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The Model



Constituants:

m 2n energy levels, forming two “bands’; at most one electron
occupies an energy level;

m two special “lasing levels” L et £ in the middle of both bands
m a cavity: supports photons.

Transitions (changes of state):
m electrons may change level in each band (thermalization)

m one electron may emit one photon, and passes simultaneously
from L to £

m one electron may absorb a photon, and passes simultaneously
from/Zal

m photons may exit the cavity

m “pumping” makes an electron pass from the lowest to the
highest energy level.



Choice of the state space

What is a state of the system? At least two choices:

electron-centric : each electron has a state, its energy level
€ [0..2n — 1]. The number of photons is a priori
unbounded.

= Eclo.2n—1N x N.

But the exclution constraint has to be enforced.

level-centric : each energy level contains at most one electron.
— £ C{0,1}%" x N.

Since the total number of electrons is fixed:

2n—1
— 8C{o€{0,1}2"|ZOiZN}XN-

i=0



The time scales of thermalization and other events (emission,
absorption, light, pumping) are very different.
The process may be seen as:

m 2 independent processes in each of the bands
m coupled by rare events
— focus on each band
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Example of a transition diagram: n = 6 levels, N = 2 particles.
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All transitions represented are two-way. Unwritten transition rates:
rate p for transitions to the left (lower energy), pqg to the right
(higher energy).



Recursive structure

Order states lexicographically: matrices can be represented as

0pxgq Opxr
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Generators (ctd)

The base matrix is the n x n generator of the birth and death
process with n states: (for the laser, A = p and u = pq)



But if we order by energy level, we get a “quasi-birth-death” process
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Generators (end)

And what happens if we adopt the electron-centric model?

£ = {XG[O..2n—1]N|X1<X2<...<XN}

For instance, still with
@l@l@l@l@ n=6, P =2 aregular,
2-dimensional grid-like

Pqp P Pq Pq pqp
structure
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Stationary distribution

The stationary distribution can be computed in closed form as:

n—1
1 H 1 n—1 - Uo'
_ ic; _ Do o — q
Tnm(o) G(n, m) H;q G(n, m) K G(n,m) "

The partition function G(n, m) is given by:

n—1
G(n,m) = Z Hqi”f

UESn,m i=0
_ qm—l _ qn qm—2 _ qn 1— qn
1_qm 1_qm71 1_q.

Proofs:
m direct check of balance equations

m reversibility and truncation



Reversibility

Definition (Reversible Markov Chains)

A continuous-time Markov chain is reversible if {X(t)} have
{X(—t)} the same generator, that is, if for all pair of states
(i,j) e EXE,

n(i) qij = =() g, -

This equation is the local balance condition. It implies that when
transition j — k exists, transition k — j must exist as well.

It is sufficient that it be satisfied for some family of numbers that
need not be, a priori a probability distribution. If it does, then this
family turns out to be indeed a stationary distribution for Q,
possibly up to a normalization constant.



Reversibility (ctd)

The class of Reversible Markov chains has property very useful for
computing distributions: it is stable with respect to truncation.

Definition (Truncated Markov Chain)

Consider a CTMC over a countable state space £ and generator Q.
Let A C &£. The truncated Markov chain over the sub-space A is
the CTMC with generator Q 4 defined as:

ke d
(qa)jk = {gjk 11 o (1)

otherwise.

In words, the transitions of the process are the same as the original
process as long as the state is in A. But transitions outside .4 have
rate 0. If the process starts inside A, it stays there forever, and it
can be considered as a CTMC on the space A.



Reversibility (end)

Theorem (Stationary distribution of truncated reversible chains)

Let A C €. Consider some reversible CTMC, with stationary
distribution 7. Then the truncated Markov chain over A is also
reversible, and its stationary distribution is given by: for i € A

0
) = )



Calculating occupancies

Open question: is it possible to calculate marginal probabilities
(occupancies). For each energy level i,

P{N; =1} = ?

The direct approach is:

P{N; =1} = > mamlo)

OCSnm | oi=1
— 1 § qZ;;oljUj .
G(n, m)
O€Snm | 0i=1

Too complex = need for some simpler computation, e.g. with a
recurrence.



Calculating occupancies (end)

Two recurrences

N-+1
g+t

1—
ﬁ(l—P{N,- = 1, N particles}).

P{N; =1, N + 1 particles} = qi gV —

P{N; = 1}
pi EI : (i+1)(N717k)G i KYG(n—i—1.N—k—1

,0 Ij n / bl
G(n, N) — (7, k)6 )

P{N; = 0}




Sampling from the stationary distribution

It is possible to directly sample from this stationary distribution,
although the state space is very large.
This is because the distribution has a recursive strucure.



Sampling, Forward approach

The “simplex” S, m can be decomposed as:
Sn,m = {1} X Snflymfl U {0} X Snfl,m , O<m<n.

Then we get the recursion:

G(n,m) = ¢"*G(n—1,m—1) + ¢"G(n—1,m) .
me1 G(n—1,m—1
Tam(oo=1) = ¢"7 ( G(n, m) !
m G(n—1,m
7Tn,m(00:0) = q (G(nm))

+ boundary values.



Forward algorithm

Sampling from the stationary distribution, forward method

Data: Two integers nand m, 0 < n<m
Result: A vector in Sp,m, sampled from the distribution s m
begin
k< m
for i from 0 to n— 1 do
if Kk =0 then

| o[« 0
else if k = n— i then

| o]« 1
else

u  Uniform([0, 1])
«G(n—1—i k)
G(n—1i,k)

| o[« 0

else

if u<gqg then

alil] +1

k< k—1
return (o[0],...,0[n —1])




Sampling, Backwards approach

Symetrically, Sp.m is decomposed as
Sn,m = Snfl,mfl X {1} U Snfl,m X {0} , O<m<n.
Then we get:

G(n,m) = ¢"'G(n—1,m—1) + G(n—1,m)
ey G(n—1,m—-1
Tam(on1=1) = " (G(n m) )
G(n—1,m)
G(n,m)

Tnm(og =0) =

+ boundary values.



Backwards algorithm

Sampling from the stationary distribution, backwards method

Data: Two integers nand m, 0 < n<m
Result: A vector in Sp,m, sampled from the distribution s m
begin
k< m
for i from 1 to n do
if Kk =0 then
| o[n—i]«0
else if k = n— i then
| oln—1i+«1
else
u  Uniform([0, 1])
G(n—i, k)
G(n—i+1,k)
| o[n—i]«0
else

if u< then

aln—il+1

k< k—1
return (o[0],...,0[n —1])
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Speed of convergence

The question is to quantify the distance between 7y = m9eQt and
the stationary distribution 7.
The spectral decomposition principle says that if Q = RDR™1, then

e = RePIRT = R _ R1

n
= 1n + ZeAthj.
Jj=2

Locating the eigenvalues (spectrum) ); gives information on the
speed of convergence.



The basis matrix is:

- A
poo —(At+p) A
Mn1 = ' '
poo—(At+p) A
1 —p
Its n eigenvalues are 0 and:
km
wek = —(A+p) —1—2\/)\,uc057, k=1.n—1.

Speed of convergence: given by the largest, non-zero one. It is less

than
—(A ) + 2/ = — (V2= yn)?.
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