
Stationary Strong Stackelberg Equilibrium
in Discounted Stochastic Games

Alain Jean-Marie
Inria – Université de Montpellier, France

a joint work with:

Victor Bucarey López
Universidad de O’Higgins, Chile
Eugenio Della Vecchia

Universidad Nacional de Rosario, Argentina
Fernando Ordóñez

Universidad de Chile, Santiago, Chile

realized in part during the SticAmSud project DyGaMe

Dynamic Games and Applications Seminar
GERAD, 13 October 2022



Introduction
The operator approach

Negative results
Positive Results

Conclusions

Overview
Origin of the problem
Stackelberg Equilibria
SSE for dynamic games

Ideas of the paper

The Stackelberg solution to (stochastic) games is an appealing
concept for Operations Research because of its predictive potential.
In this paper:

we investigate the question of existence and computation of
such equilibria in stochastic games
we introduce the dynamic programming operator associated
with the game
we realize that
I this operator does not necessarily have fixed points (FPE)
I when it does, FPE are not necessarily equilibria for the game
I and actually, there may be no equilibria at all...

we provide sufficient conditions for everything to work well
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Origin of the problem: security games

A very recent review on security games:
Trends and Applications in Stackelberg Security Games,
D. Kar, T.H. Nguyen, F. Fang, M. Brown, A. Sinha,
M. Tambe, A.X. Jiang,
Chapter 28 in in Handbook of Dynamic Game Theory,
T. Başar and G. Zaccour, eds.
Springer, 2018.

This reference and others on Security Games explains that the
relevant solution concept is the Strong Stackelberg Equilibrium.
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The Stackelberg solution concept

Consider a game with two players A and B.
action sets A for Player A/Leader/Defender, B for Player
B/Follower/Attacker
set of strategies: WA and WB (typically WA ⊂ P(A))
payoffs rA, rB : A× B → R.

The steps of the (sequential) game are:
Player A plays some action a ∈ A

Player B observes the action a

Player B chooses optimally her action b

payoffs ri (a, b) are obtained.
Goal of Player A: optimize her (expected) payoff over WA
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Stackelberg, ctd.

If B’s reaction to A’s action a is a unique strategy γ(a) ∈WB , then
A can predict what B will do. She just choses the strategy that
maximizes her own payoff:

max
f ∈WA

∑
a

∑
b

f (a)× [γ(f )](b)× rA(a, b).

But if | argmaxg{rB(a, g)}| > 1... bummer.

=⇒ some more elaborate solution concept is needed.
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Strong Stackelberg

Formal definition credited to:

Strong Stackelberg Equilibrium (Breton, Alj and Haurie, Def. 2.1)

Define the response/reaction set:

RB(a) = {b ∈ B | rB(a, b) ≥ sup
c∈B

rB(a, c)} .

A SSE is a pair (a∗, b∗) such that:

b∗ ∈ RB(a
∗)

rA(a
∗, b∗) ≥ sup

a∈A

{
sup

b∈RB(a)
{rA(a, b)}

}
.

They themselves refer to bilevel programming.
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Leadership Games

Leadership Games are variants of Stackelberg games
(von Stengel & Zamir, GEB, 2010).

The steps of the game are:
Player A announces a strategy in WA

Player B reacts optimally to this known strategy
Main difference: Player B does not observe the action but does
observe the strategy.
No difference if WA = A (pure strategies).

=⇒ concept credible if there is some sort of “commitment” on the
part of Player A.
=⇒ If the game is repeated and Player B makes statistics, she can

test the commitment
react to the observed strategy instead
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SSE for dynamic games

What about dynamic games?
In dynamic games, there is a state space S;

rewards depend on s ∈ S: rA(s, a, b), rB(s, a, b)
there is a probability transition function Q(z |s, a, b)
players optimize the total expected discounted gain

Vi (s) = E

[ ∞∑
t=0

βti ri (Xt ,At ,Bt)

]
i = A,B,X0 = s .

