On the influence of resequencing on the regularity of service

A. Jean-Marie, M. Tidball, M. Escalante, V. Leoni and H. Ponce de León

INRIA, Sophia Antipolis, France
LIRMM, Montpellier, France
Universidad Nacional de Rosario, Argentina

Performance’99, 16 October 1999
Plan

- Introduction
- The resequencing model
- General results
- Markovian analysis
- Performance comparisons
Introduction

Communication networks \implies disordering \implies resequencing.

Application Level Framing \implies applications may cope with disordered elements of information.

Increased programming complexity \implies is it worth the effort?

Intuition says “yes” when *jitter* is the measure. Jitter is caused by variations in the network delay *plus* resequencing. Diot and Gagnon confirm this using simulation.

Our contribution: propose a quantitative model to investigate the issue.
The resequencing model

The general resequencing model

Interesting quantities:

- \(r_n \) = total delay of customer \(n \), i.e. delay plus resequencing time.
- \(f_n \) = time at which the service starts.
- \(w_n \) = the waiting time in the queue.
- \(y_n \) = time spent by the server waiting customer number \(n \).
Jitter

Need one definition of jitter.

A function of the fidelity of the network:

\[j_n = \left((f_{n+1} + \sigma_{n+1}) - (f_n + \sigma_n) \right) - (t_{n+1} - t_n) \]
\[= y_{n+1} + \sigma_{n+1} - (t_{n+1} - t_n). \]

Then, since \(\sigma_{n+1} \) is independent from the rest:

\[\text{Var}(j_n) = \text{Var}(y_{n+1}) + \text{Var}(\sigma) + \text{Var}(t_{n+1} - t_n) \]
\[- 2 \text{Cov}(y_{n+1}, t_{n+1} - t_n). \]

In the particular case where \(\sigma_n \equiv \sigma \) and \(t_{n+1} = t_n + \delta t \):

\[\text{Var}(j_{n+1}) = \text{Var}(y_{n+1}). \]
Preliminaries

The queueing system is actually a $G/G/\infty \rightarrow ./G/1$ network.

The presence of resequencing modifies the arrival process to the second queue.

Results known in some cases

- $M/GI/\infty$ queue: resequencing time distribution (Harrus and Plateau, 1982)
- $M/M/\infty \rightarrow ./GI/1$ queue: Laplace transform of the end-to-end delay distribution (BGP, 1984).
Dynamics

Denote

\[\xi_n := t_{n+1} - t_n \quad \beta_n := \xi_n - \sigma_n \quad z_n := w_n + r_n \]

Then:

\[r_{n+1} = \max \{ \Delta_n, r_n - \xi_n \} \]

\[\tau_n = [t_{n+1} - t_n + \delta_n - r_n]^+ = r_{n+1} - r_n + \xi_{n+1} \]

\[z_{n+1} = \max \{ \Delta_n, r_n - \beta_n \} \]

\[y_{n+1} = [w_n + \sigma_n - (r_{n+1} - r_n + \xi_n)]^- = z_{n+1} - z_n + \beta_{n+1} \]

\[w_{n+1} = [w_n + \sigma_n - \tau_n]^+ \]

Using Loynes' scheme:

\[z_n = \max \left\{ \max_{m=1}^n \{ \Delta_m - \sum_{j=m}^{n} \beta_j \}, z_0 - \sum_{j=0}^{n-1} \beta_j \right\} \]
Qualitative Results

Stability
Resequencing does not modify stability: if \(\{t_{n+1} - t_n\}_n \) and \(\{\sigma_n\}_n \) are jointly stationary and ergodic, then

\[
\mathbb{E}(t_{n+1} - t_n) > \mathbb{E}\sigma
\]

implies the existence of a stationary regime.

Insensitivity
For all \(\{t_{n+1} - t_n\}_n \) and \(\{\Delta_n\}_n \), in stationary regime:

\[
\mathbb{E}y_n = 1 - \mathbb{E}\sigma\mathbb{E}(t_{n+1} - t_n).
\]
Stochastic comparison

Internal monotonicity:
Assume that \(r_0 = 0 \) and \(z_0 = 0 \). Then for all \(n \geq 0 \):

\[
 r_{n+1} \geq_{icx} r_n \\
 z_{n+1} \geq_{icx} z_n .
\]

External monotonicity:
Assume that \(\Delta_n \leq_{icx} \tilde{\Delta}_n \) for all \(n \). Then:

\[
 r_n \leq_{icx} \tilde{r}_n \\
 w_n \leq_{icx} \tilde{w}_n
\]

Question: under which conditions is it true that

\[
 y_n \leq_{cx} \tilde{y}_n ?
\]
Quantitative results

Assume

– a disordered model of type $D/GI/\infty$ ($t_n = n$);
– Δ integrable;
– a queueing model of type $/D/1$ with $\sigma < 1$

