E} \times \mathcal{E}}$$

$$S = \text{diag} \left(S_i^*(\mu + \phi_i(\nu)) \right)_{i \in \mathcal{E}}$$

$$L = \text{diag} \left(\frac{1}{\mu + \phi_i(\nu)} \right)_{i \in \mathcal{E}}$$

Then (standard arguments, e.g. Cox & Miller (1965) for $K = 2$):

$$K = L \, (I - S) + SPK$$

$$K = (I - SP)^{-1} \, L \, (I - S)$$
Plan of the talk

Introduction

Markov-modulated arrival processes

Decomposition of Markov-Modulated sources

- Markov chains with Markov-modulated speeds
- The MMPP/GI/1 queue
- Equivalent Bandwidth
Decomposition of sources

Principle:

- some source of information is composed of several simpler Markov-modulated sources,
- some computation is required (transients, autocorrelations, distribution of a queue, asymptotics, ...)
- Q: is it possible to reduce the computation to that with the smaller sources?
- A: yes: sometimes, a complexity gain is obtained, sometimes even a full decomposition.

Markov modulated speeds

Consider again the Markov chain Z with generator M, modulated by a speed process with generator G, and speeds V. We have seen that:

$$Q = G \otimes I + V \otimes M.$$

Problem: compute the transition probabilities, which are the elements of the matrix e^{Qt}. A standard method is to diagonalize Q: find its eigenvalues and eigenvectors.
\[Q = G \otimes I + V \otimes M. \]

If one chooses \(x \) and \(y \) such that:

\[
\begin{align*}
 x \ M &= \lambda x \\
 y &= (a_1 x, \ldots, a_N x) = a \otimes x.
\end{align*}
\]

Then

\[
\begin{align*}
 y \ Q &= (a \otimes x) \ (G \otimes I + V \otimes M) \\
 &= aG \otimes xI + aV \otimes xM \\
 &= a \ (G + \lambda V) \otimes x.
\end{align*}
\]

It is enough to choose \(a \) such that \(a(G + \lambda V) = \mu a \) for \(yQ = \mu y \) to hold.
Diagonalization Algorithm

- Find the spectral elements of M:

 $\rightarrow (\lambda_i; x_i, y_i) \quad i = 1..K$.

- For each i, find the spectral elements of $G + \lambda_i V$:

 $\rightarrow (\mu_{ij}; a_{ij}, b_{ij}) \quad i = 1..K, \ j = 1..N$.

- Obtain the spectral elements of Q:

 $\rightarrow (\mu_{ij}; a_{ij} \otimes x_i, b_{ij} \otimes y_i) \quad i = 1..K, \ j = 1..N$.
Complexity:

- so let N be the size of the state space, K the number of speeds

- Q is of size $NK \times NK$

- diagonalizing directly is $O(N^3K^3)$

- this algorithm is $O(K^3 + KN^3)$.

It is not even necessary to store the “big” matrix.
Markov modulated queues

Discrete queues: Markov-modulated arrivals

- exponential/Erlang/Cox service distribution \rightarrow method of phases, QBDs
- general IID services: method of the embedded Markov chain.

Fluid queues:

- partial differential equations (Chapman-Kolmogoroff).
In both cases, the results are:

- Computation through matrix formulas, generating functions, Laplace transforms.

- Spectral expansions of stationary and transient probabilities:

\[
P\{W > x; X = i\} = \sum_p a_{i,p} e^{-z_p x}.
\]

→ asymptotics, or bounds.

\[
P\{W > x; X = i\} \sim a_{i,1} e^{-z_1 x}, \quad x \to \infty.
\]
The MMPP/GI/1 queue

Arrivals: MMPP with N states, generator Q and matrix of rates Λ;

Services: independent with a general distribution $H(x)$, of Laplace transform $H^*(s)$.

Distribution of the workload W:

$$W^*(s) = s(1 - \rho) \ g \ [sI + Q - (1 - H^*(s))\Lambda]^{-1} \ 1,$$

g vector to be determined.
This requires diagonalizing $sl + Q - (1 - H^*(s)) \Lambda$, which can be done more efficiently using the fact that if:

$$A = A^{(1)} \oplus \ldots \oplus A^{(K)},$$

and that for all k, $A^{(k)}$ is diagonalizable with

$$A^{(k)} = R^{(k)} D^{(k)} S^{(k)},$$

where $R^{(k)} S^{(k)} = I^{(k)}$ and $D^{(K)} = \text{diag}(\omega_{i}^{(k)})$. Then:

$$A = \left(\bigotimes_{k=1}^{K} R^{(k)} \right) \left(\bigoplus_{k=1}^{K} D^{(k)} \right) \left(\bigotimes_{k=1}^{K} S^{(k)} \right).$$

This work since Q and Λ have precisely this structure.

\implies complexities reduced from $(\sum_k N_k)^3$ to $\sum_k N_k^3$.

Queues
Consider the \textbf{multiplexing problem}: \(K \) sources feed a buffer with \textit{finite buffer space} \(B \) and \textit{service capacity} \(C \) units of work/s.
For each source \(k \), let \(\rho_k \) be the average rate of arrival of information (the “bandwidth”). Then the queue with infinite buffer is stable if and only if

\[
\sum_k \rho_k < C.
\]

But for the overflow probabilities

\[
\Pr\{W^B = B\} \sim \Pr\{W^\infty \geq B\}
\]

is there a similar property?
Yes, for Markov-Modulated sources.

Assume source \(k \) has rate matrix \(\mathbf{L}^{(k)} \) and generator \(\mathbf{Q}^{(k)} \).

Let \(g^{(k)}(z) \) be the largest eigenvalue of \(\mathbf{L}^{(k)} - \frac{1}{z}\mathbf{Q}^{(k)} \).

For \(B \) large and \(\alpha \) small,

\[
\mathbb{P}\{W^\infty \geq B\} \leq \alpha \iff \sum_k g^{(k)} \left(\frac{\log(\alpha)}{B} \right) \leq C.
\]

The quantity \(g^{(k)} \left(\frac{\log(\alpha)}{B} \right) \) is the equivalent bandwidth at level \(\log(\alpha)/B \).

Proved by Elwalid and Mitra, generalized by Kulkarni for general Markov-Renewal sources.
Bibliography

Fluid models

Bibliographie

MMPP, MAP, BMAP...

Asymptotics, bounds and equivalent bandwidth