This goal is multi-objective: maximize Vi (s) for all s
the set of strategies is... what? the observation/information
is... what?
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SSE for dynamic games, ctd.

Same basic idea, relevant in particular to Security Games:
A announces a strategy f = (f0, f1, f2, . . .)
(like in Leadership Games)
B reacts to it by g = (g0, g1, . . .) = γ(f0, f1, f2, . . .)

A maximizes rA(s) with respect to f0, f1, f2, . . .

Problem:
A’s optimum is not a stationary strategy in general
(Vorobeychik & Singh, counterexample attributed to Conitzer)
computing the optimum is hard (Letchford & al, 2012)
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SSE in stationary feedback

Despite their suboptimality, many authors recommend to focus on
stationary feedback strategies:

f : S → P(A)
g : S → P(B).

Then the proximity to Markov Decision Processes (MDPs) is
striking:

B’s optimal response to a stationary policy of A is indeed
solving a MDP
→ existence of a solution in pure feedback strategies
→ strong reaction set RB(f )
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Definition of dynamic SSE

V fg
i (s): value of state s for Player i when stationary policies f and

g are played.

Strong Stationary Stackelberg Equilibrium

A strategy pair (f ∗, g∗) is a Strong Stackelberg Equilibrium in
Stationary Strategies (SSSE) if

g∗ ∈ RB(f
∗)

V f ∗,g∗

A (s) = sup{V f ,g (s); f stationary, g ∈ RB(f )}

for all s ∈ S .
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A diverse litterature...

Litterature on Stackelberg Equilibria and their Strong form comes
from several sources with imperfect communications...

Mathematics, Mathematical Economics: Game Theory
Simaan & Cruz, Breton, Alj & Haurie, Başar & Olsder,
Osborne & Rubinstein, ...
Artificial Intelligence: Complexity, Algorithmic Game Theory
Conitzer et al, Letchford et al, Vorobeychik & Singh, ...
Operations Research: Mathematical Programming, Bilevel
Programming
Kar et al, Tambe et al, ...
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A diverse litterature... but incomplete?

In all this literature, the question of the existence of SSSE is hardly
touched.

Question
Does there always exist a Strong Stackelberg Equilibrium in
Stationary Strategies (SSSE) in finite-state discounted stochastic
games?

We try to tackle the question with the operator approach.
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Related approaches

Why operators?
The approach is successful for:

MDPs
Competitive MDPs/Nash Stochastic Games (Vilar & Vrieze)
Sequential Stackelberg Games (Breton, Alj & Haurie, 1988)

each time with an existence result, at least in mixed strategies.
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Standard Operator Approach in MDP

One-slide reminder of basic MDP theory:
In a discounted MDP, the optimal value exists and satisfies a
Bellman equation:

V (x) = max
a

{
r(x , a) + β

∑
z

Q(z |s, a)V (z)

}

The right-hand side defines an operator T on value functions
The optimal value is a fixed point: TV ∗ = V ∗

Two major uses of the operator:
I Existence: T is contractive → existence & uniqueness of V ∗

I Computation: V ∗ approximated by value iteration:
Vn+1 = TVn.
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Standard Operator Approach in Stochastic Games

A reminder of “competitive MDP” theory: Shapley’s stochastic
zero-sum game with the Nash solution.

(Uv)(s) = val

[
r(s, a, b) + β

∑
z

Q(z |s, a, b)v(z)
]
.

Existence (Filar&Vrieze)

U is contractive, and there exists an equilibrium point.

