On the influence of resequencing on the regularity of service

A. Jean-Marie, M. Tidball, M. Escalante, V. Leoni and H. Ponce de León

INRIA, Sophia Antipolis, France LIRMM, Montpellier, France Universidad Nacional de Rosario, Argentina

Performance'99, 16 October 1999

Plan

- Introduction
- The resequencing model
- General results
- Markovian analysis
- Performance comparisons

Introduction

 $Communication networks \implies disordering \implies resequencing.$

Application Level Framing \implies applications may cope with disordered elements of information.

Increased programming complexity \implies is it worth the effort?

Intuition says "yes" when jiter is the measure.

Jitter is caused by variations in the network delay *plus* resequencing.

Diot and Gagnon confirm this using simulation.

Our contribution: propose a quantitative model to investigate the issue.

The resequencing model

The general resequencing model

Interesting quantities:

- $-r_n = \text{total delay of customer } n, i.e. \text{ delay plus resequencing time.}$
- $-f_n = \text{time at which the service starts.}$
- $-w_n$ = the waiting time in the queue.
- $-y_n$ = time spent by the server waiting customer number n.

Jitter

Need one definition of jitter.

A function of the fidelity of the network:

$$j_n = ((f_{n+1} + \sigma_{n+1}) - (f_n + \sigma_n)) - (t_{n+1} - t_n)$$

= $y_{n+1} + \sigma_{n+1} - (t_{n+1} - t_n)$.

Then, since σ_{n+1} is independent from the rest:

$$Var(j_n) = Var(y_{n+1}) + Var(\sigma) + Var(t_{n+1} - t_n) - 2 Cov(y_{n+1}, t_{n+1} - t_n).$$

In the particular case where $\sigma_n \equiv \sigma$ and $t_{n+1} = t_n + \delta t$.

$$Var(j_{n+1}) = Var(y_{n+1}) .$$

Preliminaries

Model analyzed by Baccelli, Gelenbe and Plateau, 1984. Survey of results in Baccelli and Makowski, 1989.

The queueing system is actually a $G/G/\infty \to ./G/1$ network.

The presence of resequencing modifies the arrival process to the second queue.

Results known in some cases

- $-M/GI/\infty$ queue: resequencing time distribution (Harrus and Plateau, 1982)
- $-M/M/\infty \rightarrow ./GI/1$ queue: Laplace transform of the end-to-end delay distribution (BGP, 1984).

Dynamics

Denote

$$\xi_n := t_{n+1} - t_n$$
 $\beta_n := \xi_n - \sigma_n$ $z_n := w_n + r_n$

Then:

$$r_{n+1} = \max\{\Delta_n, r_n - \xi_n\}$$
 $\tau_n = [t_{n+1} - t_n + \delta_n - r_n]^+$
 $= r_{n+1} - r_n + \xi_{n+1}$
 $z_{n+1} = \max\{\Delta_n, r_n - \beta_n\}$ $y_{n+1} = [w_n + \sigma_n - (r_{n+1} - r_n + \xi_n]^-$
 $= z_{n+1} - z_n + \beta_{n+1}$

$$w_{n+1} = [w_n + \sigma_n - \tau_n]^+$$

Using Loynes' scheme:

$$z_n = \max \left\{ \max_{m=1: n} \{ \Delta_m - \sum_{j=m}^n \beta_j \}, z_0 - \sum_{j=0..n} \beta_j \right\}$$

Qualitative Results

Stability

Resequencing does not modify stability: if $\{t_{n+1} - t_n\}_n$ and $\{\sigma_n\}_n$ are jointly stationary and ergodic, then

$$\mathbb{E}(t_{n+1} - t_n) > \mathbb{E}\sigma$$

implies the existence of a stationary regime.

Insensitivity

For all $\{t_{n+1}-t_n\}_n$ and $\{\Delta_n\}_n$, in stationary regime:

$$\mathbb{E}y_n = 1 - \mathbb{E}\sigma\mathbb{E}(t_{n+1} - t_n) .$$

Qualitative Results ($c^{ontin^{ued}}$)

Stochastic comparison

Internal monotonicity:

Assume that $r_0 = 0$ and $z_0 = 0$. Then for all $n \ge 0$:

$$r_{n+1} \geq_{\mathrm{icx}} r_n$$

$$z_{n+1} \geq_{\text{icx}} z_n$$
.

External monotonicity:

Assume that $\Delta_n \leq_{\text{icx}} \widetilde{\Delta}_n$ for all n. Then:

$$r_n \leq_{\mathrm{icx}} \tilde{r}_n$$

$$w_n \leq_{\mathrm{icx}} \tilde{w}_n$$

Question: under which conditions is it true that

$$y_n \leq_{\operatorname{cx}} \tilde{y}_n$$
?