Then:

\[
P\{r_n \leq x\} = P\{r_0 \leq x + n\} \prod_{m=0}^{n-1} \Delta(x + m)
\]

\[
P\{z_n \leq x\} = P\{z_0 \leq x + n\beta\} \prod_{m=0}^{n-1} \Delta(x + m\beta)
\]

\[
P\{R \leq x\} = \prod_{m=0}^{\infty} \Delta(x + m)
\]

\[
P\{Z \leq x\} = \prod_{m=0}^{\infty} \Delta(x + m\beta)
\]
Computing $\text{Var}(Y)$

In the stationary regime:

$$Y = [\Delta - Z + \beta]^+$$

Therefore for $y > 0$,

$$\mathbb{P}\{Y \geq y\} = \mathbb{P}\{Z \leq \Delta + \beta - y\}$$

and we know:

$$\mathbb{P}\{Z \leq x\} = \prod_{m=0}^{\infty} \Delta(x + m\beta).$$
Markov Chains

With resequencing
Assume that the sequences \(\{ \Delta_n, n \in \mathbb{N} \} \), \(\{ t_{n+1} - t_n, n \in \mathbb{N} \} \) and \(\{ \sigma_n, n \in \mathbb{N} \} \) are i.i.d. and mutually independent. Then, the following processes are Markov chains:

- \(\{ r_n, n \in \mathbb{N} \} \)
- \(\{ (r_n, w_n), n \in \mathbb{N} \} \)
- \(\{ (r_n, z_n), n \in \mathbb{N} \} \)

Assume that the delays \(\Delta_n \) are bounded by a constant \(\Delta \). Then \(w_n \) takes a finite number of different values and the Markov chains \(\{ (r_n, w_n), n \in \mathbb{N} \} \) and \(\{ (r_n, z_n), n \in \mathbb{N} \} \) are finite.
Without resequencing

Define: \(\tilde{r}_n \) as the list of the next relative times of arrival of the delayed customers, just after the \(n^{th} \) arrival to the queue.
\[
\tilde{r}_n = (\tilde{r}_n^1, \tilde{r}_n^2, ..., \tilde{r}_n^{m(n)}),
\]
where \(m(n) \) is the number of delayed customers at time \(n \).

For all \(\Delta \), \(\#E_\Delta = 2^{\Delta+1} - 2^{\Delta-1} = 3 \cdot 2^{\Delta-1} \).

The process \(\{(\tilde{r}_n, w_n)\} \) is a finite Markov chain.
Distribution of inter-arrivals

With resequencing

\[
\begin{align*}
\mathbb{P}(\tau = 0) &= \bar{\epsilon} (1 - \bar{\epsilon}^\Delta) \\
\mathbb{P}(\tau = 1) &= \bar{\epsilon}^{\Delta + 1} + \epsilon^2 \\
\mathbb{P}(\tau = k) &= \epsilon^2 \bar{\epsilon}^{k+1} \quad 2 \leq k \leq \Delta \\
\mathbb{P}(\tau = \Delta + 1) &= \epsilon \bar{\epsilon}^\Delta.
\end{align*}
\]

\[
\text{Var}(\tau) = \frac{\bar{\epsilon}}{\epsilon} (1 - \bar{\epsilon}^\Delta (1 + \Delta\epsilon)).
\]

Without resequencing

\[
\begin{align*}
\mathbb{P}(\tau = 0) &= \epsilon, \\
\mathbb{P}(\tau = k) &= \epsilon^2 \cdot \epsilon^{k-1} \quad \text{for } k \geq 1;
\end{align*}
\]

\[
\text{Var}(\tau) = \frac{2\epsilon\bar{\epsilon} \left[1 - (\epsilon\bar{\epsilon})^\Delta\right]}{1 - \epsilon\bar{\epsilon}}.
\]
Comparison of arrival processes

With resequencing: τ_R. Without resequencing: τ_N.
Graph of the difference between variances: $\text{Var}(\tau_N) - \text{Var}(\tau_R)$.

Increased variance: when Δ large and ϵ small.
Comparison of server waiting times

Values of $V_R(\sigma)$ (left) and $V_N(\sigma)$ (right) for different values of Δ, $\epsilon = 0.1$
A bad performance measure

The idle period length distribution:

\[\mathbb{E}I = \frac{1 - \sigma}{\epsilon + \epsilon^2 |1 - \sigma| + 1} \]

\[\mathbb{E}I(\sigma) \]

Figure 1: \(\mathbb{E}I(\sigma) \) for \(\Delta = 20, \epsilon = 0.02 \)
Conclusion

- Intuition is not always founded: resequencing may decrease the variance of the arrival process, and jitter;
- Not resequencing is better if $\sigma \leq \sigma^*(\epsilon)$, and $\sigma^*(\epsilon) \simeq 1$ when $\epsilon \to 0$;
- More research with other tractable models: $D/Geom/\infty \to ./D/1$ with and without resequencing;