Also, for general-sum games:

Existence (Filar&Vrieze, Theorem 4.6.4)

Every non-zero sum stochastic game has an equilibrium point in
stationary strategies.
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Operators for Stackelberg Games

We wish to reproduce this scheme in Stackelberg games.
One-step Dynamic programming operator on functions v :
S × {A,B} → R:

(T fgv)i (s) = Efg

(
ri (s, a, b) + βi

∑
z

Q(z |s, a, b)vi (z)
)

=
∑
a

∑
b

f (s, a)g(s, b)

[
ri (s, a, b) + βi

∑
z

Q(z |s, a, b)vi (z)
]

︸ ︷︷ ︸
:= hi (s, f , g , v)
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Reaction sets

Strong Reaction set of follower with “scrap value”:

RB(s, f , v) =

{
β ∈ P(B) | hB(s, f , β, v) = sup

g∈P(B)
hB(s, f , g , v)

}

+ ties broken in favor of A + ordering on WB .

Reaction set of the leader with “scrap value”: for each state s,

RA(s, v) =
{
f (s) | (T fRB(s,f ,v)

A vA)(s) ≥ (T
hRB(s,h,v)
A vA)(s), ∀h

}
.
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Operators T fg contractive → unique fixed point V fg .

Operator definition
Let T be the operator on pairs of functions v :

(Tv)i (s) = T
RA(s,v),RB(s,RA(s,v),v)
i vi (s).

Fixed-Point Equilibrium

A strategy pair (f ∗, g∗) is a Fixed-Point Equilibrium if value
v∗ ≡ V f ∗,g∗

is such that, equivalently,
Tv∗ = v∗

for all s ∈ S ,

g∗ ∈ RB(s, f
∗, v∗)

v∗A(s) = sup
α∈P(A)

{
sup{Eα,γhA(s, α, γ, v∗), γ ∈ RB(s, f

∗, v∗)}
}
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A two-state counterexample

Let ε > 0 and M > 0. It is assumed that

MβB − ε > 0.

Data: (transition distribution/costs)
b1 b2

a1
(1, 0)

(1, 0)
(0, 1)

(0, ε)

a2
(0, 1)

(0,−M)
(0, 1)

(0,−M)

State s1

b1 b2

a1
(0, 1)

(1, 0)
(1, 0)

(0, ε)

a2
(1, 0)

(0,−M)
(1, 0)

(0,−M)

State s2
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Application of VI

We run Value Iteration. Indeed, it does not converge!
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There seems to be a cycle of large period.
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Fail

The scheme of proof based on the operator approach fails!
there is no Fixed Point
there is not even a Strong Stackelberg Equilibrium in
stationary strategies!
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Principle

Features:
gains do not depend on the state

rA:
b1 b2

a1 1 0
a2 0 0

rB :
b1 b2

a1 0 ε
a2 −M −M

state changes if not (a1, b1)

(a1, b1)s1 s2

6= (a1, b1)

6= (a1, b1)
(a1, b1)

Story:
Player A has interest to stay in the same state and win 1 every
turn → play a1
But Player B’s response to a1 is b2, not b1!
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Principle (ctd.)

So Player A needs to menace B with playing a2 in the other
state; B will anticipate she loses −M and the state will come
back to s1

The menace is effective if B loses less by playing b1:

ε− βB ×M︸ ︷︷ ︸
B plays b2

< 0+ βB × 0︸ ︷︷ ︸
B plays b1

.

Player A’s optimum in state s1 is to announce:
s1 → a1; s2 → a2

By symmetry, in state s2 she must announce:
s1 → a2; s2 → a1

→ no SSSE.
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Findings

Conclusion of this example:
There does not exist a SSSE in general
Value Iteration does not necessarily converge

Findings on other examples
When Value Iteration converges, the FPE is not necessarily a
stationary SSE
There may be cases where a FPE does exist, but VI does not
converge to it from any initial solution
→ the operator is not contractive, actually not even
continuous.
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Contribution: myopic followers

Myopic Follower Strategies
Consider the best response functional:

hB(s, f , v) = argmax
b∈B

Ef [rB(s, a, b) + βB
∑
z

Qab(z |s)vB(z)]

It is a real-valued function, not set-valued, thanks to the
tie-breaking rule of follower + additional tie-breaking rule for leader.

