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Introduction
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Conclusions

The model
Analysis

Ideas of the paper

We analyze a simple problem of water extraction.

Myopic agents harvesting a common water resource
A regulator has some control on the cost function
The regulator takes into account rainfall and strategic
interaction between agents
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Ideas of the paper (ctd.)

Groundwater extraction: marginal cost depends on the
level of the aquifer
In general, resources with accessibility problems: cost
depends on scarcity
The main ingredient: make the cost depend on the
projected evolution of the resource: before or after the
extraction or rainfall
The goal: deduce its economical and environmental
consequences
The method: a Stackelberg Game
linear-quadratic static game between agents,
different kinds of optimization for the regulator.
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The model of Provencher and Burt
We consider the extraction of groundwater by K players.
Dynamics of groundwater:

Gt+1 = Gt + R −
K∑

k=1

uk
t , G0, given.

We suppose R is a constant.

Instantaneous profit:

πi(ui
t ,Gt) = Fi(u

i
t)− Ci(Gt) × ui

t .

Marginal extraction cost (Ci(.)): depends on the current level
of the groundwater.
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The extended model
Introduce the more general instantaneous profit function:

πi(ut) = Fi(u
i
t)− Ci(Gt +mR − n

∑
j

uj
t) u

i
t

where n,m ∈ [0, 1].
The extreme cases:

n = 0,m = 0 (the standard case): cost based on current
resource
n = 1,m = 1: cost based on the state of the resource in
the following period.

When n 6= 0 the profit function of player i depends on the
action of the other player: strategic interaction not just
through the dynamics.
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Angles of analysis

In a previous work, we developped the non-cooperative,
Nash-feedback solution for agents.

Here, we develop the supervised setting
myopic followers, static Stackelberg leader
myopic followers, dynamic Stackelberg leader

→ an exercise in sensitivity analysis of LQ dynamic games,
and non-LQ, non-concave optimal control problems.
Mostly work in progress...
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The case of myopic agents

Assume agents play Nash with their instantaneous profit:

max
ui

{
Fi(u

i
t)− Ci(Gt +mR − n

K∑
k=1

uk
t ) u

i
t

}
.

For convenience, we continue with the particular
linear-quadratic functional form:

Fi(u) = aiu −
bi
2
u2, Ci(x) = zi − cix > 0.
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Myopic agent reaction

In the symmetric case we find:

u(G ) =
c

b + (K + 1)cn︸ ︷︷ ︸
α

G +
a − z + cmR

b + (K + 1)cn︸ ︷︷ ︸
γ

.

The value function of each player is:

π(G0) =
(cG0 + a − z + cmR)2

(b + (K + 1)cn)2
b + 2cn

2
.
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Myopic stock dynamics

The stock dynamics is:

Gt+1 = Gt + R − K (αGt + γ)

= (1− Kα)tG0 + (R − Kγ)
1− (1− Kα)t

Kα
.

The asymptotic stock is:

G∞ =
R − Kγ

Kα
=

Rb

Kc
+

K + 1
K

Rn − Rm − a − z

c
.
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Supervised setting

A regulator is in charge of selecting the cost model, by
choosing the cost parameters n and m.
The choice is announced to players, who play Nash.
Followers are myopic:

ui
t =

c

b + (K + 1)cn
Gt +

a − z + cmR

b + (K + 1)cn

The supervisor optimizes her own criterion, taking this
reaction into account.
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Optimal static choice

The supervisor gets to choose n and m once and for all.

Optimal pricing problem
The supervisor’s problem is:

max
(n,m)∈[0,1]2

{
∞∑
t=0

βt
L

∑
i

πi(ut ,Gt)

}

with the myopic agent reactions and stock dynamics

Gt+1 = Gt + R −
∑
i

ui
t .
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Optimal static choice (ctd.)

Thanks to the explicit solution for the dynamics:

Vnm(G0) =
b + 2cn

2

[
α2(G0 − G∞)

2

1− β(1− Kα)2
+

2R
K

α(G0 − G∞)

1− β(1− Kα)

+
R2

K 2(1− β)

]
with

G∞ =
R − Kγ

Kα
.

α =
c

(K + 1)cn + b
γ =

mRc + a − z

(K + 1)cn + b
.
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Optimal static choice (ctd.)

→ optimization wrt (n,m) for each G0.
Results:

m∗ = 1 is always optimal if Kα < 1 (monotonous traj.)
the optimal n is:

n∗ =


0 if βL ≤ β(G0)

1 if βL ≥ β(G0)

n∗(βL) otw.

but n∗(βL) is the root of a 4th degree polynomial.