Quantitative results

Assume

- a disordering model of type $D/GI/\infty$ $(t_n = n)$;
- $-\Delta$ integrable;
- a queueing model of type ./D/1 with $\sigma < 1$

Then:

$$\mathbb{P}\{r_n \le x\} = \mathbb{P}\{r_0 \le x + n\} \prod_{m=0}^{n-1} \Delta(x + m)$$

$$\mathbb{P}\{z_n \le x\} = \mathbb{P}\{z_0 \le x + n\beta\} \prod_{m=0}^{n-1} \Delta(x + m\beta)$$

$$\mathbb{P}\{R \le x\} = \prod_{m=0}^{\infty} \Delta(x + m\beta)$$

$$\mathbb{P}\{Z \le x\} = \prod_{m=0}^{\infty} \Delta(x + m\beta)$$

Computing Var(Y)

In the stationary regime:

$$Y = [\Delta - Z + \beta]^+$$

Therefore for y > 0,

$$\mathbb{P}\{Y \ge y\} = \mathbb{P}\{Z \le \Delta + \beta - y\}$$

and we know:

$$\mathbb{P}\{Z \le x\} = \prod_{m=0}^{\infty} \Delta(x + m\beta) .$$

Markov Chains

With resequencing

Assume that the sequences $\{\Delta_n, n \in \mathbb{N}\}$, $\{t_{n+1} - t_n, n \in \mathbb{N}\}$ and $\{\sigma_n, n \in \mathbb{N}\}$ are i.i.d. and mutually independent. Then, the following processes are Markov chains:

$$-\left\{r_n, n \in \mathbb{N}\right\}$$

$$-\{(r_n, w_n), n \in \mathbb{N}\}\$$

$$-\{(r_n,z_n),n\in\mathbb{N}\}$$

Assume that the delays Δ_n are bounded by a constant Δ . Then w_n takes a finite number of different values and the Markov chains $\{(r_n, w_n), n \in \mathbb{N}\}$ and $\{(r_n, z_n), n \in \mathbb{N}\}$ are finite.

Markov Chains $(c^{ontinued})$

Without resequencing

Define: \tilde{r}_n as the list of the next relative times of arrival of the delayed customers, just after the n^{th} arrival to the queue.

 $\tilde{r}_n = (\tilde{r}_n^1, \tilde{r}_n^2, ..., \tilde{r}_n^{m(n)})$, where m(n) is the number of delayed customers at time n.

For all Δ , $\sharp E_{\Delta} = 2^{\Delta+1} - 2^{\Delta-1} = 3 \ 2^{\Delta-1}$.

The process $\{(\tilde{r}_n, w_n)\}$ is a finite Markov chain.

Distribution of inter-arrivals

With resequencing

$$\operatorname{Var}(\tau) = \frac{\overline{\epsilon}}{\epsilon} (1 - \overline{\epsilon}^{\Delta} (1 + \Delta \epsilon)).$$

Without resequencing

$$P(\tau = 0) = \epsilon, \quad P(\tau = k) = \bar{\epsilon}^2 \cdot \epsilon^{k-1} \text{ for } k \ge 1;$$

$$Var(\tau) = \frac{2\epsilon \bar{\epsilon} \left[1 - (\epsilon \bar{\epsilon})^{\Delta}\right]}{1 - \epsilon \bar{\epsilon}}.$$

Comparison of arrival processes

With resequencing: τ_R . Without resequencing: τ_N .

Graph of the difference between variances: $Var(\tau_N) - Var(\tau_R)$.

Increased variance: when Δ large and ϵ small.

Resequencing and service regularity

Comparison of server waiting times

A. Jean-Marie et

Values of $V_R(\sigma)$ (left) and $V_N(\sigma)$ (right) for different values of Δ , $\epsilon = 0.1$

A bad performance measure

The idle period length distribution:

$$\mathbb{E} I \ = \ \frac{1-\sigma}{\epsilon + \bar{\epsilon}^{\left\lfloor \frac{\Delta}{1-\sigma} \right\rfloor + 1}}$$

Figure 1: $\mathbb{E}I(\sigma)$ for $\Delta=20,\,\epsilon=0.02$

Resequencing and service regularity

A. Jean-Marie et al.

1

Conclusion

- Intuition is not always founded: resequencing may de^{crease} the variance of the arrival process, and jitter;
- Not resequencing is better if $\sigma \leq \sigma^*(\epsilon)$, and $\sigma^*(\epsilon) \simeq 1$ when $\epsilon \to 0$;
- More research with other tractable models: $D/Geom/\infty \rightarrow ./D/1$ with and without resequencing;