MFS
A game is with Myopic Follower Strategies (MFS) if:

RB(s, f , vB) = RB(s, f ), ∀f ∈ P(A), s ∈ S, v ∈ F(S).
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Stackelberg with Myopic Follower Strategies

Existence theorem
If a finite-state, finite-action game is with Myopic Follower
Strategies, then it has a unique FPE which is also a SSSE.
Value Iteration converges geometrically to it.

Idea of Proof: If the game has MFS, the operator is such that
(Tv)A depends only on vA.
This operator on “vA” functions is shown to be contractive =⇒
unique fixed point & geometric convergence.
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Characterization of MFS

Theorem
MFS is equivalent to either

Myopic follower: βB = 0;
Leader-Controller Games: Qab(z |s) = Qa(z |s)

=⇒ no particular structure on the instantaneous reward r(·).
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Multi-stage games

A particular case of Leader-Controlled Games, quite common in
(counter-)examples from AI, are:

Multi-stage games
In a multi-stage game, the state evolves sequentially and
deterministically through s1, s2, . . . , sK and stops.

The evolution is actually not controlled at all!

Particular case of the particular case: single state.
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Other existence results

The existence of SSSE or/and FPE can be proved for other classes
of games:

zero-sum games
acyclic games
team/common-goal games.

Proof: the operator is contractive on some specific subset of value
functions.
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Acyclic Games

Acyclic Games
The game is an Acyclic Game if the state space S admits the
partition S = S⊥ ∪ S1, with:

for all s ∈ S⊥, a ∈ As , b ∈ Bs , Qab(s|s) = 1;
for every pair (s, s ′) ∈ S1×S1, if s ′ is reachable from s, then s
is not reachable from s ′.

=⇒ no particular structure on the rewards.

Theorem
If the stochastic game G is an Acyclic Game, then it admits an FPE.

However, existence of SSSE is not guaranteed.

35 / 39



Introduction
The operator approach

Negative results
Positive Results

Conclusions

Myopic Followers
Other existence results

Team Games

Team Game (generalization)

The game is a Team Game (or Identical Goal Game) if βA = βB
and there exists real constants µ and ν > 0 such that:
rabB (s) = µ+ νrabA (s).

More common definition: with µ = 0 and ν = 1.

=⇒ no particular structure on transitions.
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Team Games (ctd.)

Steps for the solution:
Construction of the cooperative MDP
Existence of a set H of deterministic optimal stationary
policies h: s → (a, b)

Optimal value: Ṽ ∗ = Ṽ h for each h ∈ H
For any h ∈ H, define f h ∈WA and gh ∈WB as:

f h(s, a) = 1 iff h(s, (a, b)) = 1 for some b

gh(s, b) =
∑
a∈As

f h(s, a)h(s, (a, b))

so that
h(s, (a, b)) = f (s, a)g(s, b)
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Team Games (end)

Final step:
Define h∗:

h∗ = argmax
≺B

{gh : h ∈ H} .

Theorem

The pair (f h
∗
, gh∗) forms an SSSE and an FPE with value v∗A = Ṽ ∗

for the leader and
v∗B =

µ

1− β + νṼ ∗

for the follower.
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Conclusions and issues

Conclusions:
FPE may or may not exist
I find more sufficient conditions for existence
I find ways (algorithms?) to test for existence or not in practice

When FPE exist, how to compute it/them?
I Value Iteration may or may not converge
I They may or may not be Stationary SSE

Stationary SSE are not optimal for the leader anyway
I FPE as a way to get better policies?

More details in Inria Research Report #9271:

https://hal.inria.fr/hal-02144095

39 / 39

https://hal.inria.fr/hal-02144095

	Introduction
	Overview
	Origin of the problem
	Stackelberg Equilibria
	SSE for dynamic games

	The operator approach
	Classical Operators
	Operators for SSE

	Negative results
	Positive Results
	Myopic Followers
	Other existence results

	Conclusions