15 / 31



Introduction
Non-cooperative setting

Supervised setting with myopic followers
Supervised setting with non-myopic followers

Conclusions

Static optimization
Stackelberg game

Optimal static choice (ctd.)

A situation where n∗(βL) 6∈ {0, 1}:
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Stackelberg with myopic followers
Followers being myopic, they apply the Nash controls. If
symmetric:

ui(G ) =
c

b + (K + 1)cn
G +

a − z + cmR

b + (K + 1)cn
.

The benevolent regulator maximizes the total discounted profit
on their behalf:

max
{nt ,mt}

{
∞∑
t=0

βt
L

∑
i

F (ui(Gt))− C (Gt +mtR − ntU(Gt))u
i(Gt)

}
with the dynamics:

Gt+1 = Gt + R − Kui(Gt) .

=⇒ an optimal control problem.
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First-order conditions
From the maximum principle:

0 = βt
LcU(Gt , nt ,mt)(b + 2cnt) + (b + (K + 1)cn)(qt − qt−1)

−Kcqt
0 = βt

LcU(Gt , nt ,mt)
2(b − (K + 1)(b + cnt))

+(b + (K + 1)cnt)(λ
(n)
t − µ

(n)
t )

+Kcqt(K + 1)U(Gt , nt ,mt)

0 = βt
LcRU(Gt , nt ,mt)(b + 2cnt) + (b + (K + 1)cnt)(λ

(m)
t − µ(m)

t )

−KcRqt .

where:
λ
(n)
t , µ(n)

t multipliers for nt ≥ 0 and nt ≤ 1, id for λ(m)
t , µ(m)

t .
U(. . .) is the feedback function of followers.
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Stationary situations

If a stationary state and control exists, then:
optimal m: m∗ = 1,
optimal n:

n∗ =


0 if βL ≤

b

b + c

1 if βL ≥
K (b + c) + c

K (b + 2c) + c
K

K + 1
β(b + c)− b

(1− β)c
otw.

But we don’t know if a stationary state exists.
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Stationary situations (ctd.)

Example with corner solution:

a = 1, b = 1, c =
1
10
, z =

9
10
, R = 1, βL =

95
100

gives a candidate optimal strationary solution:

G∞ =
9
2
, n∗ = 1.

Satisfies all first-order conditions.
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Stationary situations (ctd.)

Example with interior solution:

a = 1, b = 1, c =
1
10
, z =

9
10
, R = 1, βL = 0.919

gives a candidate optimal strationary solution:

G∞ ' 4.35, n∗ =
218
243

.

Satisfies all first-order conditions.
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Stationary situations (ctd.)
The constant-policy value (starting from the expected steady
state) is maximum at n∗:
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Non-stationary situations

However, convexity plays us tricks.
Example:

a = 1, b = 1, c =
6
10
, z =

9
10
, R = 1, βL =

68
100

gives a candidate optimal strationary solution:

G∞ =
1
8
, n∗ =

11
36
.

But...
the optimal constant policy is not there!
And the Hamiltonian has actually a local minimum there wrt n.
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Hamiltonian is for constant trajectory from the expected steady state.
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Non-stationary situations (ctd.)
Same values except R = 50, β = 7/10:
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A heuristic policy

These periodic policies were identified by using the following
heuristic:

m(G ) = 1
n(G ) = argmax{Vn1(G ) | 0 ≤ n ≤ 1}.

i.e. use the best static policy... but as state feedback.
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Stackelberg with non-myopic followers

Followers being non-myopic, at time t they react to the
sequence of “announced” regulations:

{(nt ,mt), (nt+1,mt+1), . . .}

while playing Nash!
=⇒ very complicated control law...
=⇒ not time-consistent?
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Stackelberg with non-myopic followers (ctd)
A reasonable formulation: the supervisor announces feedback
laws

G 7→ n(G ), G 7→ m(G ).

Followers play Nash Feedback with criterion:

max
{uit}

∞∑
0

βt
F [Fi(u

i
t)− Ci(Gt +m(Gt)R − n(Gt)

∑
k

uk
t ) u

i
t ],

and dynamics

Gt+1 = Gt + R −
∑
k

uk
t , G0, given.

Again an optimal control problem... to be studied.
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Conclusions and extensions

Conclusions:
regulator charges users in function of their behavior, not
just in function of the level of resource
introduce strategic interaction where there was none, in
case of myopic agents (n 6= 0)
difficult optimal control problem
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Extensions under investigation

simulations for the optimal control problem of the
regulator
→ numerical methods, value iteration, policy iteration...
non-myopic followers in the case of constant regulator
policies
stochastic case
→ learning algorithms under test
→ importance of m
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